1
|
Cugusi S, Bajpe PK, Mitter R, Patel H, Stewart A, Svejstrup JQ. An Important Role for RPRD1B in the Heat Shock Response. Mol Cell Biol 2022; 42:e0017322. [PMID: 36121223 PMCID: PMC9583720 DOI: 10.1128/mcb.00173-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/07/2022] [Accepted: 08/26/2022] [Indexed: 12/25/2022] Open
Abstract
During the heat shock response (HSR), heat shock factor (HSF1 in mammals) binds to target gene promoters, resulting in increased expression of heat shock proteins that help maintain protein homeostasis and ensure cell survival. Besides HSF1, only a relatively few transcription factors with a specific role in ensuring correctly regulated gene expression during the HSR have been described. Here, we use proteomic and genomic (CRISPR) screening to identify a role for RPRD1B in the response to heat shock. Indeed, cells depleted for RPRD1B are heat shock sensitive and show decreased expression of key heat shock proteins (HSPs). These results add to our understanding of the connection between basic gene expression mechanisms and the HSR.
Collapse
Affiliation(s)
- Simona Cugusi
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Prashanth Kumar Bajpe
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Harshil Patel
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Aengus Stewart
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Jesper Q. Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Gressel S, Schwalb B, Cramer P. The pause-initiation limit restricts transcription activation in human cells. Nat Commun 2019; 10:3603. [PMID: 31399571 PMCID: PMC6689055 DOI: 10.1038/s41467-019-11536-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/18/2019] [Indexed: 01/01/2023] Open
Abstract
Eukaryotic gene transcription is often controlled at the level of RNA polymerase II (Pol II) pausing in the promoter-proximal region. Pausing Pol II limits the frequency of transcription initiation ('pause-initiation limit'), predicting that the pause duration must be decreased for transcriptional activation. To test this prediction, we conduct a genome-wide kinetic analysis of the heat shock response in human cells. We show that the pause-initiation limit restricts transcriptional activation at most genes. Gene activation generally requires the activity of the P-TEFb kinase CDK9, which decreases the duration of Pol II pausing and thereby enables an increase in the productive initiation frequency. The transcription of enhancer elements is generally not pause limited and can be activated without CDK9 activity. Our results define the kinetics of Pol II transcriptional regulation in human cells at all gene classes during a natural transcription response.
Collapse
Affiliation(s)
- Saskia Gressel
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Björn Schwalb
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.
| | - Patrick Cramer
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
3
|
Marin-Vinader L, Shin C, Onnekink C, Manley JL, Lubsen NH. Hsp27 enhances recovery of splicing as well as rephosphorylation of SRp38 after heat shock. Mol Biol Cell 2005; 17:886-94. [PMID: 16339078 PMCID: PMC1356597 DOI: 10.1091/mbc.e05-07-0596] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A heat stress causes a rapid inhibition of splicing. Exogenous expression of Hsp27 did not prevent that inhibition but enhanced the recovery of splicing afterward. Another small heat shock protein, alphaB-crystallin, had no effect. Hsp27, but not alphaB-crystallin, also hastened rephosphorylation of SRp38-dephosphorylated a potent inhibitor of splicing-after a heat shock, although it did not prevent dephosphorylation by a heat shock. The effect of Hsp27 on rephosphorylation of SRp38 required phosphorylatable Hsp27. A Hsp90 client protein was required for the effect of Hsp27 on recovery of spicing and on rephosphorylation of SRp38. Raising the Hsp70 level by either a pre-heat shock or by exogenous expression had no effect on either dephosphorylation of SRp38 during heat shock or rephosphorylation after heat shock. The phosphatase inhibitor calyculin A prevented dephosphorylation of SRp38 during a heat shock and caused complete rephosphorylation of SRp38 after a heat shock, indicating that cells recovering from a heat shock are not deficient in kinase activity. Together our data show that the activity of Hsp27 in restoring splicing is not due to a general thermoprotective effect of Hsp27, but that Hsp27 is an active participant in the (de)phosphorylation cascade controlling the activity of the splicing regulator SRp38.
Collapse
Affiliation(s)
- Laura Marin-Vinader
- Department of Biochemistry, Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
4
|
High-temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/s00497-005-0004-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Tulin A, Chinenov Y, Spradling A. Regulation of chromatin structure and gene activity by poly(ADP-ribose) polymerases. Curr Top Dev Biol 2003; 56:55-83. [PMID: 14584726 DOI: 10.1016/s0070-2153(03)01007-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alexei Tulin
- HHMI Laboratories, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA
| | | | | |
Collapse
|
6
|
Korsisaari N, Rossi DJ, Paetau A, Charnay P, Henkemeyer M, Mäkelä TP. Conditional ablation of the Mat1 subunit of TFIIH in Schwann cells provides evidence that Mat1 is not required for general transcription. J Cell Sci 2002; 115:4275-84. [PMID: 12376559 DOI: 10.1242/jcs.00121] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian Mat1 protein has been implicated in cell cycle regulation as part of the Cdk activating kinase (CAK), and in regulation of transcription as a subunit of transcription factor TFIIH. To address the role of Mat1 in vivo, we have used a Cre/loxP system to conditionally ablate Mat1 in adult mitotic and post-mitotic lineages. We found that the mitotic cells of the germ lineage died rapidly upon disruption of Mat1 indicating an absolute requirement of Mat1 in these cells. By contrast, post-mitotic myelinating Schwann cells were able to attain a mature myelinated phenotype in the absence of Mat1. Moreover, mutant animals did not show morphological or physiological signs of Schwann cell dysfunction into early adulthood. Beyond 3 months of age, however, myelinated Schwann cells in the sciatic nerves acquired a severe hypomyelinating morphology with alterations ranging from cells undergoing degeneration to completely denuded axons. This phenotype was coupled to extensive proliferation and remyelination that our evidence suggests was undertaken by the non-myelinated Schwann cell pool. These results indicate that Mat1 is not essential for the transcriptional program underlying the myelination of peripheral axons by Schwann cells and suggest that the function of Mat1 in RNA polymerase II-mediated transcription in these cells is regulatory rather than essential.
Collapse
Affiliation(s)
- Nina Korsisaari
- Haartman Institute and Helsinki University Central Hospital, Biomedicum Helsinki, PO Box 63, Haartmaninkatu 8, 00014 University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
7
|
Wallenfang MR, Seydoux G. cdk-7 Is required for mRNA transcription and cell cycle progression in Caenorhabditis elegans embryos. Proc Natl Acad Sci U S A 2002; 99:5527-32. [PMID: 11960010 PMCID: PMC122803 DOI: 10.1073/pnas.082618399] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CDK7 is a cyclin-dependent kinase proposed to function in two essential cellular processes: transcription and cell cycle regulation. CDK7 is the kinase subunit of the general transcription factor TFIIH that phosphorylates the C-terminal domain (CTD) of RNA polymerase II, and has been shown to be broadly required for transcription in Saccharomyces cerevisiae. CDK7 can also phosphorylate CDKs that promote cell cycle progression, and has been shown to function as a CDK-activating kinase (CAK) in Schizosaccharomyces pombe and Drosophila melanogaster. That CDK7 performs both functions in metazoans has been difficult to prove because transcription is essential for cell cycle progression in most cells. We have isolated a temperature-sensitive mutation in Caenorhabditis elegans cdk-7 and have used it to analyze the role of cdk-7 in embryonic blastomeres, where cell cycle progression is independent of transcription. Partial loss of cdk-7 activity leads to a general decrease in CTD phosphorylation and embryonic transcription, and severe loss of cdk-7 activity blocks all cell divisions. Our results support a dual role for metazoan CDK7 as a broadly required CTD kinase, and as a CAK essential for cell cycle progression.
Collapse
Affiliation(s)
- Matthew R Wallenfang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
8
|
Szentirmay MN, Sawadogo M. Spatial organization of RNA polymerase II transcription in the nucleus. Nucleic Acids Res 2000; 28:2019-25. [PMID: 10773068 PMCID: PMC105382 DOI: 10.1093/nar/28.10.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/1999] [Revised: 03/28/2000] [Accepted: 03/28/2000] [Indexed: 01/04/2023] Open
Abstract
In eukaryotic cells, mRNA synthesis is carried out by large, multifunctional complexes that are also involved in coordinating transcription with other nuclear processes. This survey focuses on the distribution and structural arrangement of these complexes within the nucleus, in relationship with the discrete positioning of particular chromosomal loci. To better understand the link between the spatial organization of the nucleus and the regulation of gene expression, it is necessary to combine information from biochemical studies with results from microscopic observations of preserved nuclear structures. Recent experimental approaches have made this possible. The subnuclear locations of specific chromosome loci, RNA transcripts, RNA polymerases, and transcription and pre-mRNA-processing factors can now be observed with computer-assisted microscopy and specific molecular probes. The results indicate that RNA polymerase II (RNAPII) transcription takes place at discrete sites scattered throughout the nucleoplasm, and that these sites are also the locations of pre-mRNA processing. Transcribing polymerases appear to be grouped into clusters at each transcription site. Cell cycle-dependent zones of transcription and processing factors have been identified, and certain subnuclear domains appear specialized for expression or silencing of particular genes. The arrangement of transcription in the nucleus is dynamic and depends on its transcriptional activity, with the RNAPII itself playing a central role in marshalling the large complexes involved in gene expression.
Collapse
Affiliation(s)
- M N Szentirmay
- Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | |
Collapse
|
9
|
Abstract
The C-terminal domain (CTD) of the largest subunit (RPB1) of eukaryotic RNA polymerase II is essential for pol II function and has been shown to play a number of important roles in the mRNA transcription cycle. The CTD is composed of a tandemly repeated heptapeptide that is conserved in yeast, animals, plants and several protistan organisms. Some eukaryotes, however, have what appear to be degenerate or deviant CTD regions, and others have no CTD at all. The functional and evolutionary implications of this variation among RPB1 C-termini is largely unexplored. We have transformed yeast cells with a construct consisting of the yeast RPB1 gene with 25 heptads from the primitive protist Mastigamoeba invertens in place of the wild-type CTD. The Mastigamoeba heptads differ from the canonical CTD by the invariable presence of alanines in place of threonines at position 4, and in place of serines at position 7 of each heptad. Despite this double substitution, mutants are viable even under conditions of temperature and nutrient stress. These results provide new insights into the relative functional importance of several of the conserved CTD residues, and indicate that in vivo expression of evolutionary variants in yeast can provide important clues for understanding the origin, evolution and function of the pol II CTD.
Collapse
Affiliation(s)
- J W Stiller
- Department of Genetics, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
10
|
Bensaude O, Bonnet F, Cassé C, Dubois MF, Nguyen VT, Palancade B. Regulated phosphorylation of the RNA polymerase II C-terminal domain (CTD). Biochem Cell Biol 1999. [DOI: 10.1139/o99-047] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The largest subunit of RNA polymerase II has an intriguing feature in its carboxyl-terminal domain (CTD) that consists of multiple repeats of an evolutionary conserved motif of seven amino acids. CTD phosphorylation plays a pivotal role in controlling mRNA synthesis and maturation. In exponentially growing cells, the phosphate turnover on the CTD is fast; it is blocked by common inhibitors of transcription, such as 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole and actinomycin D. Transcription-independent changes in CTD phosphorylation are observed at critical developmental stages, such as meiosis and early development.Key words: RNA polymerase II, phosphorylation, transcription inhibitors, cyclin-dependent kinases, development.
Collapse
|