1
|
Briyal S, Ranjan AK, Gulati A. Oxidative stress: A target to treat Alzheimer's disease and stroke. Neurochem Int 2023; 165:105509. [PMID: 36907516 DOI: 10.1016/j.neuint.2023.105509] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/01/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
Oxidative stress has been established as a well-known pathological condition in several neurovascular diseases. It starts with increased production of highly oxidizing free-radicals (e.g. reactive oxygen species; ROS and reactive nitrogen species; RNS) and becomes too high for the endogenous antioxidant system to neutralize them, which results in a significantly disturbed balance between free-radicals and antioxidants levels and causes cellular damage. A number of studies have evidently shown that oxidative stress plays a critical role in activating multiple cell signaling pathways implicated in both progression as well as initiation of neurological diseases. Therefore, oxidative stress continues to remain a key therapeutic target for neurological diseases. This review discusses the mechanisms involved in reactive oxygen species (ROS) generation in the brain, oxidative stress, and pathogenesis of neurological disorders such as stroke and Alzheimer's disease (AD) and the scope of antioxidant therapies for these disorders.
Collapse
Affiliation(s)
- Seema Briyal
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Amaresh K Ranjan
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA
| | - Anil Gulati
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA; Pharmazz Inc. Research and Development, Willowbrook, IL, USA
| |
Collapse
|
2
|
Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 2019; 16:142. [PMID: 31291966 PMCID: PMC6617684 DOI: 10.1186/s12974-019-1516-2] [Citation(s) in RCA: 920] [Impact Index Per Article: 153.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
Stroke, the third leading cause of death and disability worldwide, is undergoing a change in perspective with the emergence of new ideas on neurodegeneration. The concept that stroke is a disorder solely of blood vessels has been expanded to include the effects of a detrimental interaction between glia, neurons, vascular cells, and matrix components, which is collectively referred to as the neurovascular unit. Following the acute stroke, the majority of which are ischemic, there is secondary neuroinflammation that both promotes further injury, resulting in cell death, but conversely plays a beneficial role, by promoting recovery. The proinflammatory signals from immune mediators rapidly activate resident cells and influence infiltration of a wide range of inflammatory cells (neutrophils, monocytes/macrophages, different subtypes of T cells, and other inflammatory cells) into the ischemic region exacerbating brain damage. In this review, we discuss how neuroinflammation has both beneficial as well as detrimental roles and recent therapeutic strategies to combat pathological responses. Here, we also focus on time-dependent entry of immune cells to the ischemic area and the impact of other pathological mediators, including oxidative stress, excitotoxicity, matrix metalloproteinases (MMPs), high-mobility group box 1 (HMGB1), arachidonic acid metabolites, mitogen-activated protein kinase (MAPK), and post-translational modifications that could potentially perpetuate ischemic brain damage after the acute injury. Understanding the time-dependent role of inflammatory factors could help in developing new diagnostic, prognostic, and therapeutic neuroprotective strategies for post-stroke inflammation.
Collapse
Affiliation(s)
- Richard L. Jayaraj
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Fakhreya Y. Jalal
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | - Gary A. Rosenberg
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| |
Collapse
|
3
|
Li W, Yang S. Targeting oxidative stress for the treatment of ischemic stroke: Upstream and downstream therapeutic strategies. Brain Circ 2016; 2:153-163. [PMID: 30276293 PMCID: PMC6126224 DOI: 10.4103/2394-8108.195279] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/04/2016] [Accepted: 07/13/2016] [Indexed: 12/27/2022] Open
Abstract
Excessive oxygen and its chemical derivatives, namely reactive oxygen species (ROS), produce oxidative stress that has been known to lead to cell injury in ischemic stroke. ROS can damage macromolecules such as proteins and lipids and leads to cell autophagy, apoptosis, and necrosis to the cells. This review describes studies on the generation of ROS, its role in the pathogenesis of ischemic stroke, and recent development in therapeutic strategies in reducing oxidative stress after ischemic stroke.
Collapse
Affiliation(s)
- Wenjun Li
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Shaohua Yang
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
4
|
Iron and multiple sclerosis. Neurobiol Aging 2014; 35 Suppl 2:S51-8. [DOI: 10.1016/j.neurobiolaging.2014.03.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/28/2014] [Accepted: 03/14/2014] [Indexed: 11/23/2022]
|
5
|
Iron overload, measured as serum ferritin, increases brain damage induced by focal ischemia and early reperfusion. Neurochem Int 2012; 61:1364-9. [DOI: 10.1016/j.neuint.2012.09.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 09/13/2012] [Accepted: 09/24/2012] [Indexed: 12/22/2022]
|
6
|
Choi SY, Kim YO, Son D, Lee J, Kim S, Kim H, Kim S, Hur J. 3-[2-(3,5-Dimethoxyphenyl)vinyl]furan protects hippocampal neurons against ischemic damage. Brain Res 2012; 1472:32-7. [PMID: 22800808 DOI: 10.1016/j.brainres.2012.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/29/2012] [Accepted: 07/03/2012] [Indexed: 11/17/2022]
Abstract
Resveratrol, an ingredient in grapes, has been reported to exhibit anti-cancer activity, anti-inflammatory activity, and cardiovascular protection property. Interestingly, resveratrol has been recently reported to have neuroprotective effect. This study reports the neuroprotective effect of a resveratrol derivative, 3-[2-(3,5-dimethoxyphenyl)vinyl]furan (DPVF). This synthetic DPVF conferred more protection than resveratrol against neuronal cell damage induced by oxygen and glucose deprivation in a rat hippocampal slice culture. In addition, DPVF inhibited ATP depletion following oxygen and glucose deprivation in the adult hippocampal slice. Moreover, we found that DPVF is neuroprotective against ischemic damage in rats. DPVF showed potent neuroprotection on a 4-velssel-occusion model and inhibited iron-induced malondialdehyde (MDA) formation in the rat brain tissue. These results demonstrate that DPVF might be a useful agent in reducing ischemic neuronal damage.
Collapse
Affiliation(s)
- Sang Yoon Choi
- Korea Food Research Institute, Seongnam 463-746, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Stankiewicz J, Panter SS, Neema M, Arora A, Batt CE, Bakshi R. Iron in chronic brain disorders: imaging and neurotherapeutic implications. Neurotherapeutics 2007; 4:371-86. [PMID: 17599703 PMCID: PMC1963417 DOI: 10.1016/j.nurt.2007.05.006] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Iron is important for brain oxygen transport, electron transfer, neurotransmitter synthesis, and myelin production. Though iron deposition has been observed in the brain with normal aging, increased iron has also been shown in many chronic neurological disorders including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. In vitro studies have demonstrated that excessive iron can lead to free radical production, which can promote neurotoxicity. However, the link between observed iron deposition and pathological processes underlying various diseases of the brain is not well understood. It is not known whether excessive in vivo iron directly contributes to tissue damage or is solely an epiphenomenon. In this article, we focus on the imaging of brain iron and the underlying physiology and metabolism relating to iron deposition. We conclude with a discussion of the potential implications of iron-related toxicity to neurotherapeutic development.
Collapse
Affiliation(s)
- James Stankiewicz
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
| | - S. Scott Panter
- Department of Neurological Surgery, Veteran’s Administration Hospital, University of California, 94121 San Francisco, California
| | - Mohit Neema
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
| | - Ashish Arora
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
| | - Courtney E. Batt
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
| | - Rohit Bakshi
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 02115 Boston, Massachusetts
| |
Collapse
|
8
|
Tan DX, Manchester LC, Sainz R, Mayo JC, Alvares FL, Reiter RJ. Antioxidant strategies in protection against neurodegenerative disorders. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.13.10.1513] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Pong K. Oxidative stress in neurodegenerative diseases: therapeutic implications for superoxide dismutase mimetics. Expert Opin Biol Ther 2003; 3:127-39. [PMID: 12718737 DOI: 10.1517/14712598.3.1.127] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Evidence of oxidative stress is apparent in both acute and chronic neurodegenerative diseases, such as stroke, Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Increased generation of reactive oxygen species simply overwhelm endogenous antioxidant defences, leading to subsequent oxidative damage and cell death. Tissue culture and animal models have been developed to mimic some of the biochemical changes and neuropathology found in these diseases. In doing so, it has been experimentally demonstrated that oxidative stress plays a critical role in neuronal cell death. Antioxidant enzymes, such as superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) have demonstrated therapeutic efficacy in models of neurodegeneration. However, delivery and stability issues have reduced the enthusiasm to clinically develop these proteins. Most recently, SOD mimetics, small molecules which mimic the activity of endogenous superoxide dismutase, have come to the forefront of antioxidant therapeutics. This review will examine the experimental evidence supporting the use of scavengers of superoxide anions in treating some neurodegenerative diseases, such as stroke, PD and ALS, but also the pitfalls that have met antioxidant molecules in clinical trials.
Collapse
Affiliation(s)
- Kevin Pong
- Department of Neuroscience, Wyeth Research, Princeton, NJ 08543, USA.
| |
Collapse
|
10
|
Mishima K, Tanaka T, Pu F, Egashira N, Iwasaki K, Hidaka R, Matsunaga K, Takata J, Karube Y, Fujiwara M. Vitamin E isoforms alpha-tocotrienol and gamma-tocopherol prevent cerebral infarction in mice. Neurosci Lett 2003; 337:56-60. [PMID: 12524170 DOI: 10.1016/s0304-3940(02)01293-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Alpha-tocopherol and its derivatives have been shown to be effective in reducing cerebral ischemia-induced brain damage. However, the effects of other vitamin E isoforms have not been characterized. In the present study, we investigated the effects of six different isoforms of vitamin E on the ischemic brain damage in the mice middle cerebral artery (MCA) occlusion model. All vitamin E isoforms were injected i.v., twice, immediately before and 3 h after the occlusion. Alpha-tocopherol (2 mM), alpha-tocotrienol (0.2 and 2 mM) and gamma-tocopherol (0.2 and 2 mM) significantly decreased the size of the cerebral infarcts 1 day after the MCA occlusion, while gamma-tocotrienol, delta-tocopherol and delta-tocotrienol showed no effect on the cerebral infarcts. These results suggest that alpha-tocotrienol and gamma-tocopherol are potent and effective agents for preventing cerebral infarction induced by MCA occlusion.
Collapse
Affiliation(s)
- Kenichi Mishima
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Free Radicals and Acute Brain Injury: Mechanisms of Oxidative Stress and Therapeutic Potentials. Brain Inj 2001. [DOI: 10.1007/978-1-4615-1721-4_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
12
|
Abstract
A large number of gene products appear after an ischemic insult making it difficult to decipher which genes are involved in tissue injury. Reactive oxygen species (ROS) can influence gene expression and have a role in the events that lead to neuronal death. In global cerebral ischemia the oxidative responsive transcription factor, NF-kappa B, is persistently activated in neurons that are destined to die. There are several potential routes through which NF-kappa B can act to induce neuronal death, including production of death proteins and an aborted attempt to reenter the cell cycle. NF-kappa B is only transiently activated in neurons that survive. Persistent NF-kappa B activation can be blocked by antioxidants, which suggests that the neuroprotective effect of antioxidants may be due to inhibiting activation of NF-kappa B.
Collapse
Affiliation(s)
- J A Clemens
- Neuroscience Research, The Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, IN 46285, USA.
| |
Collapse
|