1
|
Roddy GW, Viker KB, Winkler NS, Bahler CK, Holman BH, Sheikh-Hamad D, Roy Chowdhury U, Stamer WD, Fautsch MP. Stanniocalcin-1 Is an Ocular Hypotensive Agent and a Downstream Effector Molecule That Is Necessary for the Intraocular Pressure-Lowering Effects of Latanoprost. Invest Ophthalmol Vis Sci 2017; 58:2715-2724. [PMID: 28538979 PMCID: PMC5444548 DOI: 10.1167/iovs.16-21004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose To identify downstream signaling molecules through which intraocular pressure (IOP) is lowered following treatment with the prostaglandin analog latanoprost. Methods Total RNA and protein isolated from primary human Schlemm's canal cells (n = 3) treated with latanoprost (free acid; 100 nM) were processed for quantitative PCR and Western blot analysis. IOP was evaluated in stanniocalcin-1 (STC-1−/−) and wild-type mice following treatment with latanoprost or Rho kinase inhibitor Y27632. Human anterior segment pairs (n = 8) were treated with recombinant STC-1 (5, 50, or 500 ng/mL) and pressure was recorded using custom-designed software. The effect of recombinant STC-1 (0.5 mg/mL) on IOP was evaluated in wild-type mice. Tissue morphology was evaluated by light and transmission electron microscopy. Results Increased STC-1 mRNA (4.0- to 25.2-fold) and protein expression (1.9- to 5.1-fold) was observed within 12 hours following latanoprost treatment. Latanoprost reduced IOP in wild-type mice (22.0% ± 1.9%), but had no effect on STC-1−/− mice (0.5% ± 0.7%). In contrast, Y27632 reduced IOP in both wild-type (12.5% ± 1.2%) and in STC-1−/− mice (13.1% ± 2.8%). Human anterior segments treated with STC-1 (500 ng/mL) showed an increase in outflow facility (0.15 ± 0.03 to 0.27 ± 0.09 μL/min/mm Hg) while no change was observed in paired vehicle-treated controls. Recombinant STC-1 reduced IOP in wild-type mice by 15.2% ± 3.0%. No observable morphologic changes were identified between treatment groups when evaluated by microscopy. Conclusions Latanoprost-induced reduction of IOP is mediated through the downstream signaling molecule STC-1. When used by itself, STC-1 exhibits ocular hypotensive properties.
Collapse
Affiliation(s)
- Gavin W Roddy
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Kimberly B Viker
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Nelson S Winkler
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Cindy K Bahler
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Bradley H Holman
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - David Sheikh-Hamad
- Department of Medicine, Division of Nephrology, Baylor College of Medicine, Houston, Texas, United States
| | - Uttio Roy Chowdhury
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Michael P Fautsch
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
2
|
McDonald JE, Kiland JA, Kaufman PL, Bentley E, Ellinwood NM, McLellan GJ. Effect of topical latanoprost 0.005% on intraocular pressure and pupil diameter in normal and glaucomatous cats. Vet Ophthalmol 2015; 19 Suppl 1:13-23. [PMID: 26183373 DOI: 10.1111/vop.12292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To determine the effects of latanoprost on intraocular pressure (IOP) and pupil diameter (PD) in cats with inherited primary congenital glaucoma (PCG) and normal cats. ANIMALS STUDIED AND PROCEDURES IOP and PD were measured in both eyes (OU) of 12 adult cats (six normal, six PCG), three times per week for 3 weeks prior to, for 3 weeks during, and for 2 weeks following twice-daily treatment with 0.005% latanoprost to the right eye (OD) and vehicle to the left (control) eye (OS). IOP and PD were measured hourly, for 8 h, 1 day prior to, and on the first and last days of treatment. Aqueous humor flow rate (AHF) was determined at baseline and at the end of the treatment phase in six normal cats. RESULTS Mean IOP was significantly lower in treated vs. control eyes of PCG cats, for up to 8 h following a single latanoprost treatment, and a maximal IOP reduction of 63% occurred in treated eyes at 3 h. Latanoprost acutely lowered IOP in cats with PCG, but this effect appeared to diminish over 3 weeks of treatment. AHF was modestly increased in the treated eyes of normal cats after 3 weeks of latanoprost treatment, although IOP was not significantly affected. Latanoprost caused miosis, with rebound mydriasis at 24 h posttreatment, in the treated eyes of all cats. CONCLUSIONS Further research is needed to determine the suitability and efficacy of latanoprost treatment for long-term IOP-lowering in cats with PCG or other forms of glaucoma.
Collapse
Affiliation(s)
- Jessica E McDonald
- Department of Ophthalmology & Visual Sciences, University of Wisconsin - Madison, Madison, WI, 53792, USA.,Department of Surgical Sciences, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Julie A Kiland
- Department of Ophthalmology & Visual Sciences, University of Wisconsin - Madison, Madison, WI, 53792, USA
| | - Paul L Kaufman
- Department of Ophthalmology & Visual Sciences, University of Wisconsin - Madison, Madison, WI, 53792, USA.,McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Ellison Bentley
- Department of Surgical Sciences, University of Wisconsin - Madison, Madison, WI, 53706, USA.,McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | | | - Gillian J McLellan
- Department of Ophthalmology & Visual Sciences, University of Wisconsin - Madison, Madison, WI, 53792, USA.,Department of Surgical Sciences, University of Wisconsin - Madison, Madison, WI, 53706, USA.,McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI, 53706, USA
| |
Collapse
|
3
|
Lanzafame AA, Christopoulos A, Mitchelson F. Cellular Signaling Mechanisms for Muscarinic Acetylcholine Receptors. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308263] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Wan Z, Woodward DF, Stamer WD. Endogenous Bioactive Lipids and the Regulation of Conventional Outflow Facility. EXPERT REVIEW OF OPHTHALMOLOGY 2008; 3:457-470. [PMID: 19381354 PMCID: PMC2670098 DOI: 10.1586/17469899.3.4.457] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Perturbation of paracrine signaling within the human conventional outflow pathway influences tissue homeostasis and outflow function. For example, exogenous introduction of the bioactive lipids, sphingosine-1-phosphate, anandamide or prostaglandin F(2α), to conventional outflow tissues alters the rate of drainage of aqueous humor through the trabecular meshwork, and into Schlemm's canal. This review summarizes recent data that characterizes endogenous bioactive lipids, their receptors and associated signaling partners in the conventional outflow tract. We also discuss the potential of targeting such signaling pathways as a strategy for the development of therapeutics to treat ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Zhou Wan
- Department of Ophthalmology and Vision Science, University of Arizona, Tucson, Arizona
| | - David F. Woodward
- Departments of Biological Sciences, Allergan, Inc., Irvine, California
| | - W. Daniel Stamer
- Department of Ophthalmology and Vision Science, University of Arizona, Tucson, Arizona
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| |
Collapse
|
5
|
Hinz B, Rösch S, Ramer R, Tamm ER, Brune K. Latanoprost induces matrix metalloproteinase‐1 expression in human nonpigmented ciliary epithelial cells through a cyclooxygenase‐2‐dependent mechanism. FASEB J 2005; 19:1929-31. [PMID: 16076963 DOI: 10.1096/fj.04-3626fje] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prostaglandins (PGs) have been implicated in the regulation of intraocular pressure (IOP) by facilitating the remodeling of tissues involved in aqueous humor outflow. A contribution of cyclooxygenase-2 (COX-2)-dependent PGs to this process was emphasized by a recent study showing an impaired COX-2 expression in the nonpigmented ciliary epithelium (NPE) of patients with primary open-angle glaucoma. With the use of human NPE cells (ODM-2), the present study therefore investigated the effect of the antiglaucomatous drug latanoprost (PGF2alpha analog) on the expression of COX-2 and its association with the induction of matrix metalloproteinases (MMPs). In NPE cells, latanoprost led to a concentration- and time-dependent increase of COX-2 mRNA levels. Up-regulation of COX-2 expression was accompanied by phosphorylations of p38 mitogen-activated protein kinase (MAPK) and p42/44 MAPK and was abrogated by specific inhibitors of both pathways. PGE2 formation by latanoprost was abolished by the selective COX-2 inhibitor NS-398 and by the F-prostaglandin receptor antagonist AL-8810. Moreover, latanoprost led to a delayed up-regulation of MMP-1 mRNA, whereas the expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 remained unchanged. Latanoprost-induced MMP-1 mRNA and protein expression was abolished by NS-398 and by COX-2-silencing small-interfering RNA. In line with this finding, MMP-1 expression was also induced by PGE2, a major COX-2 product. As a whole, our results show that MMP-1 expression by latanoprost requires prior up-regulation of COX-2. Induction of COX-2- and subsequent MMP-1 expression in the NPE may represent a potential mechanism underlying the IOP-lowering and antiglaucomatous action of latanoprost.
Collapse
Affiliation(s)
- Burkhard Hinz
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | |
Collapse
|
6
|
Zhou H, Das S, Murthy KS. Erk1/2- and p38 MAP kinase-dependent phosphorylation and activation of cPLA2 by m3 and m2 receptors. Am J Physiol Gastrointest Liver Physiol 2003; 284:G472-80. [PMID: 12576304 DOI: 10.1152/ajpgi.00345.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study examined the upstream signaling pathways initiated by muscarinic m2 and m3 receptors that mediate sustained ERK1/2- and p38 MAP kinase-dependent phosphorylation and activation of the 85-kDa cytosolic phospholipase (cPL)A(2) in smooth muscle. The pathway initiated by m2 receptors involved sequential activation of Gbetagamma(i3), phosphatidylinositol (PI)3-kinase, Cdc42, and Rac1, p21-activated kinase (PAK1), p38 mitogen-activated protein (MAP) kinase, and cPLA(2), and phosphorylation of cPLA(2) at Ser(505). cPLA(2) activity was inhibited to the same extent (61 +/- 5 to 72 +/- 4%) by the m2 antagonist methoctramine, Gbeta antibody, pertussis toxin, the PI3-kinase inhibitor LY 294002, PAK1 antibody, the p38 MAP kinase inhibitor SB-203580, and a Cdc42/Rac1 GEF (Vav2) antibody and by coexpression of dominant-negative Cdc42 and Rac1 mutants. The pathway initiated by m3 receptors involved sequential activation of Galpha(q), PLC-beta1, PKC, ERK1/2, and cPLA(2), and phosphorylation of cPLA(2) at Ser(505). cPLA(2) activity was inhibited to the same extent (35 +/- 3 to 41 +/- 5%) by the m3 antagonist 4-diphenylacetoxy-N-methylpiperdine (4-DAMP), the phosphoinositide hydrolysis inhibitor U-73122, the PKC inhibitor bisindolylmaleimide, and the ERK1/2 inhibitor PD 98059. cPLA(2) activity was not affected in cells coexpressing dominant-negative RhoA and PLC-delta1 mutants, implying that PKC was not derived from phosphatidylcholine hydrolysis. The effects of ERK1/2 and p38 MAP kinase on cPLA(2) activity were additive and accounted fully for activation and phosphorylation of cPLA(2).
Collapse
Affiliation(s)
- Huiping Zhou
- Departments of Physiology and Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | |
Collapse
|
7
|
Husain S, Jafri F. Prostaglandin F(2alpha) stimulates tyrosine phosphorylation of phospholipase C-gamma1. Biochem Biophys Res Commun 2002; 297:1102-7. [PMID: 12372399 DOI: 10.1016/s0006-291x(02)02347-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we investigated the ability of prostaglandin F(2alpha) (PGF(2alpha)) to induce tyrosine phosphorylation of phospholipase C-gamma1 (PLC-gamma1) in cat iris sphincter smooth muscle (CISM) cells. PGF(2alpha)(1 microM) stimulated PLC-gamma1 tyrosine phosphorylation in a time- and dose-dependent manner with a maximum increase of 3-fold at 0.5min. The protein tyrosine kinase inhibitors, genistein, and tyrphostin A-25, blocked the stimulatory effects of PGF(2alpha), suggesting involvement of protein tyrosine kinase activity in the physiological actions of the PGF(2alpha). Furthermore, PGF(2alpha)-induced p42/p44 MAP kinase activation was also completely blocked by protein tyrosine kinase inhibitors. In summary, these findings show that PGF(2alpha) stimulates tyrosine phosphorylation of PLC-gamma1 in CISM cells and indicate that PGF(2alpha)-stimulated tyrosine phosphorylation is responsible for an early signal transduction event.
Collapse
Affiliation(s)
- Shahid Husain
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA.
| | | |
Collapse
|
8
|
Harris SG, Smith RS, Phipps RP. 15-deoxy-Delta 12,14-PGJ2 induces IL-8 production in human T cells by a mitogen-activated protein kinase pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1372-9. [PMID: 11801678 DOI: 10.4049/jimmunol.168.3.1372] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mast cells, platelets, and some macrophages are abundant sources of PGD(2) and its active metabolite 15-deoxy-Delta(12,14)-PGJ(2) (15-d-PGJ(2)). The lipid mediator 15-d-PGJ(2) regulates numerous processes, including adipogenesis, apoptosis, and inflammation. The 15-d-PGJ(2) has been shown to both inhibit as well as induce the production of inflammatory mediators such as TNF-alpha, IL-1beta, and cyclooxygenase, mostly occurring via a nuclear receptor called peroxisome proliferator-activated receptor-gamma (PPAR-gamma). Data concerning the effects of 15-d-PGJ(2) on human T cells and immune regulation are sparse. IL-8, a cytokine with both chemotactic and angiogenic effects, is produced by T lymphocytes following activation. Whether 15-d-PGJ(2) can regulate the production of IL-8 in T cells in unknown. Interestingly, 15-d-PGJ(2) treatment of unstimulated T cells induces cell death. In contrast, in activated human T lymphocytes, 15-d-PGJ(2) does not kill them, but induces the synthesis of IL-8. In this study, we report that 15-d-PGJ(2) induced a significant increase in both IL-8 mRNA and protein from activated human T lymphocytes. The induction of IL-8 by 15-d-PGJ(2) did not occur through the nuclear receptor PPAR-gamma, as synthetic PPAR-gamma agonists did not mimic the IL-8-inducing effects of 15-d-PGJ(2). The mechanism of IL-8 induction was through a mitogen-activated protein kinase and NF-kappaB pathway, as inhibitors of both systems abrogated IL-8 protein induction. Therefore, 15-d-PGJ(2) can act as a potent proinflammatory mediator in activated T cells by inducing the production of IL-8. These findings show the complexity with which 15-d-PGJ(2) regulates T cells by possessing both pro- and anti-inflammatory properties depending on the activation state of the cell. The implications of this research also include that caution is warranted in assigning a solely anti-inflammatory role for 15-d-PGJ(2).
Collapse
Affiliation(s)
- Sarah G Harris
- Cancer Center, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | |
Collapse
|