1
|
Unlu M, Ozer F, Sahin Aslan E, Sener H, Erkilic K. Can the combination of citicoline and vitamin B12 be beneficial in the healing of corneal nerves after corneal cross-linking? Int Ophthalmol 2025; 45:54. [PMID: 39890769 DOI: 10.1007/s10792-025-03433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
PURPOSE To evaluate the effect of topical citicoline, vitamin B12 and hyaluronic acid (OMK2 eye drops; Omikron Italia Srl, Italy) on the healing of corneal nerve after corneal cross-linking (CXL) treatment in patients with keratoconus (KC). METHODS A total of 44 eyes of 22 patients with KC who underwent CXL were included in this prospective study. After CXL, one eye of these patients received OMK2 eye drop and standard post-CXL treatment (OMK2 group), while the fellow eye received only standard post-CXL treatment (control group). The following parameters were analyzed in the pre- and post-CXL procedure periods (1st, 3rd and 6th months): corneal sensitivity, tear film stability, central corneal thickness (CCT), and the corneal sub-basal nerve plexus (sbNP) parameters (including corneal nerve fiber density [CNFD], corneal nerve branch density [CNBD], corneal nerve fiber length [CNFL], corneal total branch density [CTBD], corneal nerve fiber area [CNFA], corneal nerve fiber width [CNFW]). RESULTS Following CXL, a comparison of the baseline and month 6 data revealed that CNFA decreased in the control group (p < 0.001) and did not differ in the OMK2 group (p = 0.283). Other corneal sbNP parameters exhibited a decrease when comparing baseline and 6 months in each group (all p < 0.05). In addition, CCT in the OMK2 group was not significantly different between baseline and month 6 (p = 0.052). However, a decline in CCT of the control groups was observed during this specified time interval (p = 0.009). Corneal sensitivity or tear film stability parameters did not differ significantly between groups at any time point or over time within each group (all p > 0.05). CONCLUSION The use of OMK2 eye drop after CXL may provide more stable CNFA. In addition, it may also provide faster recovery in CCT.
Collapse
Affiliation(s)
- Metin Unlu
- Department of Ophthalmology, Division of Cornea, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Furkan Ozer
- Department of Ophthalmology, Sungurlu State Hospital, Çorum, Turkey.
| | - Esra Sahin Aslan
- Department of Ophthalmology, Division of Cornea, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Hidayet Sener
- Department of Ophthalmology, Division of Cornea, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Kuddusi Erkilic
- Department of Ophthalmology, Division of Cornea, Erciyes University Medical Faculty, Kayseri, Turkey
| |
Collapse
|
2
|
P A, Rengarajan S, Venkatachalam S, Pattabi S, Jones S, K P, Krishna V, Prasanth K. Neuroprotection by Cerebrolysin and Citicoline Through the Upregulation of Brain-Derived Neurotrophic Factor (BDNF) Expression in the Affected Neural Cells: A Preliminary Clue Obtained Through an In Vitro Study. Cureus 2024; 16:e54665. [PMID: 38524067 PMCID: PMC10960614 DOI: 10.7759/cureus.54665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
OBJECTIVES Citicoline and cerebrolysin are two unique yet contentious medications because of inconsistencies in efficacy as well as the mystery surrounding their mode of action. The current study aimed to re-validate the neuroprotective benefits of these medications and investigate the possible molecular mechanism. METHODS Neuro-2A cells were exposed to tert-butyl hydroperoxide, a consistent in vitro model of neuronal damage caused by oxidative stress. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, acridine orange/ethidium bromide (AO-EtBr) staining, and phase-view examinations were utilized to evaluate cell survival and cytotoxicity. Real-time reverse transcription-polymerase chain reaction (RT-PCR)-based gene expression studies were conducted. KEY FINDING Observations revealed that these two medications had modest but considerable neuroprotective effects. While the majority of the genes' expressions remained unchanged, cerebrolysin upregulated Neuregulin 1, and both upregulated brain-derived neurotrophic factor (BDNF) expression. CONCLUSION The findings of the current study may be the first to suggest that citicoline and cerebrolysin may increase host cells' defense mechanisms (secretion neurotrophic factors) rather than carrying nutrients for cell survival. Because of its simplicity, the current study can readily be repeated to learn more about these two disputed medications for treating ischemic stroke.
Collapse
Affiliation(s)
- Anandan P
- Department of General Medicine, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Santhanam Rengarajan
- Department of Neurosurgery, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Sankar Venkatachalam
- Department of Anatomy, Dr. A.L.M. PG Institute of Basic Medical Sciences, University of Madras, Chennai, IND
| | - Sasikumar Pattabi
- Department of Surgery, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Sumathi Jones
- Department of Pharmacology and Therapeutics, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Prabhu K
- Department of Anatomy, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Vani Krishna
- Department of Anatomy, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Krishna Prasanth
- Department of Community Medicine, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| |
Collapse
|
3
|
Dhir N, Medhi B, Prakash A, Goyal MK, Modi M, Mohindra S. Pre-clinical to Clinical Translational Failures and Current Status of Clinical Trials in Stroke Therapy: A Brief Review. Curr Neuropharmacol 2020; 18:596-612. [PMID: 31934841 PMCID: PMC7457423 DOI: 10.2174/1570159x18666200114160844] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/31/2019] [Accepted: 12/28/2019] [Indexed: 12/16/2022] Open
Abstract
In stroke (cerebral ischemia), despite continuous efforts both at the experimental and clinical level, the only approved pharmacological treatment has been restricted to tissue plasminogen activator (tPA). Stroke is the leading cause of functional disability and mortality throughout worldwide. Its pathophysiology starts with energy pump failure, followed by complex signaling cascade that ultimately ends in neuronal cell death. Ischemic cascade involves excessive glutamate release followed by raised intracellular sodium and calcium influx along with free radicals' generation, activation of inflammatory cytokines, NO synthases, lipases, endonucleases and other apoptotic pathways leading to cell edema and death. At the pre-clinical stage, several agents have been tried and proven as an effective neuroprotectant in animal models of ischemia. However, these agents failed to show convincing results in terms of efficacy and safety when the trials were conducted in humans following stroke. This article highlights the various agents which have been tried in the past but failed to translate into stroke therapy along with key points that are responsible for the lagging of experimental success to translational failure in stroke treatment.
Collapse
Affiliation(s)
| | - Bikash Medhi
- Address correspondence to this author at the Department of Pharmacology, Research Block B, 4th Floor, Room no 4043, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India; E-mail:
| | | | | | | | | |
Collapse
|
4
|
Putilina MV. [Combined therapy of cerebrovascular disorders with neuroprotectors]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 116:58-63. [PMID: 28091502 DOI: 10.17116/jnevro201611611158-63] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Safety of drugs is one of the priorities of modern medicine. The goal of pharmacological treatment is a search for effective and safety drugs as well as a study of possibilities of combined using of the drugs with opposite effects. Basing on the possible therapeutic interactions, 2-ethyl-6-methyl-3-hydroxypyridine succinate can be recommended as a basic medication for patients with cerebrovascular diseases to normalize the energy metabolism of brain cells. The complex use of cholinergic drugs with different neuroprotective effects is effective from the first hours after admission. Cholinergic drugs (citicoline or choline alfoscerate) as the drugs of the first choice should be justified taking into consideration dysfunction of the brain system activation. Patient's age, the level of consciousness, somatic pathology, previous strokes, cognitive impairment are predictors of treatment efficacy.
Collapse
Affiliation(s)
- M V Putilina
- Pirogiv Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
5
|
Martynov MY, Gusev EI. Current knowledge on the neuroprotective and neuroregenerative properties of citicoline in acute ischemic stroke. J Exp Pharmacol 2015; 7:17-28. [PMID: 27186142 PMCID: PMC4863531 DOI: 10.2147/jep.s63544] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ischemic stroke is one of the leading causes of long-lasting disability and death. Two main strategies have been proposed for the treatment of ischemic stroke: restoration of blood flow by thrombolysis or mechanical thrombus extraction during the first few hours of ischemic stroke, which is one of the most effective treatments and leads to a better functional and clinical outcome. The other direction of treatment, which is potentially applicable to most of the patients with ischemic stroke, is neuroprotection. Initially, neuroprotection was mainly targeted at protecting gray matter, but during the past few years there has been a transition from a neuron-oriented approach toward salvaging the whole neurovascular unit using multimodal drugs. Citicoline is a multimodal drug that exhibits neuroprotective and neuroregenerative effects in a variety of experimental and clinical disorders of the central nervous system, including acute and chronic cerebral ischemia, intracerebral hemorrhage, and global cerebral hypoxia. Citicoline has a prolonged therapeutic window and is active at various temporal and biochemical stages of the ischemic cascade. In acute ischemic stroke, citicoline provides neuroprotection by attenuating glutamate exitotoxicity, oxidative stress, apoptosis, and blood–brain barrier dysfunction. In the subacute and chronic phases of ischemic stroke, citicoline exhibits neuroregenerative effects and activates neurogenesis, synaptogenesis, and angiogenesis and enhances neurotransmitter metabolism. Acute and long-term treatment with citicoline is safe and in most clinical studies is effective and improves functional outcome.
Collapse
Affiliation(s)
- Mikhail Yu Martynov
- Department of Neurology, Neurosurgery and Medical Genetics, Russian National Research Medical University, Moscow, Russia
| | - Eugeny I Gusev
- Department of Neurology, Neurosurgery and Medical Genetics, Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
6
|
Grupke S, Hall J, Dobbs M, Bix GJ, Fraser JF. Understanding history, and not repeating it. Neuroprotection for acute ischemic stroke: from review to preview. Clin Neurol Neurosurg 2014; 129:1-9. [PMID: 25497127 DOI: 10.1016/j.clineuro.2014.11.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 11/07/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Neuroprotection for ischemic stroke is a growing field, built upon the elucidation of the biochemical pathways of ischemia first studied in the 1970s. Beginning in the early 1990s, means by which to pharmacologically intervene and counteract these pathways have been sought, though with little clinical success. Through a comprehensive review of translations from laboratory to clinic, we aim to evaluate individual mechanisms of action, while highlighting potential barriers to success that will guide future research. METHODS The MEDLINE database and The Internet Stroke Center clinical trials registry were queried for trials involving the use of neuroprotective agents in acute ischemic stroke in human subjects. For the purpose of the review, neuroprotective agents refer to medications used to preserve or protect the potentially ischemic tissue after an acute stroke, excluding treatments designed to re-establish perfusion. This excludes mechanical or pharmacological thrombolytics, anti-thrombic medications, or anti-platelet therapies. RESULTS This review summarizes previously trialed neuroprotective agents, including but not limited to glutamate neurotransmission blockers, anti-oxidants, GABA agonists, leukocyte migration blockers, various small cation channel modulators, narcotic antagonists, and phospholipid membrane stabilizers. We outline key biochemical steps in ischemic injury that are the proposed areas of intervention. The agents, time to administration of therapeutic agent, follow-up, and trial results are reported. DISCUSSION Stroke trials in humans are burdened with a marked heterogeneity of the patient population that is not seen in animal studies. Also, trials to date have included patients that are likely treated at a time outside of the window of efficacy for neuroprotective drugs, and have not effectively combined thrombolysis with neuroprotection. Through an evaluation of the accomplishments and failures in neuroprotection research, we propose new methodologies, agents, and techniques that may provide new routes for success.
Collapse
Affiliation(s)
- Stephen Grupke
- Department of Neurosurgery, University of Kentucky, Lexington, USA
| | - Jason Hall
- Department of Neurosurgery, University of Kentucky, Lexington, USA
| | - Michael Dobbs
- Department of Neurology, University of Kentucky, Lexington, USA
| | - Gregory J Bix
- Department of Neurology, University of Kentucky, Lexington, USA; Department of Anatomy and Neurobiology, University of Kentucky, Lexington, USA
| | - Justin F Fraser
- Department of Neurosurgery, University of Kentucky, Lexington, USA; Department of Neurology, University of Kentucky, Lexington, USA; Department of Anatomy and Neurobiology, University of Kentucky, Lexington, USA; Department of Radiology, University of Kentucky, Lexington, USA.
| |
Collapse
|
7
|
Kular J, Tickner JC, Pavlos NJ, Viola HM, Abel T, Lim BS, Yang X, Chen H, Cook R, Hool LC, Zheng MH, Xu J. Choline kinase β mutant mice exhibit reduced phosphocholine, elevated osteoclast activity, and low bone mass. J Biol Chem 2014; 290:1729-42. [PMID: 25451916 DOI: 10.1074/jbc.m114.567966] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The maintenance of bone homeostasis requires tight coupling between bone-forming osteoblasts and bone-resorbing osteoclasts. However, the precise molecular mechanism(s) underlying the differentiation and activities of these specialized cells are still largely unknown. Here, we identify choline kinase β (CHKB), a kinase involved in the biosynthesis of phosphatidylcholine, as a novel regulator of bone homeostasis. Choline kinase β mutant mice (flp/flp) exhibit a systemic low bone mass phenotype. Consistently, osteoclast numbers and activity are elevated in flp/flp mice. Interestingly, osteoclasts derived from flp/flp mice exhibit reduced sensitivity to excessive levels of extracellular calcium, which could account for the increased bone resorption. Conversely, supplementation of cytidine 5'-diphosphocholine in vivo and in vitro, a regimen that bypasses CHKB deficiency, restores osteoclast numbers to physiological levels. Finally, we demonstrate that, in addition to modulating osteoclast formation and function, loss of CHKB corresponds with a reduction in bone formation by osteoblasts. Taken together, these data posit CHKB as a new modulator of bone homeostasis.
Collapse
Affiliation(s)
- Jasreen Kular
- From the School of Pathology and Laboratory Medicine
| | | | | | | | - Tamara Abel
- Centre for Microscopy, Characterization and Analysis, University of Western Australia, Nedlands 6009, Western Australia, Australia and
| | - Bay Sie Lim
- From the School of Pathology and Laboratory Medicine
| | - Xiaohong Yang
- the Guangzhou Institute of Traumatic Surgery, the Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510182, China
| | - Honghui Chen
- the Guangzhou Institute of Traumatic Surgery, the Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510182, China
| | - Robert Cook
- From the School of Pathology and Laboratory Medicine
| | - Livia C Hool
- School of Anatomy, Physiology and Human Biology, and
| | | | - Jiake Xu
- From the School of Pathology and Laboratory Medicine,
| |
Collapse
|
8
|
Bustamante A, Giralt D, Garcia-Bonilla L, Campos M, Rosell A, Montaner J. Citicoline in pre-clinical animal models of stroke: a meta-analysis shows the optimal neuroprotective profile and the missing steps for jumping into a stroke clinical trial. J Neurochem 2012; 123:217-25. [PMID: 22845688 DOI: 10.1111/j.1471-4159.2012.07891.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 12/14/2022]
Abstract
The neuroprotective actions of citicoline have been documented for experimental stroke therapy. We used a systematic review and meta-analysis to assess this evidence. From 64 identified studies using citicoline in stroke animal models, only those describing ischemic occlusive stroke and reporting data on infarct volume and/or neurological outcome were included (14 studies, 522 animals). Overall, the quality of the studies was modest (5, 4-6), while the absence of studies involving animals with co-morbidities, females, old animals or strain differences indicated that studies did not fulfill the STAIR recommendations. Weighted mean difference meta-analysis showed citicoline to reduce infarct volume by 27.8% [(19.9%, 35.6%); p < 0.001]. In the stratified analysis, citicoline effect on reducing infarct volume was higher in proximal occlusive models of middle cerebral artery (MCA) compared with distal occlusion. Moreover, the efficacy was superior using multiple doses than single dose and when a co-treatment was administered compared with citicoline monotherapy, the only independent factor identified in the meta-regression. Citicoline improved neurological deficit by 20.2% [(6.8%, 33.7%); p = 0.015], but only four studies including 176 animals reported these data. In conclusion, this meta-analysis provides evidence of citicoline efficacy in stroke animal models and shows the optimal neuroprotective profile and the missing experimental requirements before jumping into clinical trials.
Collapse
Affiliation(s)
- Alejandro Bustamante
- Neurovascular Research Laboratory, Institut de Recerca Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Kanwar JR, Sriramoju B, Kanwar RK. Neurological disorders and therapeutics targeted to surmount the blood-brain barrier. Int J Nanomedicine 2012; 7:3259-78. [PMID: 22848160 PMCID: PMC3405884 DOI: 10.2147/ijn.s30919] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We are now in an aging population, so neurological disorders, particularly the neurodegenerative diseases, are becoming more prevalent in society. As per the epidemiological studies, Europe alone suffers 35% of the burden, indicating an alarming rate of disease progression. Further, treatment for these disorders is a challenging area due to the presence of the tightly regulated blood-brain barrier and its unique ability to protect the brain from xenobiotics. Conventional therapeutics, although effective, remain critically below levels of optimum therapeutic efficacy. Hence, methods to overcome the blood-brain barrier are currently a focus of research. Nanotechnological applications are gaining paramount importance in addressing this question, and yielding some promising results. This review addresses the pathophysiology of the more common neurological disorders and novel drug candidates, along with targeted nanoparticle applications for brain delivery.
Collapse
Affiliation(s)
- Jagat R Kanwar
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research, Centre for Biotechnology and Interdisciplinary Biosciences, Institute for Frontier Materials-IFM, Deakin University, Waurn Ponds, Victoria, Australia.
| | | | | |
Collapse
|
10
|
Gutiérrez-Fernández M, Leciñana MAD, Rodríguez-Frutos B, Ramos-Cejudo J, Roda JM, Díez-Tejedor E. CDP-choline at high doses is as effective as i.v. thrombolysis in experimental animal stroke. Neurol Res 2012; 34:649-56. [PMID: 22732142 DOI: 10.1179/1743132812y.0000000058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Use of thrombolysis in acute ischaemic stroke may be limited by a narrow benefit/risk ratio. Pharmacological inhibition of the ischaemic cascade may constitute an effective and safer approach to stroke treatment. This study compared the effects of high doses of cytidine diphosphate-choline (CDP-choline; 1000 mg/kg) with recombinant tissue plasminogen activator (rt-PA; 5 mg/kg) in an experimental animal model of embolic stroke. Fifteen rats were embolized in the right internal carotid artery with an autologous clot and were divided into three groups: (1) infarct; (2) intravenous rt-PA 5 mg/kg 30 minutes post-embolization; and (3) CDP-choline 1000 mg/kg, intraperitoneal, three doses, 30 minutes, 24 hours, and 48 hours post-embolization. Functional evaluation scores were evaluated using Rogers test, lesion volume by haematoxylin and eosin staining, cell death with transferase-mediated dUTP nick-end labelling, and plasma levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha with enzyme-linked immunosorbent assay. In this study, CDP-choline and rt-PA produced a significant reduction in brain damage considering infarct volume, cell death, and inflammatory cytokines (tumour necrosis factor-alpha and IL-6) compared with the infarct group. Additionally, CDP-choline significantly decreased infarct volume, cell death, and IL-6 levels with respect to the rt-PA group. From these results, we conclude that high-dose CDP-choline may be an effective treatment for acute ischaemic stroke even in absence of thrombolysis.
Collapse
Affiliation(s)
- María Gutiérrez-Fernández
- Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neurosciences Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
11
|
Sahota P, Savitz SI. Investigational therapies for ischemic stroke: neuroprotection and neurorecovery. Neurotherapeutics 2011; 8:434-51. [PMID: 21604061 PMCID: PMC3250280 DOI: 10.1007/s13311-011-0040-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide. Current treatment strategies for ischemic stroke primarily focus on reducing the size of ischemic damage and rescuing dying cells early after occurrence. To date, intravenous recombinant tissue plasminogen activator is the only United States Food and Drug Administration approved therapy for acute ischemic stroke, but its use is limited by a narrow therapeutic window. The pathophysiology of stroke is complex and it involves excitotoxicity mechanisms, inflammatory pathways, oxidative damage, ionic imbalances, apoptosis, angiogenesis, neuroprotection, and neurorestoration. Regeneration of the brain after damage is still active days and even weeks after a stroke occurs, which might provide a second window for treatment. A huge number of neuroprotective agents have been designed to interrupt the ischemic cascade, but therapeutic trials of these agents have yet to show consistent benefit, despite successful preceding animal studies. Several agents of great promise are currently in the middle to late stages of the clinical trial setting and may emerge in routine practice in the near future. In this review, we highlight select pharmacologic and cell-based therapies that are currently in the clinical trial stage for stroke.
Collapse
Affiliation(s)
- Preeti Sahota
- Department of Neurology, University of Texas Medical School at Houston, Houston, TX 77030 USA
| | - Sean I. Savitz
- Department of Neurology, University of Texas Medical School at Houston, Houston, TX 77030 USA
| |
Collapse
|
12
|
García-Cobos R, Frank-García A, Gutiérrez-Fernández M, Díez-Tejedor E. Citicoline, use in cognitive decline: vascular and degenerative. J Neurol Sci 2010; 299:188-92. [PMID: 20875651 DOI: 10.1016/j.jns.2010.08.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 08/14/2010] [Indexed: 11/29/2022]
Abstract
CDP-choline has been widespread used in humans for decades as a treatment for many types of cognitive impairment. Despite this, its mechanism of action still remains unclear, but several experimental models in acute cerebral ischaemia suggest that it could have a brain repair action. Due to the lack of significant adverse effects and its high tolerability, there has been a growing interest for this molecule in recent years. In this article, a review of the most significant published clinical trials in cognitive decline has been made. A few Citicoline trials have studied its effects at medium and long-term on vascular cognitive impairment and Alzheimer's disease. Results show that Citicoline seems to have beneficial impact on several cognitive domains, but the methodological heterogeneity of the these studies makes it difficult to draw conclusions about these effects. New trials with a greater number of patients, uniform diagnostic criteria for inclusion and standardized neuropsychological assessment are needed to evidence with much more consistency Citicoline efficacy upon cognitive disorders. The use of new neuroimaging procedures in current trials could be of great interest.
Collapse
Affiliation(s)
- Rocío García-Cobos
- Department of Neurology, Stroke Center and Cognitive Impairment Unit, La Paz University Hospital, IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
13
|
Lee M, Towfighi A, Saver JL. Choline precursors for acute and subacute ischemic and hemorrhagic stroke. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2010. [DOI: 10.1002/14651858.cd008401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Kang YS, Lee HA, Lee NY. Regulation of Choline Transport by Oxidative Stress at the Blood-Brain Barrier In Vitro Model. Biomol Ther (Seoul) 2008. [DOI: 10.4062/biomolther.2008.16.1.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
15
|
Moon EY. Serum Deprivation Enhances Apoptotic Cell Death by Increasing Mitochondrial Enzyme Activity. Biomol Ther (Seoul) 2008. [DOI: 10.4062/biomolther.2008.16.1.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
16
|
Green AR. Pharmacological approaches to acute ischaemic stroke: reperfusion certainly, neuroprotection possibly. Br J Pharmacol 2008; 153 Suppl 1:S325-38. [PMID: 18059324 PMCID: PMC2268079 DOI: 10.1038/sj.bjp.0707594] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/24/2007] [Accepted: 10/30/2007] [Indexed: 12/27/2022] Open
Abstract
Stroke is a major cause of both death and disability. However, there are no pharmacological treatments used in most countries other than recombinant tissue plasminogen activator, a thrombolytic, and this is only used in about 4% of patients presenting after an acute ischaemic stroke. One novel thrombolytic (desmoteplase) has just been reported to have failed in a Phase IIb/III trial, but other thrombolytics and reperfusion agents remain in development. The picture with neuroprotectant agents, that is compounds that act to preserve neurones following an acute cerebral ischaemic insult, is even more bleak. Despite the development of over 1,000 compounds, many proving effective in animal models of stroke, none has demonstrated efficacy in patients in the over 100 clinical trials conducted. This includes NXY-059, which was developed in accordance with the guidelines proposed by an academic-industry roundtable group (STAIR). This review examines the available data on compounds currently in development. It also proposes that the failure of translation between efficacy in preclinical models and patients is likely to terminate most current neuroprotective drug development. It is suggested that animal models must be made more representative of the patient condition (with other co-morbid conditions) and suggests that since stroke is primarily a cardiovascular disease with a neurological outcome, more research on the neurovascular unit would be valuable. New approaches on neuroinflammation, neurorestoration and neurorepair are also likely to gain prominence in the search for new drugs to treat this major clinical problem.
Collapse
Affiliation(s)
- A R Green
- Institute of Neuroscience, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
17
|
Park CH, Kim YS, Lee HK, Kim YH, Choi MY, Jung DE, Yoo JM, Kang SS, Choi WS, Cho GJ. Citicoline reduces upregulated clusterin following kainic acid injection in the rat retina. Curr Eye Res 2008; 32:1055-63. [PMID: 18085470 DOI: 10.1080/02713680701758719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE To investigate the effects of citicoline on upregulated clusterin and retinal damage induced by kainic acid (KA). METHODS KA was injected into the vitreous of rats. Effects of systemic citicoline treatments were estimated by measuring the thickness of the various retinal layers, immunoblotting, and immunohistochemical techniques. RESULTS One day after KA injection, the immunoreactivity of clusterin increased significantly. In rats treated with KA plus citicoline, clusterin immunoreactivity was markedly reduced compared to KA-treated rats. Western blot analysis showed that clusterin protein levels were increased in KA-treated rats, but decreased in KA plus citicoline-treated rats. Apoptotic cell death was determined by TUNEL method. Citicoline reduced the expression of clusterin, as well as the expression of TUNEL after KA injection in the rat retina. CONCLUSION The increased expression of clusterin following KA injection in the rat retina suggests the presence of neurodegenerative events; citicoline may provide neuroprotection against neuronal cell damage.
Collapse
Affiliation(s)
- Chang Hwan Park
- Department of Anatomy and Neurobiology, College of Medicine, Institute of Health Science, Medical Research Center for Neural Dysfunction, Gyeongsang National University, Gyungnam, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Özay R, Bekar A, Kocaeli H, Karlı N, Filiz G, Ulus IH. Citicoline improves functional recovery, promotes nerve regeneration, and reduces postoperative scarring after peripheral nerve surgery in rats. ACTA ACUST UNITED AC 2008; 68:615-622. [PMID: 18053855 DOI: 10.1016/j.surneu.2006.12.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Accepted: 12/21/2006] [Indexed: 12/12/2022]
Abstract
BACKGROUND Citicoline has been shown to have beneficial effects in a variety of CNS injury models. The aim of this study was to test the effects of citicoline on nerve regeneration and scarring in a rat model of peripheral nerve surgery. METHODS Seventy adult Sprague-Dawley rats underwent a surgical procedure involving right sciatic nerve section and epineural suturing. Rats were assigned to the control or experiment groups to receive a topical application of 0.4 mL of saline or 0.4 mL (100 micromol/L) of citicoline, respectively. Macroscopic, histological, functional, and electromyographic assessments of nerves were performed 4 to 12 weeks after surgery. RESULTS In the control versus citicoline-treated rats, SFI was -90 +/- 1 versus -84 +/- 1 (P < .001), -76 +/- 4 versus -61 +/- 3 (P < .001), and -66 +/- 2 versus -46 +/- 3 (P < .001) at 4, 8, and 12 weeks after surgery, respectively. At 12 weeks after surgery, axon count and diameter were 16400 +/- 600 number/mm(2) and 5.47 +/- 0.25 microm versus 22250 +/- 660 number/mm(2) (P < .001) and 6.65 +/- 0.28 microm (P < .01) in the control and citicoline-treated groups, respectively. In citicoline-treated rats, histomorphological axonal organization score at the repair site was (3.4 +/- 0.1) significantly better than that in controls (2.6 +/- 0.3) (P < .001). Peripheral nerve regeneration evaluated by EMG at 12 weeks after surgery showed significantly better results in the citicoline group (P < .05). Nerves treated with citicoline demonstrated reduced scarring at the repair site (P < .001). CONCLUSION Our results demonstrate that citicoline promotes regeneration of peripheral nerves subjected to immediate section suturing type surgery and reduces postoperative scarring.
Collapse
Affiliation(s)
- Rafet Özay
- Department of Neurosurgery, Uludağ University School of Medicine, 16059, Görükle, Bursa, Turkey
| | - Ahmet Bekar
- Department of Neurosurgery, Uludağ University School of Medicine, 16059, Görükle, Bursa, Turkey.
| | - Hasan Kocaeli
- Department of Neurosurgery, Uludağ University School of Medicine, 16059, Görükle, Bursa, Turkey
| | - Necdet Karlı
- Neurology, Uludağ University School of Medicine, 16059, Görükle, Bursa, Turkey
| | - Gülaydan Filiz
- Neuropathology, Uludağ University School of Medicine, 16059, Görükle, Bursa, Turkey
| | - I Hakkı Ulus
- Pharmacology, Uludağ University, 16059, Görükle, Bursa, Turkey
| |
Collapse
|
19
|
Oguro H, Kobayashi S, Takahashi K, Abe S, Toyoda G, Iijima K, Bokura H, Yamaguchi S. Effect of one-shot intravenous 0.42 mega unit urokinase therapy in patients with acute ischemic stroke. J Stroke Cerebrovasc Dis 2007; 15:8-13. [PMID: 17904040 DOI: 10.1016/j.jstrokecerebrovasdis.2005.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 08/11/2005] [Accepted: 09/06/2005] [Indexed: 11/17/2022] Open
Abstract
We evaluated the efficacy of intravenous (IV) urokinase (UK) treatment for acute ischemic stroke patients. We treated 45 patients with 0.42 mega units of IV UK and 201 patients with other conventional agents. Clinical severity and outcome were evaluated using National Institutes of Health Stroke Scale (NIHSS) scores and modified Rankin scale (mRS). We defined clinical improvement as a reduction of NIHSS score of > 4 points between admission and discharge. The rate of improvement, as defined earlier, was significantly higher in the UK group (27/45; 60%) than in the non-UK group (67/201, 33%) (P = .0009; chi(2) test). The rate of mRS 0-2 (good outcome) on discharge in the UK group (28/45; 62%) was slightly (but not significantly) higher than that in the non-UK group (99/201; 49%). Baseline characteristics, including risk factors, did not differ between the 2 groups, except for time to treatment and length of hospitalization. We conclude that treatment of acute ischemic stroke patients with 0.42 mega units of IV UK shows better clinical improvement than conventional therapy.
Collapse
Affiliation(s)
- Hiroaki Oguro
- Department of Neurology, Hematology & Rheumatology, Shimane University, School of Medicine, Izumo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hurtado O, Pradillo JM, Fernández-López D, Morales JR, Sobrino T, Castillo J, Alborch E, Moro MA, Lizasoain I. Delayed post-ischemic administration of CDP-choline increases EAAT2 association to lipid rafts and affords neuroprotection in experimental stroke. Neurobiol Dis 2007; 29:123-31. [PMID: 17884513 DOI: 10.1016/j.nbd.2007.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/21/2007] [Accepted: 08/12/2007] [Indexed: 01/30/2023] Open
Abstract
Glutamate transport is the only mechanism for maintaining extracellular glutamate concentrations below excitotoxic levels. Among glutamate transporters, EAAT2 is responsible for up to 90% of all glutamate transport and has been reported to be associated to lipid rafts. In this context, we have recently shown that CDP-choline induces EAAT2 translocation to the membrane. Since CDP-choline preserves membrane stability by recovering levels of sphingomyelin, a glycosphingolipid present in lipid rafts, we have decided to investigate whether CDP-choline increases association of EAAT2 transporter to lipid rafts. Flotillin-1 was used as a marker of lipid rafts due to its known association to these microdomains. After gradient centrifugation, we have found that flotillin-1 appears mainly in fractions 2 and 3 and that EAAT2 protein is predominantly found colocalised with flotillin-1 in fraction 2. We have also demonstrated that CDP-choline increased EAAT2 levels in fraction 2 at both times examined (3 and 6 h after 1 g/kg CDP-choline administration). In agreement with this, [(3)H] glutamate uptake was also increased in flotillin-associated vesicles obtained from brain homogenates of animals treated with CDP-choline. Exposure to middle cerebral artery occlusion also increased EAAT2 levels in lipid rafts, an effect which was further enhanced in those animals receiving 2 g/kg CDP-choline 4 h after the occlusion. Infarct volume measured at 48 h after ischemia showed a reduction in the group treated with CDP-choline 4 h after occlusion. In summary, we have demonstrated that CDP-choline redistributes EAAT2 to lipid raft microdomains and improves glutamate uptake. This effect is also found after experimental stroke, when CDP-choline is administered 4 h after the ischemic occlusion. Since we have also shown that this delayed post-ischemic administration of CDP-choline induces a potent neuroprotection, our data provides a novel target for neuroprotection in stroke.
Collapse
Affiliation(s)
- O Hurtado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Back T, Otto D, Kittner D, Schüler OG, Hennerici MG, Mennel HD. Failure to improve the effect of thrombolysis by memantine in a rat embolic stroke model. Neurol Res 2007; 29:264-9. [PMID: 17509225 DOI: 10.1179/174313206x154012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Partial and delayed recanalization is a regular finding after thrombolysis in stroke patients who may benefit from additional therapy with neuroprotectants. To translate this scenario into an experiment, memantine was combined with thrombolysis in an embolic stroke model and tissue outcome was assessed in terms of complete and incomplete damage. METHODS Tissue plasminogen activator (tPA, 5 mg/kg, b.w.) was administered 1.5 or 3.5 hours after embolic middle cerebral artery (MCA) occlusion in rats. In both groups, rats were assigned to additional therapy with memantine (10 mg/kg, i.p.) or saline injection. Ischemia and eventual reperfusion were continuously monitored by laser-Doppler flowmetry. Reperfusion was defined as a lasting increase in post-thrombolytic cerebral blood flow to >60% of baseline (complete) or to a lesser degree (partial). Experiments were terminated 6 hours post-occlusion to obtain quantitative histopathology. RESULTS tPA induced complete or partial recanalization in 54% of treated animals. Successful reperfusion reduced total ischemic lesion volume by 42% compared with non-reperfused animals (p<0.05), but increased significantly the percentage of scattered neuronal injury from 25.6 (non-reperfusion) to 36.3% (reperfusion, p<0.05). Memantine did not improve the effect of tPA-induced recanalization on infarct morphology whether applied at 1.5 or 3.5 hours post-occlusion. DISCUSSION We conclude from our experiments that add-on therapy with memantine did not alter the effect of thrombolysis in an embolic stroke model. Recanalization appears to be a prerequisite to confer neuroprotective effects.
Collapse
Affiliation(s)
- Tobias Back
- Department of Neurology, Klinikum Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Cansev M. Uridine and cytidine in the brain: their transport and utilization. ACTA ACUST UNITED AC 2006; 52:389-97. [PMID: 16769123 DOI: 10.1016/j.brainresrev.2006.05.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 04/28/2006] [Accepted: 05/02/2006] [Indexed: 11/27/2022]
Abstract
The pyrimidines cytidine (as CTP) and uridine (which is converted to UTP and then CTP) contribute to brain phosphatidylcholine and phosphatidylethanolamine synthesis via the Kennedy pathway. Their uptake into brain from the circulation is initiated by nucleoside transporters located at the blood-brain barrier (BBB), and the rate at which uptake occurs is a major factor determining phosphatide synthesis. Two such transporters have been described: a low-affinity equilibrative system and a high-affinity concentrative system. It is unlikely that the low-affinity transporter contributes to brain uridine or cytidine uptake except when plasma concentrations of these compounds are increased several-fold experimentally. CNT2 proteins, the high-affinity transporters for purines like adenosine as well as for uridine, have been found in cells comprising the BBB of rats. However, to date, no comparable high-affinity carrier protein for cytidine, such as CNT1, has been detected at this location. Thus, uridine may be more available to brain than cytidine and may be the major precursor in brain for both the salvage pathway of pyrimidine nucleotides and the Kennedy pathway of phosphatide synthesis. This recognition may bear on the effects of cytidine or uridine sources in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mehmet Cansev
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, 02139, USA.
| |
Collapse
|
23
|
Green AR, Shuaib A. Therapeutic strategies for the treatment of stroke. Drug Discov Today 2006; 11:681-93. [PMID: 16846795 DOI: 10.1016/j.drudis.2006.06.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 04/21/2006] [Accepted: 06/05/2006] [Indexed: 10/24/2022]
Abstract
Acute ischaemic stroke is a major health problem with no effective treatments apart from the thrombolytic recombinant tissue plasminogen activator (rt-PA), which must be given within 3h of stroke onset. However, rt-PA increases the risk of symptomatic intracranial haemorrhage and is administered to <5% of stroke patients. New perfusion-enhancing compounds are in development but the risk:benefit ratio remains to be determined. Many neuroprotective drugs have been studied but all those that reached clinical development have failed to demonstrate efficacy. However, adherence to recently published guidelines on preclinical development has resulted in one novel compound (NXY-059) demonstrating efficacy in a Phase III trial, providing encouragement for the validity of the concept of neuroprotection. There are a variety of new neuroprotective compounds in the early stages of investigation and some could prove clinically effective, provided appropriate preclinical development guidelines are observed.
Collapse
Affiliation(s)
- A Richard Green
- Global Discovery CNS & Pain Control, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, LE11 5RH, UK.
| | | |
Collapse
|
24
|
Ly JV, Zavala JA, Donnan GA. Neuroprotection and thrombolysis: combination therapy in acute ischaemic stroke. Expert Opin Pharmacother 2006; 7:1571-81. [PMID: 16872260 DOI: 10.1517/14656566.7.12.1571] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The administration of oral aspirin within 48 h and tissue plasminogen activator within 3 h of ischaemic stroke onset remain the only treatments that have been shown to have clinical benefit. There has been much excitement about neuroprotection over the last two decades, as it may minimise the harmful effects of ischaemic neuronal damage. Although each step along the ischaemic cascade offers a potential target for therapeutic intervention, and neuroprotection has shown benefit in animal studies, this has been difficult to translate to humans. Some hope has been offered by the recent finding that the free radical scavenger NXY-059 may improve outcomes in patients presenting within 6 h of onset of ischaemic stroke. There is logic to the idea that neuroprotection may be most effective when reperfusion has occurred with thrombolysis, as the neuroprotectant will have greater access to ischaemic tissue and the opportunity is presented to minimise free radical-mediated reperfusion injury. Numerous studies in animal models support this view, but the concept has not, as yet, been rigorously tested in humans.
Collapse
Affiliation(s)
- John V Ly
- National Stroke Research Institute, Level 1, Neurosciences Building, Austin Health, University of Melbourne, 300 Waterdale Road, Heidleberg Heights, Victoria 3081, Australia
| | | | | |
Collapse
|
25
|
Alonso de Leciñana M, Gutiérrez M, Roda JM, Carceller F, Díez-Tejedor E. Effect of combined therapy with thrombolysis and citicoline in a rat model of embolic stroke. J Neurol Sci 2006; 247:121-9. [PMID: 16797595 DOI: 10.1016/j.jns.2006.03.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 01/03/2006] [Accepted: 03/03/2006] [Indexed: 11/27/2022]
Abstract
An approach combining reperfusion mediated by thrombolytics with pharmacological neuroprotection aimed at inhibiting the physiopathological disorders responsible for ischemia-reperfusion damage, could provide an optimal treatment of ischemic stroke. We investigate, in a rat embolic stroke model, the combination of rtPA with citicoline as compared to either alone as monotherapy, and whether the neuroprotector should be provided before or after thrombolysis to achieve a greater reduction of ischemic brain damage. One hundred and nine rats have been studied: four were sham-operated and the rest embolized in the right internal carotid artery with an autologous clot and divided among 5 groups: 1) control; 2) iv rtPA 5 mg/kg 30 min post-embolization 3) citicoline 250 mg/kg ip x3 doses, 10 min, 24 h and 48 h post-embolization; 4) citicoline combined with rtPA following the same pattern; 5) rtPA combined with citicoline, with a first dose 10 min after thrombolysis. Mortality, neurological score, volume of ischemic lesion and neuronal death (TUNEL) after 72 h and plasma levels of IL-6 and TNF-alpha, were considered to assess ischemic brain damage. Compared with controls, the use of citicoline after thrombolysis produced the greatest reduction of mortality caused by the ischemic lesion (p<0.01), infarct volume (p=0.027), number of TUNEL positive cells in striatum (p=0.014) and plasma levels of TNF-alpha at 3 h (p=0.027) and 72 h (p=0.011). rtPA induced reperfusion provided a slight non-significant reduction of infarct volume and neuronal death, but it reduced mortality due to brain damage (p<0.01) although an increase in the risk of fatal bleeding was noted. CiT as monotherapy only produced a significant reduction of neuronal death in striatum (p=0.014). The combination of CiT before rtPA did not add any benefit to rtPA alone. The superiority of the combined treatment with rtPA followed by citicoline suggests that early reperfusion should be followed by effective neuroprotection to inhibit ischemia-reperfusion injury and better protect the tissue at risk.
Collapse
Affiliation(s)
- María Alonso de Leciñana
- Cerebrovascular Research Unit, La Paz University Hospital, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | | | |
Collapse
|
26
|
Yücel N, Cayli SR, Ateş O, Karadağ N, Firat S, Turköz Y. Evaluation of the neuroprotective effects of citicoline after experimental spinal cord injury: improved behavioral and neuroanatomical recovery. Neurochem Res 2006; 31:767-75. [PMID: 16794862 DOI: 10.1007/s11064-006-9075-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2006] [Indexed: 01/14/2023]
Abstract
Spinal cord injury (SCI) caused by trauma mainly occurs in two mechanisms as primary and secondary injury. Secondary injury following the primary impact includes various pathophysiological and biochemical events. Methylprednisolone is the only pharmacological agent having clinically proven beneficial effects on SCI. Citicoline has been shown to have clinical and experimental beneficial effects on brain ischemia. This study aims to investigate the neuroprotective effect of citicoline in an experimental SCI model in rats. Sixty adult Wistar albino rats were randomized into five groups. SCI was performed by the weight-drop model. Group 1 underwent laminectomy alone. The Group 2 underwent laminectomy followed by SCI and received no medication. Group3, Group 4 and Group 5 underwent laminectomy followed by SCI and received medication. Group 3 and Group 5 received citicoline and Group 4 and Group 5 received methylprednisolone. The rats were divided into two subgroups for biochemical analysis (sacrificed at 24 h after surgery) and neurobehavioral and histopathological evaluation (sacrificed at 6 weeks after surgery). Malondialdehyde levels, nitric oxide levels and trauma size ratios were lower and reduced glutathione levels were higher in Group 3, Group 4 and Group 5 as compared to Group 2. Posttraumatic neurological recovery after surgery was significantly better in Group 3, Group 4 and Group 5 compared to Group 2. In conclusion, this study demonstrates that citicoline is as effective as methylprednisolone. The efficacy of citicoline combined with methylprednisolone is not superior to either citicoline or methylprednisolone alone.
Collapse
Affiliation(s)
- Neslihan Yücel
- Department of Emergency Medicine, Inönü University, Faculty of Medicine, Malatya 44069, Turkey.
| | | | | | | | | | | |
Collapse
|
27
|
Overgaard K, Meden P. Citicoline--the first effective neuroprotectant to be combined with thrombolysis in acute ischemic stroke? J Neurol Sci 2006; 247:119-20. [PMID: 16765988 DOI: 10.1016/j.jns.2006.05.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 05/03/2006] [Indexed: 11/22/2022]
|
28
|
Lizasoain I, Cárdenas A, Hurtado O, Romera C, Mallolas J, Lorenzo P, Castillo J, Moro MA. Targets of cytoprotection in acute ischemic stroke: present and future. Cerebrovasc Dis 2006; 21 Suppl 2:1-8. [PMID: 16651809 DOI: 10.1159/000091698] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although the management of stroke has improved remarkably over the last decade due mainly to the advent of thrombolysis, most neuroprotective agents, although successful in animal studies, have failed in humans. Our increasing knowledge concerning the ischemic cascade is leading to a considerable development of pharmacological tools suggesting that each step of this cascade might be a target for cytoprotection. Glutamate has long been recognized to play key roles in the pathophysiology of ischemia. However, although some trials are still ongoing, the results from several completed trials with drugs interfering with the glutamatergic pathway have been disappointing. Regarding the inhibition of glutamate release as a possible target for cytoprotection, it might be afforded either by decreasing glutamate efflux or by increasing glutamate uptake. In this context, it has been shown that glutamate transport is the primary and only mechanism for maintaining extracellular glutamate concentrations below excitotoxic levels. This transport is executed by the five high-affinity, sodium-dependent plasma membrane glutamate transporters. Among them, the transporter EAAT2 is responsible for up to 90% of all glutamate transport. We will discuss the effect of different neuroprotective tools (membrane stabilizers or endogenous neuroprotection) affecting glutamate efflux and/or expression of EAAT2. We will also describe the finding of a novel polymorphism in the EAAT2 promoter region which could be responsible for differences in both gene function and regulation under pathological conditions such as cerebral ischemia, and which might well account for the failure of glutamate antagonists in the clinical practice. These results may possess important therapeutic implications in the management of patients at risk of ischemic events, since it has been demonstrated that those patients with progressing stroke have higher plasma concentrations of glutamate which remain elevated up to 24 h when compared to the levels in patients without neurological deterioration.
Collapse
Affiliation(s)
- I Lizasoain
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gutiérrez M, Díez Tejedor E, Alonso de Leciñana M, Fuentes B, Carceller F, Roda JM. Thrombolysis and neuroprotection in cerebral ischemia. Cerebrovasc Dis 2006; 21 Suppl 2:118-26. [PMID: 16651822 DOI: 10.1159/000091711] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Stroke is a major cause of death and disability worldwide. The resulting burden on society grows with the increase in the incidence of stroke. The term brain attack was introduced to describe the acute presentation of stroke and emphasize the need for urgent action to remedy the situation. Though a large number of therapeutic agents, like thrombolytics, NMDA receptor antagonists, calcium channel blockers and antioxidants, have been used or are being evaluated, there is still a large gap between the benefits of these agents and the properties of an ideal drug for stroke. So far, only thrombolysis with rtPA within a 3-hour time window has been shown to improve the outcome of patients with ischemic stroke. Understanding the mechanisms of injury and neuroprotection in these diseases is important to target news sites for treating ischemia. Better evaluation of the drugs and increased similarity between the results of animal experimentation and in the clinical setting requires critical assessment of the selection of animal models and the parameters to be evaluated. Our laboratory has employed a rat embolic stroke model to investigate the combination of rtPA with citicoline as compared to monotherapy alone and investigated whether neuroprotection should be provided before or after thrombolysis in order to achieve a greater reduction of ischemic brain damage.
Collapse
Affiliation(s)
- M Gutiérrez
- Cerebrovascular Research Group, Hospital Universitario La Paz, Universidad Autónoma Madrid, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Rogalewski A, Schneider A, Ringelstein EB, Schäbitz WR. Toward a Multimodal Neuroprotective Treatment of Stroke. Stroke 2006; 37:1129-36. [PMID: 16527996 DOI: 10.1161/01.str.0000209330.73175.34] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Stroke remains a common medical problem with importance attributable to the demographic changes in industrialized societies.
Summary of Review—
After years of setbacks, acute stroke therapy has finally emerged, including thrombolysis with tissue plasminogen activator (t-PA). However, t-PA treatment is limited by a narrow time window and side effects, so that only 3% of all stroke patients receive thrombolysis. Unimodal targeting of key events in stroke pathophysiology was not effective in providing long-term benefits, leading to negative results in previous clinical neuroprotective stroke trials. A successful future stroke therapy should approach multiple pathophysiological mechanisms besides revascularization at once, including reduction of t-PA–related side effects, prevention of cell death, stimulation of neuroregeneration, and plasticity.
Conclusions—
Strategies targeting these processes include multiple combination therapies as well as treatment with multimodal drugs that interact with these mechanisms. Here, we review such combination approaches, and outline how this concept could be developed into future stroke treatment.
Collapse
|
31
|
Hurtado O, Moro MA, Cárdenas A, Sánchez V, Fernández-Tomé P, Leza JC, Lorenzo P, Secades JJ, Lozano R, Dávalos A, Castillo J, Lizasoain I. Neuroprotection afforded by prior citicoline administration in experimental brain ischemia: effects on glutamate transport. Neurobiol Dis 2005; 18:336-45. [PMID: 15686962 DOI: 10.1016/j.nbd.2004.10.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 07/23/2004] [Accepted: 10/13/2004] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Cytidine-5'-diphosphocholine (citicoline or CDP-choline), an intermediate in the biosynthesis of phosphatidylcholine, has shown beneficial effects in a number of CNS injury models including cerebral ischemia. Citicoline is the only neuroprotectant that has proved efficacy in patients with moderate to severe stroke. However, the precise mechanism by which citicoline is neuroprotective is not fully known. The present study was designed to search for mechanisms of citicoline neuroprotective properties using in vivo and in vitro models of brain ischemia. METHODS Focal brain ischemia was produced in male adult Fischer rats by occluding both the common carotid and middle cerebral arteries. Brain glutamate levels were determined at fixed intervals after occlusion. Animals were then sacrificed, and infarct volume and brain ATP levels were measured. As in vitro model of ischemia, rat cultured cortical neurones or astrocytes, isolated or in co-culture, were exposed to oxygen-glucose deprivation (OGD) either in the absence or in the presence of citicoline (1-100 microM). Viability was studied by measuring LDH release. Glutamate release and uptake, and ATP levels were also determined. RESULTS Citicoline (0.5, 1 and 2 g/kg i.p. administered 1 h before the occlusion) produced a reduction of the infarct size measured at striatum (18, 27 and 42% inhibition, respectively, n = 8, P < 0.05 vs. ischemia), effect that correlated with the inhibition caused by citicoline on ischemia-induced increase in glutamate concentrations after the onset of the ischemia. Citicoline also inhibited ischemia-induced decrease in cortical and striatal ATP levels. Incubation of cultured rat cortical neurones with citicoline (10 and 100 microM) prevented OGD-induced LDH and glutamate release and caused a recovery in ATP levels after OGD, confirming our previous results. In addition, citicoline (100 microM) caused an increase in glutamate uptake and in EAAT2 glutamate transporter membrane expression in cultured rat astrocytes. CONCLUSIONS Our present findings show novel mechanisms for the neuroprotective effects of citicoline, which cooperate to decrease brain glutamate release after ischemia.
Collapse
Affiliation(s)
- Olivia Hurtado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Brain phosphatidylcholine (PC) levels are regulated by a balance between synthesis and hydrolysis. Pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 (IL-1alpha/beta) activate phospholipase A(2) (PLA(2)) and PC-phospholipase C (PC-PLC) to hydrolyze PC. PC hydrolysis by PLA(2) releases free fatty acids including arachidonic acid, and lyso-PC, an inhibitor of CTP-phosphocholine cytidylyltransferase (CCT). Arachidonic acid metabolism by cyclooxygenases/lipoxygenases is a significant source of reactive oxygen species. CDP-choline might increase the PC levels by attenuating PLA(2) stimulation and loss of CCT activity. TNF-alpha also stimulates proteolysis of CCT. TNF-alpha and IL-1beta are induced in brain ischemia and may disrupt PC homeostasis by increasing its hydrolysis (increase PLA(2) and PC-PLC activities) and inhibiting its synthesis (decrease CCT activity). The beneficial effects of CDP-choline may result by counteracting TNF-alpha and/or IL-1 mediated events, integrating cytokine biology and lipid metabolism. Re-evaluation of CDP-choline phase III stroke clinical trial data is encouraging and future trails are warranted. CDP-choline is non-xenobiotic, safe, well tolerated, and can be considered as one of the agents in multi-drug treatment of stroke.
Collapse
|
33
|
Donnan GA, Howells DW, Markus R, Toni D, Davis SM. Can the time window for administration of thrombolytics in stroke be increased? CNS Drugs 2004; 17:995-1011. [PMID: 14594441 DOI: 10.2165/00023210-200317140-00001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Level 1 evidence now shows that thrombolysis in cases of acute ischaemic stroke is effective if administered within 3 hours of stroke onset. This benefit has been shown to be time dependent and potentially extends beyond 3 hours, with evidence that potentially viable penumbral tissue may be present in a significant proportion of cases well beyond 3-6 hours and, in isolated cases, perhaps up to 48 hours. This exposes a "stroke recovery gap", the difference observed between the clinical response to thrombolytic therapy in a given population of patients presenting with ischaemic stroke and the potential clinical recovery if all of the penumbra were salvaged under ideal circumstances. The means of bridging this "stroke recovery gap" using thrombolysis must involve extending the therapeutic time window (i.e. the time between stroke onset and administration of thrombolytics). Approaches to do this include the use of: (i) improved patient selection with modern neuroimaging techniques, particularly magnetic resonance imaging using perfusion-weighted image/diffusion-weighted image mismatch; (ii) newer thrombolytic agents; (iii) lower doses of these agents; (iv) varied methods of administration of thrombolytic therapy including combined intravenous and intra-arterial approaches; and (v) adjunctive therapies such as neuroprotectants. Should these means of extending the time window for thrombolysis prove successful, a more widespread use of this form of acute stroke therapy will be possible.
Collapse
Affiliation(s)
- Geoffrey A Donnan
- National Stroke Research Institute, Austin & Repatriation Medical Centre, 300 Waterdale Road, West Heidelberg, Victoria 3081, Australia.
| | | | | | | | | |
Collapse
|
34
|
Dempsey RJ, Raghavendra Rao VL. Cytidinediphosphocholine treatment to decrease traumatic brain injury-induced hippocampal neuronal death, cortical contusion volume, and neurological dysfunction in rats. J Neurosurg 2003; 98:867-73. [PMID: 12691414 DOI: 10.3171/jns.2003.98.4.0867] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT In previous studies at their laboratory the authors showed that cytidinediphosphocholine (CDP-choline), an intermediate of phosphatidylcholine synthesis, decreases edema formation and blood-brain barrier disruption following traumatic brain injury (TBI). In the present study the authors investigate whether CDP-choline protects hippocampal neurons after controlled cortical impact (CCI)-induced TBI in adult rats. METHODS After adult male Sprague-Dawley rats had been anesthetized with halothane, a moderate-grade TBI was induced with the aid of a CCI device set at a velocity of 3 m/second, creating a 2-mm deformation. Sham-operated rats, which underwent craniectomy without impact served as controls. The CDP-choline (100, 200, and 400 mg/kg body weight) or saline was injected into the animals twice (once immediately postinjury and once 6 hours postinjury). Seven days after the injury, the rats were neurologically evaluated and killed, and the number of hippocampal neurons was estimated by examining thionine-stained brain sections. By 7 days postinjury, there was a significant amount of neuronal death in the ipsilateral hippocampus in the CA2 (by 53 +/- 7%, p < 0.05) and CA3 (by 59 +/- 9%, p < 0.05) regions and a contusion (volume 34 +/- 8 mm3) in the ipsilateral cortex compared with sham-operated control animals. Rats subjected to TBI also displayed severe neurological deficit at 7 days postinjury. Treating rats with CDP-choline (200 and 400 mg/kg, intraperitoneally) significantly prevented TBI-induced neuronal loss in the hippocampus, decreased cortical contusion volume, and improved neurological recovery. CONCLUSIONS Treatment with CDP-choline decreased brain damage following TBI.
Collapse
Affiliation(s)
- Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53792, USA.
| | | |
Collapse
|
35
|
Yang Y, Li Q, Yang T, Hussain M, Shuaib A. Reduced brain infarct volume and improved neurological outcome by inhibition of the NR2B subunit of NMDA receptors by using CP101,606-27 alone and in combination with rt-PA in a thromboembolic stroke model in rats. J Neurosurg 2003; 98:397-403. [PMID: 12593629 DOI: 10.3171/jns.2003.98.2.0397] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT A novel postsynaptic antagonist of N-methyl-D-aspartate (NMDA) receptors, CP-101,606-27 may attenuate the effects of focal ischemia. In current experiments, the authors investigated its neuroprotective effect alone and in combination with recombinant tissue plasminogen activator (rt-PA) in thromboembolic focal cerebral ischemia in rats. METHODS Forty-eight male Wistar rats underwent embolization of the right middle cerebral artery to produce focal cerebral ischemia. After random division into six groups (eight rats in each group), animals received: vehicle; low-dose (LD) CP-101, 606-27, 14.4 mg/kg; high-dose (HD) CP- 101,606-27, 28.8 mg/kg; rt-PA, 10 mg/kg; low-dose combination (LDC) CP- 101,606-27, 14.4 mg/kg plus rt-PA, 10 mg/kg; or high-dose combination (HDC) CP- 101,606-27, 28.8 mg/kg plus rt-PA, 10 mg/kg) 2 hours after induction of embolic stroke. Animals were killed 48 hours after the onset of focal ischemia. Brain infarction volume, neurobehavioral outcome, poststroke seizure activity, poststroke mortality, and intracranial hemorrhage incidence were observed and evaluated. Compared with vehicle-treated animals (39.4 +/- 8.6%) 2 hours posttreatment with CP-101,606-27 or rt-PA or in combination a significant reduction in the percentage of brain infarct volume was seen (LD CP-101,606-27: 20.8 +/- 14.3%, p < 0.05; HD CP-101,606-27: 10.9 +/- 3.2%, p < 0.001; rt-PA: 21.1 +/- 7.3%, p < 0.05; LDC, 18.6 +/- 11.5%, p < 0.05; and HDC: 15.2 +/- 10.1%, p < 0.05; compared with control: 39.4 +/- 8.6%). Combination of CP-101,606-27 with rt-PA did not show a significantly enhanced neuroprotective effect. Except for the control and LDC treatment groups, neurobehavioral outcome was significantly improved 24 hours after embolic stroke in animals in all other active therapeutic groups receiving CP-101,606-27 or rt-PA or in combination. The authors also observed that treatment with HD CP-101,606-27 decreased poststroke seizure activity. CONCLUSIONS The data in this study suggested that postischemia treatment with CP-101,606-27 is neuroprotective in the current stroke model; however, the authors also note that although rt-PA may offer modest protection when used alone, combination with CP-101,606-27 did not appear to enhance its effects.
Collapse
Affiliation(s)
- Yi Yang
- Acute Stroke Program, Neurology Division, University of Alberta Hospital, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
36
|
Mir C, Clotet J, Aledo R, Durany N, Argemí J, Lozano R, Cervós-Navarro J, Casals N. CDP-choline prevents glutamate-mediated cell death in cerebellar granule neurons. J Mol Neurosci 2003; 20:53-60. [PMID: 12663935 DOI: 10.1385/jmn:20:1:53] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Accepted: 08/02/2002] [Indexed: 01/18/2023]
Abstract
Cytidine 5'-diphosphocholine (CDP-choline) has been shown to reduce neuronal degeneration induced in central nervous system (CNS) injury. However, the precise mechanism underlying the neuroprotective properties of this molecule is still unknown. Excitotoxicity causes cell death in CNS injury (trauma or ischemia) and has also been involved in neurodegenerative diseases. We have examined whether CDP-choline prevents glutamate-mediated cell death, determined by trypan blue exclusion and lactate dehydrogenase activity assays. Pretreatment of rat cerebellar granule cells (CGCs) with CDP-choline causes a dose- and time-dependent reduction of glutamate-induced excitotoxicity. Cell death is prevented >50% when 100 microM CDP-choline is added 6 d before the glutamate excitotoxic insult but less than 20% when added concomitantly with glutamate. Pretreatment of CGCs with CDP-choline reduces almost completely (>80%) the number of apoptotic cells analyzed by flow cytometry, suggesting that CDP-choline exerts a neuroprotective effect by inhibiting the apoptotic pathway induced by glutamate.
Collapse
Affiliation(s)
- Cecilia Mir
- Unit of Molecular and Cellular Biology, Faculty of Health Sciences, International University of Catalonia, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Barrachina M, Secades J, Lozano R, Gómez-Santos C, Ambrosio S, Ferrer I. Citicoline increases glutathione redox ratio and reduces caspase-3 activation and cell death in staurosporine-treated SH-SY5Y human neuroblastoma cells. Brain Res 2002; 957:84-90. [PMID: 12443983 DOI: 10.1016/s0006-8993(02)03605-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Citicoline, or CDP-choline, is an essential endogenous intermediate in the biosynthesis of phosphatidylcholine that may act as a neuroprotector in several models of neurodegeneration. The present study analyses the effects of citicoline in the paradigm of staurosporine-induced cell death in human SH-SY5Y neuroblastoma cells. Citicoline reduces apoptosis induced by 100 nM staurosporine for 12 h in SH-SY5Y cells. This effect is higher with pre-treatment of 60 mM citicoline for 24 h after staurosporine challenge. Moreover, citicoline treatment restores glutathione redox ratio diminished after staurosporine challenge. Finally, citicoline also reduces the expression levels of active caspase-3 and specific PARP-cleaved products of 89 kDa resulting from staurosporine exposure when citicoline is added to the culture medium 24 h before staurosporine. These findings demonstrate that citicoline affects the staurosporine-induced apoptosis cell-signalling pathway by interacting with the glutathione system and by inhibiting caspase-3 in SH-SY5Y human neuroblastoma cells.
Collapse
Affiliation(s)
- Marta Barrachina
- Departament de Biologia Cellular i Anatomia Patològica, Universitat de Barcelona, Campus de Bellvitge, carrer Feixa Llarga sn, 08907, Hospitalet de Llobregat, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Adibhatla RM, Hatcher JF. Citicoline mechanisms and clinical efficacy in cerebral ischemia. J Neurosci Res 2002; 70:133-9. [PMID: 12271462 DOI: 10.1002/jnr.10403] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Citicoline, an intermediate in the biosynthesis of phosphatidylcholine (PtdCho), has shown beneficial effects in various CNS injury models and neurodegenerative diseases. PtdCho hydrolysis by phospholipase A(2) (PLA(2)) after cerebral ischemia and reperfusion yields arachidonic acid (ArAc) and lyso-PtdCho. ArAc oxidative metabolism results in formation of reactive oxygen species and lipid peroxides. Lyso-PtdCho could inhibit activity of cytidine triphosphate-phosphocholine cytidylyltransferase (the rate-limiting enzyme in PtdCho biosynthesis), resulting in impaired PtdCho synthesis. Citicoline significantly increased glutathione levels and attenuated release of ArAc and the loss of PtdCho, cardiolipin, and sphingomyelin following transient cerebral ischemia. These effects could be explained by an effect of citicoline on PLA(2). Based on these observations, a mechanism has been hypothesized. This Mini-Review summarizes recent experimental data on the effects of citicoline in cerebral ischemia and evaluates several factors that might have hindered efficacy of citicoline in stroke clinical trials in the United States. Clinical stroke trials of citicoline in Europe and Japan have demonstrated beneficial effects. U.S. trials shown only marginal effects, which might be due to the 24 hr time window, the dose and route of administration, and the stringency of the primary outcome parameters. Recent evaluation of U.S. clinical data suggests that reduction of infarct growth may be a more sensitive measure of the citicoline effect than improvement on the NIH Stroke Scale (NIHSS) by > or =7 points. The citicoline neuroprotective mechanism has not been clearly identified, and its potential in stroke treatment might still be fully recognized in the United States. The clinical efficacy of citicoline should be examined further in light of the recent phase III stroke clinical trials and experimental data for cerebral ischemia.
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, Clinical Science Center, University of Wisconsin, Madison, Wisconsin 53792-3232, USA.
| | | |
Collapse
|
39
|
Amenta F, Di Tullio MA, Tomassoni D. The cholinergic approach for the treatment of vascular dementia: evidence from pre-clinical and clinical studies. Clin Exp Hypertens 2002; 24:697-713. [PMID: 12450245 DOI: 10.1081/ceh-120015346] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The involvement of an impaired cholinergic neurotransmission in the pathophysiology of cognitive impairment occurring in vascular dementia (VaD), as well as the possibility of treating it by stimulating cholinergic neurotransmission was reviewed. Pre-clinical data suggest that similarly as documented in dementia disorders of neurodegenerative origin, a cholinergic deficit is involved in the pathophysiology of cognitive impairment of vascular origin. In the past, clinical trials have evaluated cholinergic precursors such as lecithin, citicoline and choline alphoscerate. More recent investigations have assessed acetylcholinesterase (AChE) and cholinesterase (ChE) inhibitors such as donepezil, rivastigmine and galantamine. In general, treatment with citicoline, choline alphoscerate, as well as with AChE and ChE inhibitors induced favourable effects on cognitive function in dementia disorders of vascular origin. These positive results should be regarded with caution due to the small number of patients included in controlled clinical trials using cholinergic precursors and to the limited number and sample size of trials with AChE and ChE inhibitors. Among compounds investigated, choline alphoscerate was well tolerated, improved cognitive function in VaD patients to a better extent than citicoline and to similar or better extent than other more recently developed drugs. This particular profile would justify reconsideration of the compound in larger controlled clinical trials for the treatment of cognitive dysfunction associated with dementia disorders of vascular origin.
Collapse
Affiliation(s)
- Francesco Amenta
- Clinical Research Unit, Department of Pharmacological Sciences and Experimental Medicine, University of Camerino, 62032 Camerino, Italy.
| | | | | |
Collapse
|
40
|
Shuaib A, Yang Y, Nakada MT, Li Q, Yang T. Glycoprotein IIb/IIIa antagonist, murine 7E3 F(ab') 2, and tissue plasminogen activator in focal ischemia: evaluation of efficacy and risk of hemorrhage with combination therapy. J Cereb Blood Flow Metab 2002; 22:215-22. [PMID: 11823719 DOI: 10.1097/00004647-200202000-00009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tissue hypoperfusion during cerebral ischemia results from occlusion of large and small vessels. Combination treatment strategies using fibrinolytics to thrombolyse an embolic clot and antiplatelet agents to prevent reocclusion and the formation of new platelet thrombi in the microcirculation may offer advantages over single-agent therapy. The authors report on the effects of tissue plasminogen activator (rt-PA), a glycoprotein (GP) IIb/IIIa receptor antagonist, 7E3 F(ab') 2, or a combination of the two agents in a focal embolic model of cerebral ischemia in Wistar rats. Focal ischemia was produced by introducing an autologous thrombus into the right side middle cerebral artery. Forty-six male Wistar rats were randomly divided into 6 groups: control (n = 8), 7E3 F(ab') 2 (n = 9, 6 mg/kg), rt-PA (n = 9, 10 mg/kg), rt-PA (n = 6, 20 mg/kg), and 7E3 F(ab') 2 with either 10 mg/kg (n = 10) (low-dose combination) or 20 mg/kg (n = 6) (high-dose combination) rt-PA. Evaluation of neurobehavioral scores, cerebral angiography, bleeding time, and measurement of brain infarction volume were used to determine efficacy. All actively treated groups showed a significant reduction in the infarct volume. Animals treated with 7E3 F(ab') 2 showed reduced infarction volumes (24.0 +/- 5.1%) compared with controls (42.43 +/- 5.6%, P < 0.02). Treatment with rt-PA significantly reduced infarction volume (20.7 +/- 3.3, = 0.01) at 10 mg/kg and at 20 mg/kg (19.5 +/- 8.2%, P < 0.05). Compared with vehicle-treated animals, the low-dose combination (16.4 +/- 5.5, P < 0.003) and high-dose combination (23.7 +/- 6.2%, P < 0.05) showed significant reduction in infarction volume. Cerebral angiography revealed significantly better recanalization in the combination group (5/6 animals in the high dose and 4/6 in low dose) compared with animals treated with 7E3 F(ab') 2 (3/10) or rt-PA alone (2/6). Bleeding time significantly increased from 11.25 +/- 1.9 minutes in the control group to 17 +/- 3.1 minutes in the rt-PA group, 24.5 +/- 2.6 minutes in the 7E3 F(ab') 2 group, 25.7 +/- 3.1 minutes in the low-dose combination group, and 32.5 +/- 4.7 minutes in the high-dose combination group. The incidence of intercerebral hemorrhage was highest in the high-dose combination group (6 of 6 animals) and lowest in the single treatment with 7E3 F(ab') 2 alone (1 of 10 animals) ( P < 0.05). Our data show that murine 7E3 F(ab') 2 alone has therapeutic effects when used after cerebral ischemia. Although this study suggests that higher doses of thrombolytic combined with anti-GPIIb/IIIa therapy may increases the risk of intracranial hemorrhage, the data also support the notion that anti-GPIIb/IIIa agents can safely be combined with low doses of thrombolytic agent to produce significant attenuation of neuronal damage with no increase in the incidence of cerebral hemorrhage.
Collapse
Affiliation(s)
- Ashfaq Shuaib
- Acute Stroke Program, Neurology Division, University of Alberta Hospital, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
41
|
Sun MK, Xu H, Alkon DL. Pharmacological protection of synaptic function, spatial learning, and memory from transient hypoxia in rats. J Pharmacol Exp Ther 2002; 300:408-16. [PMID: 11805198 DOI: 10.1124/jpet.300.2.408] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia significantly reduced cholinergic theta activity in rat CA1 field and intracellular theta in the CA1 pyramidal cells, recorded in hippocampal slices. The hypoxic responses of the hippocampal CA1 pyramidal cells to a brief hypoxia consisted of a short period of "synaptic arrest", observed as an elimination of excitatory postsynaptic current under voltage clamp and recovered immediately as oxygenation was reinitiated. The hypoxic synaptic arrest was not associated with reduced postsynaptic responses of the pyramidal cells to externally applied L-glutamate, suggesting that the synaptic arrest might result from a presynaptic mechanism. The hypoxic synaptic arrest was abolished in the presence of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a specific adenosine A(1) receptor antagonist. Blocking adenosine A(1) receptors also eliminated effects of hypoxia on the hippocampal CA1 field theta activity and intracellular theta of the CA1 pyramidal cells. In behaving rats, brief hypoxia impaired their water maze performance in both the escape latency and probe tests. The impairment was prevented by intralateral cerebroventricular injections of DPCPX. These results suggest that hypoxia releases adenosine and produces an inhibition of synaptic transmission and intracellular signal cascade(s) involved in generation/maintenance of hippocampal CA1 theta activity. This protection of synaptic efficacy and spatial learning through adenosine A(1) receptor antagonism may represent an effective therapeutic strategy to eliminate functional interruption due to transient hypoxic episodes and/or chronic hypoxia secondary to compromise of respiratory function.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blânchette Rockefeller Neurosciences Institute, Rockville, Maryland 20850, USA.
| | | | | |
Collapse
|
42
|
Shapira S, Sapir M, Wengier A, Grauer E, Kadar T. Aging has a complex effect on a rat model of ischemic stroke. Brain Res 2002; 925:148-58. [PMID: 11792363 DOI: 10.1016/s0006-8993(01)03270-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Stroke in humans is usually associated with advanced age. Nevertheless, almost all animal models of ischemic stroke are based on young animals. The present study was designed to assess the effect of age on the development of ischemic injury in a model of focal brain ischemia in rats. Two age groups of Wistar rats were used: young adult (3 months) and old (24-26 months). Under halothane anesthesia, polyethylene microspheres (50 microm in diameter) were injected into the left common carotid artery following a temporary occlusion of the external carotid artery. Sham-operated rats underwent the same procedure but were injected with an identical volume (100 microl) of saline only. Rats of both experimental groups displayed neurological impairment after surgery. However, contrary to expectation, the young rats were more affected than the old rats. Young rats displayed an abrupt 30% decrement in neurological functions in the first week and then showed a partial functional recovery into a 12% decrement from the second week on. Old rats developed the neurological impairment gradually over a 2-week period (6.3% in the first week and 11% in the second week and thereafter). One month later, rats were tested in a water maze task. Again, performance was more impaired in the young ischemic rats than in the old rats. Histological evaluation revealed more extensive neurological damage in young ischemic as compared to old rats. Thus, although increased age has a critical effect on the evolution of the neurological impairment following focal brain ischemia and stroke, its effects in the rat model were more pronounced in the young animals.
Collapse
Affiliation(s)
- Shlomo Shapira
- Department of Pharmacology, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona, 74100, Israel.
| | | | | | | | | |
Collapse
|
43
|
Schüler OG, Plesnila N, Otto D, Baethmann AJ, Back T. Early thrombolysis inhibits peri-infarct depolarizations in embolic MCA occlusion. Neuroreport 2001; 12:3943-6. [PMID: 11742216 DOI: 10.1097/00001756-200112210-00018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Rats submitted to middle cerebral artery (MCA) clot embolism were treated with tissue plasminogen activator (TPA) 1.5 and 3.5 h post-occlusion. Reperfusion patterns were monitored by measuring cortical laser-Doppler flow; the direct current potential was measured to detect peri-infarct depolarizations (PID), a known mechanism of ischemic injury. TPA treatment induced reperfusion in 58% of treated animals that was delayed by 41 +/- 7 min (mean +/- s.e.m.) from treatment onset. The probability of reperfusion did not differ significantly between the two treatment groups. TPA treatment led to a 3-fold reduced frequency of PID if administered early or if successful reperfusion was observed (each p < 0.001). Early thrombolysis inhibits, but does not block, PID as an important mechanism of ischemic injury in embolic stroke.
Collapse
Affiliation(s)
- O G Schüler
- Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians-University, Marchioninistr. 15, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
44
|
Adibhatla RM, Hatcher JF, Dempsey RJ. Effects of citicoline on phospholipid and glutathione levels in transient cerebral ischemia. Stroke 2001; 32:2376-81. [PMID: 11588329 DOI: 10.1161/hs1001.096010] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Cytidine-5'-diphosphocholine (citicoline or CDP-choline) is an essential intermediate in the biosynthesis of phosphatidylcholine, an important component of the neural cell membrane. Citicoline provided significant neuroprotection after transient forebrain ischemia in gerbils. This study was undertaken to examine changes and effects of citicoline on phospholipids and glutathione synthesis after transient cerebral ischemia and reperfusion. METHODS Ten-minute transient forebrain ischemia was induced by bilateral carotid artery occlusion in male Mongolian gerbils with reperfusion up to 6 days. Citicoline (500 mg/kg IP in saline) was given to gerbils just after the end of ischemia, at 3-hour reperfusion, and daily thereafter until 1 day before euthanasia. Hippocampal lipids were extracted and analyzed by thin-layer and gas chromatography. Glutathione was measured by using an enzymatic recycling assay. Glutathione reductase activity was determined by measuring NADPH oxidation. RESULTS Significant decreases in phospholipids occurred at 1-day reperfusion. Citicoline significantly restored the phosphatidylcholine, sphingomyelin, and cardiolipin levels but did not affect phosphatidylinositol and phosphatidylserine at 1 day. The phospholipids returned to sham levels over days 2 to 6 and were unaffected by citicoline. Ceramide levels significantly increased by 3 and 6 days of reperfusion and were unaltered by citicoline. Ischemia resulted in significant decreases in glutathione and glutathione reductase activity over 3 days of reperfusion. Citicoline significantly increased total glutathione and glutathione reductase activity and decreased the glutathione oxidation ratio, an indicator of glutathione redox status. CONCLUSIONS Our data indicated that the effects of citicoline on phospholipids occurred primarily during the first day of reperfusion, with effects on glutathione being important over the 3-day reperfusion period.
Collapse
Affiliation(s)
- R M Adibhatla
- Department of Neurological Surgery, the Cardiovascular Research Center, University of Wisconsin, Madison, WI 53792-3232, USA.
| | | | | |
Collapse
|
45
|
Rao AM, Hatcher JF, Dempsey RJ. Does CDP-choline modulate phospholipase activities after transient forebrain ischemia? Brain Res 2001; 893:268-72. [PMID: 11223016 DOI: 10.1016/s0006-8993(00)03280-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ten min forebrain ischemia/1-day reperfusion resulted in significant decreases in total phosphatidylcholine (PtdCho), phosphatidylinositol (PtdIns), and cardiolipin in gerbil hippocampus. CDP-choline restored cardiolipin levels, arachidonic acid content of PtdCho, partially but significantly restored total PtdCho, and had no effect on PtdIns. These data suggest that CDP-choline prevented the activation of phospholipase A(2) (rather than inhibiting phospholipase A(2) activity) but did not affect activities of PtdCho-phospholipases C and/or D, or phosphoinositide-phospholipase C. CDP-choline also provided significant protection for hippocampal CA(1) neurons.
Collapse
Affiliation(s)
- A M Rao
- Department of Neurological Surgery, H4-330, Clinical Science Center, 600 Highland Avenue, University of Wisconsin-Madison, Madison, WI 53792-3232, USA.
| | | | | |
Collapse
|
46
|
Rao AM, Hatcher JF, Dempsey RJ. Lipid alterations in transient forebrain ischemia: possible new mechanisms of CDP-choline neuroprotection. J Neurochem 2000; 75:2528-35. [PMID: 11080206 DOI: 10.1046/j.1471-4159.2000.0752528.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously demonstrated that cytidine 5'-diphosphocholine (CDP-choline or citicoline) attenuated arachidonic acid (ArAc) release and provided significant protection for the vulnerable hippocampal CA(1) neurons of the cornu ammonis after transient forebrain ischemia of gerbil. ArAc is released by the activation of phospholipases and the alteration of phosphatidylcholine (PtdCho) synthesis. Released ArAc is metabolized by cyclooxygenases/lipoxygenases to form eicosanoids and reactive oxygen species (ROS). ROS contribute to neurotoxicity through generation of lipid peroxides and the cytotoxic byproducts 4-hydroxynonenal and acrolein. ArAc can also stimulate sphingomyelinase to produce ceramide, a potent pro-apoptotic agent. In the present study, we examined the changes and effect of CDP-choline on ceramide and phospholipids including PtdCho, phosphatidylethanolamine (PtdEtn), phosphatidylinositol (PtdIns), phosphatidylserine (PtdSer), sphingomyelin, and cardiolipin (an exclusive inner mitochondrial membrane lipid essential for electron transport) following ischemia/1-day reperfusion. Our studies indicated significant decreases in total PtdCho, PtdIns, PtdSer, sphingomyelin, and cardiolipin and loss of ArAc from PtdEtn in gerbil hippocampus after 10-min forebrain ischemia/1-day reperfusion. CDP-choline (500 mg/kg i.p. immediately after ischemia and at 3-h reperfusion) significantly restored the PtdCho, sphingomyelin, and cardiolipin levels as well as the ArAc content of PtdCho and PtdEtn but did not affect PtdIns and PtdSer. These data suggest multiple beneficial effects of CDP-choline: (1) stabilizing the cell membrane by restoring PtdCho and sphingomyelin (prominent components of outer cell membrane), (2) attenuating the release of ArAc and limiting its oxidative metabolism, and (3) restoring cardiolipin levels.
Collapse
Affiliation(s)
- A M Rao
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53792-3232, USA.
| | | | | |
Collapse
|