1
|
Akurathi A, Boese EA, Kardon RH, Ledolter J, Kuehn MH, Harper MM. Decreased Expression of Glial-Derived Neurotrophic Factor Receptors in Glaucomatous Human Retinas. Curr Eye Res 2022; 47:597-605. [PMID: 34738835 DOI: 10.1080/02713683.2021.2002907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/25/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE The purpose of this study was to examine the expression of glial-derived neurotrophic factor (GDNF), the GDNF receptors GFRα1 and GFRα2, ciliary neurotrophic factor (CNTF), and the CNTF receptor CNTFRα in normal and glaucomatous human tissue. METHODS Human retinas were collected from 8 donors that had been clinically diagnosed and treated for glaucoma, and also from 9 healthy control donors. Immunohistochemical analysis for each trophic factor and receptor was performed. The percent of each retinal section labeled with each antibody was quantified for the total retinal thickness, and separately for the retinal ganglion cell (RGC) complex + retinal nerve fiber layer (RNFL). The expression of each protein was correlated with measures of the subject's ocular histories. RESULTS The percentage area immunopositive for GFRα2 was significantly decreased in the total retinal thickness containing all retinal layers and in the combined RGC complex + RNFL in glaucomatous eyes in both the peripapillary region and more peripheral retinal locations. We also observed a decrease in GFRα1 expression in the peripapillary RGC Complex + RNFL in glaucoma patients compared to healthy control patients. We also observed a relationship between GDNF and its receptors with several outcomes obtained from the medical record. No differences in CNTF or CNTFR labeling were observed. CONCLUSION Decreases in GDNF receptor expression in glaucomatous tissue may limit the potential for neuroprotective therapy by supplementation with GDNF.
Collapse
Affiliation(s)
- Abhigna Akurathi
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Erin A Boese
- Departmentsof Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Randy H Kardon
- Departmentsof Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Veterans Administration Center for the Prevention and Treatment of Visual Loss, VA Medical Center, Iowa City, IA, USA
| | - Johannes Ledolter
- Veterans Administration Center for the Prevention and Treatment of Visual Loss, VA Medical Center, Iowa City, IA, USA
- The University of Iowa Tippie College of Business, Iowa City, IA, USA
| | - Markus H Kuehn
- Departmentsof Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Veterans Administration Center for the Prevention and Treatment of Visual Loss, VA Medical Center, Iowa City, IA, USA
| | - Matthew M Harper
- Departmentsof Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Veterans Administration Center for the Prevention and Treatment of Visual Loss, VA Medical Center, Iowa City, IA, USA
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
2
|
Hamba N, Gerbi A, Tesfaye S. Histopathological effects of ultraviolet radiation exposure on the ocular structures in animal studies –literature review. TRANSLATIONAL RESEARCH IN ANATOMY 2021. [DOI: 10.1016/j.tria.2020.100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
3
|
Ortín-Martínez A, Valiente-Soriano FJ, García-Ayuso D, Alarcón-Martínez L, Jiménez-López M, Bernal-Garro JM, Nieto-López L, Nadal-Nicolás FM, Villegas-Pérez MP, Wheeler LA, Vidal-Sanz M. A novel in vivo model of focal light emitting diode-induced cone-photoreceptor phototoxicity: neuroprotection afforded by brimonidine, BDNF, PEDF or bFGF. PLoS One 2014; 9:e113798. [PMID: 25464513 PMCID: PMC4252057 DOI: 10.1371/journal.pone.0113798] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 10/30/2014] [Indexed: 11/19/2022] Open
Abstract
We have investigated the effects of light-emitting diode (LED)-induced phototoxicity (LIP) on cone-photoreceptors and their protection with brimonidine (BMD), brain-derived neurotrophic factor (BDNF), pigment epithelium-derived factor (PEDF), ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF). In anesthetized, dark adapted, adult albino rats a blue (400 nm) LED was placed perpendicular to the cornea (10 sec, 200 lux) and the effects were investigated using Spectral Domain Optical Coherence Tomography (SD-OCT) and/or analysing the retina in oriented cross-sections or wholemounts immune-labelled for L- and S-opsin and counterstained with the nuclear stain DAPI. The effects of topical BMD (1%) or, intravitreally injected BDNF (5 µg), PEDF (2 µg), CNTF (0.4 µg) or bFGF (1 µg) after LIP were examined on wholemounts at 7 days. SD-OCT showed damage in a circular region of the superotemporal retina, whose diameter varied from 1,842.4±84.5 µm (at 24 hours) to 1,407.7±52.8 µm (at 7 days). This region had a progressive thickness diminution from 183.4±5 µm (at 12 h) to 114.6±6 µm (at 7 d). Oriented cross-sections showed within the light-damaged region of the retina massive loss of rods and cone-photoreceptors. Wholemounts documented a circular region containing lower numbers of L- and S-cones. Within a circular area (1 mm or 1.3 mm radius, respectively) in the left and in its corresponding region of the contralateral-fellow-retina, total L- or S-cones were 7,118±842 or 661±125 for the LED exposed retinas (n = 7) and 14,040±1,860 or 2,255±193 for the fellow retinas (n = 7), respectively. BMD, BDNF, PEDF and bFGF but not CNTF showed significant neuroprotective effects on L- or S-cones. We conclude that LIP results in rod and cone-photoreceptor loss, and is a reliable, quantifiable model to study cone-photoreceptor degeneration. Intravitreal BDNF, PEDF or bFGF, or topical BMD afford significant cone neuroprotection in this model.
Collapse
Affiliation(s)
- Arturo Ortín-Martínez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Francisco Javier Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Luis Alarcón-Martínez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Manuel Jiménez-López
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - José Manuel Bernal-Garro
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Leticia Nieto-López
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Francisco Manuel Nadal-Nicolás
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Larry A. Wheeler
- Zeteo Drug Discovery LLC, Irvine, California, United States of America
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
4
|
Trophic factors in the pathogenesis and therapy for retinal degenerative diseases. Surv Ophthalmol 2014; 59:134-65. [PMID: 24417953 DOI: 10.1016/j.survophthal.2013.09.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 12/27/2022]
Abstract
Trophic factors are endogenously secreted proteins that act in an autocrine and/or paracrine fashion to affect vital cellular processes such as proliferation, differentiation, and regeneration, thereby maintaining overall cell homeostasis. In the eye, the major contributors of these molecules are the retinal pigment epithelial (RPE) and Müller cells. The primary paracrine targets of these secreted proteins include the photoreceptors and choriocapillaris. Retinal degenerative diseases such as age-related macular degeneration and retinitis pigmentosa are characterized by aberrant function and/or eventual death of RPE cells, photoreceptors, choriocapillaris, and other retinal cells. We discuss results of in vitro and in vivo animal studies in which candidate trophic factors, either singly or in combination, were used in an attempt to ameliorate photoreceptor and/or retinal degeneration. We also examine current trophic factor therapies as they relate to the treatment of retinal degenerative diseases in clinical studies.
Collapse
|
5
|
Sharif NA, May JA. Potential for serotonergic agents to treat elevated intraocular pressure and glaucoma: focus on 5-HT2receptor agonists. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.10.69] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Abstract
The human eye is constantly exposed to sunlight and artificial lighting. Light transmission through the eye is fundamental to its unique biological functions of directing vision and circadian rhythm and therefore light absorbed by the eye must be benign. However, exposure to the very intense ambient radiation can pose a hazard particularly if the recipient is over 40 years of age. There are age-related changes in the endogenous (natural) chromophores (lipofuscin, A2E and all-trans-retinal derivatives) in the human retina that makes it more susceptible to visible light damage. Intense visible light sources that do not filter short blue visible light (400-440 nm) used for phototherapy of circadian imbalance (i.e. seasonal affective disorder) increase the risk for age-related light damage to the retina. Moreover, many drugs, dietary supplements, nanoparticles and diagnostic dyes (xenobiotics) absorb ocular light and have the potential to induce photodamage to the retina, leading to transient or permanent blinding disorders. This article will review the underlying reasons why visible light in general and short blue visible light in particular dramatically raises the risk of photodamage to the human retina.
Collapse
Affiliation(s)
- Albert R Wielgus
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
7
|
Wielgus AR, Collier RJ, Martin E, Lih FB, Tomer KB, Chignell CF, Roberts JE. Blue light induced A2E oxidation in rat eyes – experimental animal model of dry AMD. Photochem Photobiol Sci 2010; 9:1505-12. [DOI: 10.1039/c0pp00133c] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Abstract
By its action on rhodopsin, light triggers the well-known visual transduction cascade, but can also induce cell damage and death through phototoxic mechanisms - a comprehensive understanding of which is still elusive despite more than 40 years of research. Herein, we integrate recent experimental findings to address several hypotheses of retinal light damage, premised in part on the close anatomical and metabolic relationships between the photoreceptors and the retinal pigment epithelium. We begin by reviewing the salient features of light damage, recently joined by evidence for retinal remodeling which has implications for the prognosis of recovery of function in retinal degenerations. We then consider select factors that influence the progression of the damage process and the extent of visual cell loss. Traditional, genetically modified, and emerging animal models are discussed, with particular emphasis on cone visual cells. Exogenous and endogenous retinal protective factors are explored, with implications for light damage mechanisms and some suggested avenues for future research. Synergies are known to exist between our long term light environment and photoreceptor cell death in retinal disease. Understanding the molecular mechanisms of light damage in a variety of animal models can provide valuable insights into the effects of light in clinical disorders and may form the basis of future therapies to prevent or delay visual cell loss.
Collapse
|
9
|
Linden R, Martins RAP, Silveira MS. Control of programmed cell death by neurotransmitters and neuropeptides in the developing mammalian retina. Prog Retin Eye Res 2004; 24:457-91. [PMID: 15845345 DOI: 10.1016/j.preteyeres.2004.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It has long been known that a barrage of signals from neighboring and connecting cells, as well as components of the extracellular matrix, control cell survival. Given the extensive repertoire of retinal neurotransmitters, neuromodulators and neurotrophic factors, and the exhuberant interconnectivity of retinal interneurons, it is likely that various classes of released neuroactive substances may be involved in the control of sensitivity to retinal cell death. The aim of this article is to review evidence that neurotransmitters and neuropeptides control the sensitivity to programmed cell death in the developing retina. Whereas the best understood mechanism of execution of cell death is that of caspase-mediated apoptosis, current evidence shows that not only there are many parallel pathways to apoptotic cell death, but non-apoptotic programs of execution of cell death are also available, and may be triggered either in isolation or combined with apoptosis. The experimental data show that many upstream signaling pathways can modulate cell death, including those dependent on the second messengers cAMP-PKA, calcium and nitric oxide. Evidence for anterograde neurotrophic control is provided by a variety of models of the central nervous system, and the data reviewed here indicate that an early function of certain neurotransmitters, such as glutamate and dopamine, as well as neuropeptides such as pituitary adenylyl cyclase-activating polypeptide and vasoactive intestinal peptide is the trophic support of cell populations in the developing retina. This may have implications both regarding the mechanisms of retinal organogenesis, as well as pathological conditions leading to retinal dystrophies and to dysfunctional cellular behavior.
Collapse
Affiliation(s)
- Rafael Linden
- Centro de Ciencias da Saude, Instituto de Biofísica da UFRJ, Cidade Universitária, bloco G, Rio de Janeiro 21949-900, Brazil.
| | | | | |
Collapse
|
10
|
Sharif NA, Xu SX. Binding affinities of ocular hypotensive beta-blockers levobetaxolol, levobunolol, and timolol at endogenous guinea pig beta-adrenoceptors. J Ocul Pharmacol Ther 2004; 20:93-9. [PMID: 15117564 DOI: 10.1089/108076804773710759] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The current study determined the relative affinities and selectivities of numerous beta-adrenoceptor antagonists at the endogenous beta(1)- and beta(2)-adrenoceptors in guinea pig heart and lung, respectively, using [(3)H]-CGP12177. Specific binding of [(3)H]-CGP12177 comprised 80 +/- 0.2% (n = 11) and 94 +/- 0.2% (n = 16) of the total binding in washed heart and lung homogenates, respectively. Concentration-dependent displacement of [(3)H]-CGP12177 binding from beta-adrenoceptors in both preparations was observed with nine different beta-adrenoceptor antagonists. Levobetaxolol, betaxolol, CGP-20712A, levobunolol, and timolol yielded bi-phasic (two-site-fit) competition curves in the heart, while CGP-20712A, ICI-118551 and levobunolol produced bi-phasic curves in the lung preparation. The high-affinity component of [(3)H]-CGP12177 binding in the heart and lung reflected binding to beta(1)-receptors and beta(2)-receptors, respectively. The binding inhibition parameters (IC(50)s) for displacement of [(3)H]-CGP12177 from these predominantly high-affinity sites were: levobetaxolol (24.9 +/- 1.6 nM heart, 4810 +/- 367 nM lung), racemic betaxolol (37.9 +/- 8.7 mM heart; 8840 +/- 424 mM lung), CGP-20712A (4.6 +/- 0.9 nM heart; 171,000 +/- 109,000 nM lung), ICI-118551 (9230 +/- 3240 nM heart; 2.9 +/- 0.6 nM lung), levobunolol (42 +/- 15 nM heart, 0.3 +/- 0.2 nM lung), (l)-timolol (3.1 nM heart, 2.9 +/- 1.5 nM lung), ICI-215001 (5840 +/- 114 nM heart; 26100 +/- 3200 nM lung), BRL-37344 (83,300 +/- 2660 nM heart; 13,200 +/- 1250 lung). These data indicated that while levobetaxolol and betaxolol possessed a 193-233-fold selectivity for beta(1)-receptors, levobunolol exhibited a 140-fold beta(2)-receptor selectivity and (l)-timolol was essentially nonselective.
Collapse
Affiliation(s)
- N A Sharif
- Molecular Pharmacology, Alcon Research, Ltd., Fort Worth, TX 76134, USA.
| | | |
Collapse
|
11
|
Yarangümeli A, Kural G. Are there any benefits of Betoptic S (betaxolol HCl ophthalmic suspension) over other beta-blockers in the treatment of glaucoma? Expert Opin Pharmacother 2004; 5:1071-81. [PMID: 15155109 DOI: 10.1517/14656566.5.5.1071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The cardioselective beta-blocker, betaxolol, is an effective ocular antihypertensive agent. Its mode of action in lowering intraocular pressure is similar to that of the nonselective blockers, by suppressing the flow of aqueous humor. The most frequent adverse reaction to betaxolol is stinging upon administration, which is minimised by an ocular suspension with a similarly effective twofold reduced concentration (Betoptic S, 0.25%). The extent of beta 1-adrenoceptor occupancy of topically applied betaxolol in the systemic circulation is less than that of the nonselective blockers and beta 2-receptor occupancy is negligible, providing a better safety profile in patients with cardiopulmonary disease. Experimental studies have revealed that the drug reaches the retina after topical administration and displays a voltage-dependent L-type calcium channel blocking activity, which probably allows betaxolol to improve retinal perfusion and to serve as a neuroprotective agent recommendable in various forms of glaucoma.
Collapse
Affiliation(s)
- Alper Yarangümeli
- Ankara Numune Training and Research Hospital, 1st Eye Clinic, Turkey.
| | | |
Collapse
|
12
|
Osborne NN, Casson RJ, Wood JPM, Chidlow G, Graham M, Melena J. Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 2004; 23:91-147. [PMID: 14766318 DOI: 10.1016/j.preteyeres.2003.12.001] [Citation(s) in RCA: 765] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Retinal ischemia is a common cause of visual impairment and blindness. At the cellular level, ischemic retinal injury consists of a self-reinforcing destructive cascade involving neuronal depolarisation, calcium influx and oxidative stress initiated by energy failure and increased glutamatergic stimulation. There is a cell-specific sensitivity to ischemic injury which may reflect variability in the balance of excitatory and inhibitory neurotransmitter receptors on a given cell. A number of animal models and analytical techniques have been used to study retinal ischemia, and an increasing number of treatments have been shown to interrupt the "ischemic cascade" and attenuate the detrimental effects of retinal ischemia. Thus far, however, success in the laboratory has not been translated to the clinic. Difficulties with the route of administration, dosage, and adverse effects may render certain experimental treatments clinically unusable. Furthermore, neuroprotection-based treatment strategies for stroke have so far been disappointing. However, compared to the brain, the retina exhibits a remarkable natural resistance to ischemic injury, which may reflect its peculiar metabolism and unique environment. Given the increasing understanding of the events involved in ischemic neuronal injury it is hoped that clinically effective treatments for retinal ischemia will soon be available.
Collapse
Affiliation(s)
- Neville N Osborne
- Nuffield Laboratory of Ophthalmology, University of Oxford, Walton Street, Oxford OX2 6AW, UK.
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Millions of people suffer from a wide variety of ocular diseases, many of which lead to irreversible blindness. The leading causes of irreversible blindness in the elderly--age-related macular degeneration and glaucoma--will continue to effect more individuals as the worldwide population continues to age. Although there are therapies for treating glaucoma, as well as ongoing clinical trials of treatments for age-related macular degeneration, there still is a great need for more efficacious treatments that halt or even reverse ocular diseases. The eye has special attributes that allow local drug delivery and non-invasive clinical assessment of disease, but it is also a highly complex and unique organ, which makes understanding disease pathogenesis and ocular drug discovery challenging. As we learn more about the cellular mechanisms involved in age-related macular degeneration and glaucoma, potentially, new drug targets will emerge. This review provides insight into some of the new approaches to therapy.
Collapse
|