1
|
Cheng Q, Roth A, Halgren E, Mayberry RI. Effects of Early Language Deprivation on Brain Connectivity: Language Pathways in Deaf Native and Late First-Language Learners of American Sign Language. Front Hum Neurosci 2019; 13:320. [PMID: 31607879 PMCID: PMC6761297 DOI: 10.3389/fnhum.2019.00320] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/02/2019] [Indexed: 01/24/2023] Open
Abstract
Previous research has identified ventral and dorsal white matter tracts as being crucial for language processing; their maturation correlates with increased language processing capacity. Unknown is whether the growth or maintenance of these language-relevant pathways is shaped by language experience in early life. To investigate the effects of early language deprivation and the sensory-motor modality of language on white matter tracts, we examined the white matter connectivity of language-relevant pathways in congenitally deaf people with or without early access to language. We acquired diffusion tensor imaging (DTI) data from two groups of individuals who experienced language from birth, twelve deaf native signers of American Sign Language, and twelve hearing L2 signers of ASL (native English speakers), and from three, well-studied individual cases who experienced minimal language during childhood. The results indicate that the sensory-motor modality of early language experience does not affect the white matter microstructure between crucial language regions. Both groups with early language experience, deaf and hearing, show leftward laterality in the two language-related tracts. However, all three cases with early language deprivation showed altered white matter microstructure, especially in the left dorsal arcuate fasciculus (AF) pathway.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Linguistics, University of California, San Diego, San Diego, CA, United States
| | - Austin Roth
- Department of Linguistics, University of California, San Diego, San Diego, CA, United States
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Eric Halgren
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Rachel I. Mayberry
- Department of Linguistics, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
2
|
Johnson L, Fitzhugh MC, Yi Y, Mickelsen S, Baxter LC, Howard P, Rogalsky C. Functional Neuroanatomy of Second Language Sentence Comprehension: An fMRI Study of Late Learners of American Sign Language. Front Psychol 2018; 9:1626. [PMID: 30237778 PMCID: PMC6136263 DOI: 10.3389/fpsyg.2018.01626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/14/2018] [Indexed: 01/16/2023] Open
Abstract
The neurobiology of sentence comprehension is well-studied but the properties and characteristics of sentence processing networks remain unclear and highly debated. Sign languages (i.e., visual-manual languages), like spoken languages, have complex grammatical structures and thus can provide valuable insights into the specificity and function of brain regions supporting sentence comprehension. The present study aims to characterize how these well-studied spoken language networks can adapt in adults to be responsive to sign language sentences, which contain combinatorial semantic and syntactic visual-spatial linguistic information. Twenty native English-speaking undergraduates who had completed introductory American Sign Language (ASL) courses viewed videos of the following conditions during fMRI acquisition: signed sentences, signed word lists, English sentences and English word lists. Overall our results indicate that native language (L1) sentence processing resources are responsive to ASL sentence structures in late L2 learners, but that certain L1 sentence processing regions respond differently to L2 ASL sentences, likely due to the nature of their contribution to language comprehension. For example, L1 sentence regions in Broca's area were significantly more responsive to L2 than L1 sentences, supporting the hypothesis that Broca's area contributes to sentence comprehension as a cognitive resource when increased processing is required. Anterior temporal L1 sentence regions were sensitive to L2 ASL sentence structure, but demonstrated no significant differences in activation to L1 than L2, suggesting its contribution to sentence processing is modality-independent. Posterior superior temporal L1 sentence regions also responded to ASL sentence structure but were more activated by English than ASL sentences. An exploratory analysis of the neural correlates of L2 ASL proficiency indicates that ASL proficiency is positively correlated with increased activations in response to ASL sentences in L1 sentence processing regions. Overall these results suggest that well-established fronto-temporal spoken language networks involved in sentence processing exhibit functional plasticity with late L2 ASL exposure, and thus are adaptable to syntactic structures widely different than those in an individual's native language. Our findings also provide valuable insights into the unique contributions of the inferior frontal and superior temporal regions that are frequently implicated in sentence comprehension but whose exact roles remain highly debated.
Collapse
Affiliation(s)
- Lisa Johnson
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, United States
| | - Megan C Fitzhugh
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, United States.,Interdisciplinary Graduate Neuroscience Program, Arizona State University, Tempe, AZ, United States
| | - Yuji Yi
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, United States
| | - Soren Mickelsen
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, United States
| | - Leslie C Baxter
- Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Pamela Howard
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, United States
| | - Corianne Rogalsky
- Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
3
|
Handedness prevalence in the deaf: Meta-analyses. Neurosci Biobehav Rev 2016; 60:98-114. [DOI: 10.1016/j.neubiorev.2015.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/19/2015] [Accepted: 11/21/2015] [Indexed: 11/23/2022]
|
4
|
Hemispheric Differences for Global and Local Processing: Effect of Stimulus Size and Sparsity. SPANISH JOURNAL OF PSYCHOLOGY 2013; 12:21-31. [DOI: 10.1017/s113874160000144x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present experiment was designed to assess the hemispheric differences for global and local processing in healthy participants under different conditions of stimuli visibility, by means of varying the size and sparsity. Three different sizes and three different matrixes of hierarchical stimuli were introduced. Stimuli consisted of incomplete squares with one side missing. Participants were asked to carry out an orientation classification task (left/right), indicating the orientation of the square opening either at global or local levels. The results do not support the hemispheric differences for global and local processing, showing the same efficiency of right and left hemispheres for analyzing global and local information. Nevertheless, other results found are consistent with the hypothesis of right hemisphere superiority under degraded stimulus conditions.
Collapse
|
5
|
The what and why of perceptual asymmetries in the visual domain. Adv Cogn Psychol 2010; 6:103-15. [PMID: 21228922 PMCID: PMC3019986 DOI: 10.2478/v10053-008-0080-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 06/19/2010] [Indexed: 11/20/2022] Open
Abstract
Perceptual asymmetry is one of the most important characteristics of our visual
functioning. We carefully reviewed the scientific literature in order to examine
such asymmetries, separating them into two major categories: within-visual field
asymmetries and between-visual field asymmetries. We explain these asymmetries
in terms of perceptual aspects or tasks, the what of the
asymmetries; and in terms of underlying mechanisms, the why of
the asymmetries. Tthe within-visual field asymmetries are fundamental to
orientation, motion direction, and spatial frequency processing. between-visual
field asymmetries have been reported for a wide range of perceptual phenomena.
foveal dominance over the periphery, in particular, has been prominent for
visual acuity, contrast sensitivity, and colour discrimination. Tthis also holds
true for object or face recognition and reading performance. upper-lower visual
field asymmetries in favour of the lower have been demonstrated for temporal and
contrast sensitivities, visual acuity, spatial resolution, orientation, hue and
motion processing. Iin contrast, the upper field advantages have been seen in
visual search, apparent size, and object recognition tasks. left-right visual
field asymmetries include the left field dominance in spatial (e.g.,
orientation) processing and the right field dominance in non-spatial (e.g.,
temporal) processing. left field is also better at low spatial frequency or
global and coordinate spatial processing, whereas the right field is better at
high spatial frequency or local and categorical spatial processing. All these
asymmetries have inborn neural/physiological origins, the primary
why, but can be also susceptible to visual experience, the
critical why (promotes or blocks the asymmetries by
altering neural functions).
Collapse
|
6
|
Pickell H, Klima E, Love T, Kritchevsky M, Bellugi U, Hickok G. Sign language aphasia following right hemisphere damage in a left-hander: a case of reversed cerebral dominance in a deaf signer? Neurocase 2005; 11:194-203. [PMID: 16006340 DOI: 10.1080/13554790590944717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent lesion studies have shown that left hemisphere lesions often give rise to frank sign language aphasias in deaf signers, whereas right hemisphere lesions do not, suggesting similar patterns of hemispheric asymmetry for signed and spoken language. We present here a case of a left-handed, deaf, life-long signer who became aphasic after a right-hemisphere lesion. The subject exhibits deficits in sign language comprehension and production typically associated with left hemisphere damaged signers. He also exhibits evidence of local versus global deficits similar to left-hemisphere lesioned hearing patients. This case represents reversed lateralization for sign language and also may represent reversed lateralization for visuo-spatial abilities in a deaf signer.
Collapse
Affiliation(s)
- Herbert Pickell
- Laboratory for Cognitive Neuroscience, The Salk Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Forms of sign language have developed in a number of countries. American Sign Language, which originated from French signing, has been most extensively researched. As sign language is based on gestures executed in space and perceived visually it might be thought that it would mainly be a function of the right cerebral hemisphere when this is the non-dominant one. A number of studies are reviewed showing that sign language is a language in its own right and therefore, as with spoken language, its primary site of organization is in the dominant hemisphere. This does not mean that there is not a significant contribution from the other hemisphere with an interplay between the two. Each research project usually contributes some facet of knowledge apart from the main conclusions. These included the importance of distinguishing signs from gestures, the localization of different types of signing within the left dominant cerebral hemisphere, the fact that lesions of the right non-dominant hemisphere, although not causing a loss of signing will result in dyspraxia, and that aphasic symptoms of signing and speech are not modality dependant but reflected a disruption of language processes common to all languages. Examples are given of discoveries made by the use of the newer neuroradiological techniques such as functional magnetic resonance imaging and positron emission tomography, and no doubt these will lead to further advances in knowledge. The use of sign language in the treatment of patients with verbal aphasia is considered, especially of children with the Landau-Kleffner syndrome, but therapy of this kind can be used in children with delayed language development, and in other types of acquired aphasia at any age. Other methods of treatment than signing, such as cochlear implants may be increasingly used in the future, but it seems likely that sign language will continue to be a dominant feature in the deaf culture.
Collapse
Affiliation(s)
- Neil Gordon
- Huntlywood, 3 Styal Road, Wilmslow SK9 4AE, UK.
| |
Collapse
|
8
|
Hirota H, Matsuoka R, Chen XN, Salandanan LS, Lincoln A, Rose FE, Sunahara M, Osawa M, Bellugi U, Korenberg JR. Williams syndrome deficits in visual spatial processing linked to GTF2IRD1 and GTF2I on chromosome 7q11.23. Genet Med 2003; 5:311-21. [PMID: 12865760 DOI: 10.1097/01.gim.0000076975.10224.67] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PURPOSE To identify the relationship between specific genes and phenotypic features of Williams syndrome. METHODS Subjects were selected based on their deletion status determined by fluorescence in situ hybridization using a panel of 24 BACs and cosmids spanning the region commonly deleted and single gene analysis using Southern blotting. From the cohort of subjects, three had atypical deletions. Physical examinations and cognitive tests were administered to the three subjects and the results were compared to those from a cohort of typical WS subjects. RESULTS The molecular results indicate smaller deletions for each subject. In all three cases, typical Williams facies were absent and visual spatial abilities were above that of full deletion WS subjects, particularly in the qualitative aspects of visual spatial processing. CONCLUSIONS Combining the molecular analysis with the cognitive results suggest that the genes GTF2IRD1 and GTF2I contribute to deficits on visual spatial functioning.
Collapse
Affiliation(s)
- Hamao Hirota
- Department of Pediatric Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|