1
|
Chang G, Han J, Zuo J, Meng Y, Wang Q, Qiu S. The significance of neural electrophysiological and functional effects of cervical spinal ganglia and sympathetic ganglia in cervical vertigo. Neurol Res 2025:1-7. [PMID: 40197123 DOI: 10.1080/01616412.2024.2448631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
This study investigates the neural electrophysiological and functional effects of cervical spinal ganglia and sympathetic ganglia in cervical vertigo. Twenty-eight rabbits were randomized into superior cervical sympathetic ganglia (SCSG) group (n = 8), inferior cervical sympathetic ganglia (ICSG) group (n = 8) and control groups for both SCSG and ICSG (n = 6 each). Calcium indicator CaMPARI2 was injected into the ganglia. Four weeks later, both SCSG and ICSG groups underwent electrical stimulation followed by UV irradiation. Control groups did not receive electrical stimulation but were also injected with the calcium indicator and irradiated by UV. Additionally, 63 rabbits were randomized into three groups: cervical spinal ganglia stimulation (n = 21), paravertebral nerve blockage (n = 21), and simultaneous blockage of paravertebral nerve and cervical spinal ganglia (n = 21), all subjected to the same electrical stimulation protocol. Results indicated that calcium concentration in the cervical sympathetic ganglia after stimulation was significantly higher compared to the control group (P < 0.05). Blood flow changes in both vertebral artery and basilar artery were significant after electrical stimulation (P < 0.05). In the paravertebral nerve blockage group, significant changes in basilar artery blood flow were observed (P < 0.05), while no significant blood flow changes were noted in the simultaneous blockage group. Cervical spinal ganglia and sympathetic ganglia in the pathogenesis of cervical vertigoThese findings underscore the importance of neural electrophysiological and functional effects of cervical spinal ganglia and sympathetic ganglia in the pathogenesis of cervical vertigo.
Collapse
Affiliation(s)
- Gang Chang
- Spinal Surgery Department, The Forth people's Hospital of Jinan, Jinan, Shandong, P. R. China
| | - Jianlong Han
- Spinal Surgery Department, The Forth people's Hospital of Jinan, Jinan, Shandong, P. R. China
| | - Jinliang Zuo
- Spinal Surgery Department, The Forth people's Hospital of Jinan, Jinan, Shandong, P. R. China
| | - Yong Meng
- Department of Orthopaedics, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, P. R. China
| | - Qiang Wang
- Spinal Surgery Department, The Forth people's Hospital of Jinan, Jinan, Shandong, P. R. China
| | - Siqiang Qiu
- Spinal Surgery Department, The Forth people's Hospital of Jinan, Jinan, Shandong, P. R. China
| |
Collapse
|
2
|
Cooper AH, Nie AA, Hedden NS, Herzog H, Taylor BK. De novo expression of neuropeptide Y in sensory neurons does not contribute to peripheral neuropathic pain. THE JOURNAL OF PAIN 2025; 30:105385. [PMID: 40174733 DOI: 10.1016/j.jpain.2025.105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Nerve damage induces a robust de novo expression of the pain-modulatory peptide neuropeptide Y (NPY) in large-diameter primary afferent neurons that innervate the dorsal horn of the spinal cord and the dorsal column nuclei. To determine whether this functions to modulate peripheral neuropathic pain in male and female mice, we selectively deleted the Npy gene in neurons of the dorsal root ganglion (DRG), without disruption of its expression in brain or dorsal horn neurons. We then subjected sensory neuron-specific NPY deletion mutant mice (Pirt-NPY) and their wild-type controls to either sham surgery, spared sural nerve injury (SNI) or spared tibial nerve injury (tSNI). Conditional Npy deletion did not change the severity or duration of static mechanical, dynamic mechanical, or cold allodynia in SNI or tSNI models, nor ongoing neuropathic pain as assessed with conditioned place preference to gabapentin. When injected after the resolution of tSNI-induced mechanical hypersensitivity (a latent pain sensitization model of chronic neuropathic pain), the NPY Y1 receptor-specific antagonist BIBO3304 equally reinstated mechanical hypersensitivity in Pirt-NPY mice and their wildtype controls. We conclude that nerve injury-induced upregulation of NPY in sensory neurons does not cause mechanical or cold hypersensitivity or ongoing pain, and that tonic inhibitory control of neuropathic pain by NPY in the spinal cord is mediated by release from dorsal horn interneurons rather than sensory neurons. PERSPECTIVE: This article answers the long-standing question as to whether nerve injury-induced upregulation of NPY in primary afferent neurons modulates neuropathic pain. We report that sensory neuron-specific NPY knockout did not change pain-like behaviors. CNS interneurons rather than sensory neurons likely mediate the well-documented phenomenon of spinal NPY analgesia.
Collapse
Affiliation(s)
- A H Cooper
- Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - A A Nie
- Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - N S Hedden
- Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - H Herzog
- St Vincent's Centre for Applied Medical Research (AMR), Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - B K Taylor
- Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine.
| |
Collapse
|
3
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Chen L, Hu Y, Wang S, Cao K, Mai W, Sha W, Ma H, Zeng LH, Xu ZZ, Gao YJ, Duan S, Wang Y, Gao Z. mTOR-neuropeptide Y signaling sensitizes nociceptors to drive neuropathic pain. JCI Insight 2022; 7:159247. [PMID: 36194480 DOI: 10.1172/jci.insight.159247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/29/2022] [Indexed: 12/15/2022] Open
Abstract
Neuropathic pain is a refractory condition that involves de novo protein synthesis in the nociceptive pathway. The mTOR is a master regulator of protein translation; however, mechanisms underlying its role in neuropathic pain remain elusive. Using the spared nerve injury-induced neuropathic pain model, we found that mTOR was preferentially activated in large-diameter dorsal root ganglion (DRG) neurons and spinal microglia. However, selective ablation of mTOR in DRG neurons, rather than microglia, alleviated acute neuropathic pain in mice. We show that injury-induced mTOR activation promoted the transcriptional induction of neuropeptide Y (Npy), likely via signal transducer and activator of transcription 3 phosphorylation. NPY further acted primarily on Y2 receptors (Y2R) to enhance neuronal excitability. Peripheral replenishment of NPY reversed pain alleviation upon mTOR removal, whereas Y2R antagonists prevented pain restoration. Our findings reveal an unexpected link between mTOR and NPY/Y2R in promoting nociceptor sensitization and neuropathic pain.
Collapse
Affiliation(s)
- Lunhao Chen
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaling Hu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Siyuan Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelei Cao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Weihao Mai
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
| | - Weilin Sha
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Huan Ma
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Zhen-Zhong Xu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Shumin Duan
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yue Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Gao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Boakye PA, Tang SJ, Smith PA. Mediators of Neuropathic Pain; Focus on Spinal Microglia, CSF-1, BDNF, CCL21, TNF-α, Wnt Ligands, and Interleukin 1β. FRONTIERS IN PAIN RESEARCH 2021; 2:698157. [PMID: 35295524 PMCID: PMC8915739 DOI: 10.3389/fpain.2021.698157] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/14/2021] [Indexed: 01/04/2023] Open
Abstract
Intractable neuropathic pain is a frequent consequence of nerve injury or disease. When peripheral nerves are injured, damaged axons undergo Wallerian degeneration. Schwann cells, mast cells, fibroblasts, keratinocytes and epithelial cells are activated leading to the generation of an "inflammatory soup" containing cytokines, chemokines and growth factors. These primary mediators sensitize sensory nerve endings, attract macrophages, neutrophils and lymphocytes, alter gene expression, promote post-translational modification of proteins, and alter ion channel function in primary afferent neurons. This leads to increased excitability and spontaneous activity and the generation of secondary mediators including colony stimulating factor 1 (CSF-1), chemokine C-C motif ligand 21 (CCL-21), Wnt3a, and Wnt5a. Release of these mediators from primary afferent neurons alters the properties of spinal microglial cells causing them to release tertiary mediators, in many situations via ATP-dependent mechanisms. Tertiary mediators such as BDNF, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and other Wnt ligands facilitate the generation and transmission of nociceptive information by increasing excitatory glutamatergic transmission and attenuating inhibitory GABA and glycinergic transmission in the spinal dorsal horn. This review focusses on activation of microglia by secondary mediators, release of tertiary mediators from microglia and a description of their actions in the spinal dorsal horn. Attention is drawn to the substantial differences in the precise roles of various mediators in males compared to females. At least 25 different mediators have been identified but the similarity of their actions at sensory nerve endings, in the dorsal root ganglia and in the spinal cord means there is considerable redundancy in the available mechanisms. Despite this, behavioral studies show that interruption of the actions of any single mediator can relieve signs of pain in experimental animals. We draw attention this paradox. It is difficult to explain how inactivation of one mediator can relieve pain when so many parallel pathways are available.
Collapse
Affiliation(s)
- Paul A. Boakye
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Shao-Jun Tang
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Podlasz P, Wasowicz K. Effect of partial hysterectomy on the neurons of the paracervical ganglion (PCG) of the pig. PLoS One 2021; 16:e0245974. [PMID: 33497400 PMCID: PMC7837480 DOI: 10.1371/journal.pone.0245974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Autonomic neurons innervating uterine horn is probably the only nerve cell population capable of periodical physiological degeneration and regeneration. One of the main sources of innervation of the uterus is paracervical ganglion (PCG). PCG is a unique structure of the autonomic nervous system. It contains components of both the sympathetic and parasympathetic nervous system. The present study examines the response of neurons of PCG innervating uterine horn to axotomy caused by partial hysterectomy in the domestic pig animal model. The study was performed using a neuronal retrograde tracing and double immunofluorescent staining for tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DβH), choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), neuronal nictric oxide synthase (nNOS), galanin, neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), somatostatin and substance P (SP). Our study showed that virtually all neurons of the porcine PCG innervating uterine horn are adrenergic and we did not confirm that PCG is the source of cholinergic fibers innervating uterine horn of the pig. After axotomy there was a decrease in expression of catecholamine-synthesizing enzymes (TH, DβH) and a strong increase in the galanin expression. The increase of the number of NPY-IR neurons in the ganglia after axotomy was observed. There were no changes in the expression of other studied substances in the PCG neurons innervating the uterine horn, what was often found in rodents studies. This indicates that neurons can respond to damage in a species-specific way.
Collapse
Affiliation(s)
- Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- * E-mail:
| | - Krzysztof Wasowicz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
7
|
Dombrowski ME, Olsen AS, Vaudreuil N, Couch BK, Dong Q, Tucci M, Lee JY, Vo NV, Sowa G. Rabbit Annulus Fibrosus Cells Express Neuropeptide Y, Which Is Influenced by Mechanical and Inflammatory Stress. Neurospine 2020; 17:69-76. [PMID: 32252156 PMCID: PMC7136102 DOI: 10.14245/ns.2040046.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Rabbit annulus fibrosus (AF) cells were exposed to isolated or combined mechanical and inflammatory stress to examine the expression of neuropeptide Y (NPY). This study aims to explore the ability of AF cells to produce NPY in response to mechanical and inflammatory stress.
Methods Lumbar AF cells of 6- to 8-month-old female New Zealand white rabbits were harvested and exposed to combinations of inflammatory (interleukin-1β) and mechanical (6% or 18%) tensile stress using the Flexcell System. NPY concentrations were measured in the media via enzyme-linked immunosorbent assay. The presence of NPY receptor-type 1 (NPY-1R) in AF cells of rabbit intervertebral discs was also analyzed via immunohistochemistry and immunofluorescence.
Results Exposure to inflammatory stimuli showed a significant increase in the amount of NPY expression compared to control AF cells. Mechanical strain alone did not result in a significant difference in NPY expression. While combined inflammatory and mechanical stress did not demonstrate an increase in NPY expression at low (6%) levels of strain, at 18% strain, there was a large—though not statistically significant—increase in NPY expression under conditions of inflammatory stress. Lastly, immunofluorescence and immunohistochemistry of AF cells and tissue, respectively, demonstrated the presence of NPY-1R.
Conclusion These findings demonstrate that rabbit AF cells are capable of expressing NPY, and expression is enhanced in response to inflammatory and mechanical stress. Because both inflammatory and mechanical stress contribute to intervertebral disc degeneration (IDD), this observation raises the potential of a mechanistic link between low back pain and IDD.
Collapse
Affiliation(s)
- Malcolm E Dombrowski
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam S Olsen
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas Vaudreuil
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brandon K Couch
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qing Dong
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michelle Tucci
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Joon Y Lee
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nam V Vo
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gwendolyn Sowa
- Department of Orthopaedic Surgery, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Lyu C, Xia S, Lyu GW, Dun XP, Zheng K, Su J, Barde S, Xu ZQD, Hökfelt T, Shi TJS. A preliminary study on DRGs and spinal cord of a galanin receptor 2-EGFP transgenic mouse. Neuropeptides 2020; 79:102000. [PMID: 31864679 DOI: 10.1016/j.npep.2019.102000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 01/31/2023]
Abstract
The neuropeptide galanin functions via three G-protein coupled receptors, Gal1-3-R. Both Gal1-R and 2-R are involved in pain signaling at the spinal level. Here a Gal2-R-EGFP transgenic (TG) mouse was generated and studied in pain tests and by characterizing Gal2-R expression in both sensory ganglia and spinal cord. After peripheral spared nerve injury, mechanical allodynia developed and was ipsilaterally similar between wild type (WT) and TG mice. A Gal2-R-EGFP-positive signal was primarily observed in small and medium-sized dorsal root ganglion (DRG) neurons and in spinal interneurons and processes. No significant difference in size distribution of DRG neuronal profiles was found between TG and WT mice. Both percentage and fluorescence intensity of Gal2-R-EGFP-positive neuronal profiles were overall significantly upregulated in ipsilateral DRGs as compared to contralateral DRGs. There was an ipsilateral reduction in substance P-positive and calcitonin gene-related peptide (CGRP)-positive neuronal profiles, and this reduction was more pronounced in TG as compared to WT mice. Moreover, Gal2-R-EGFP partly co-localized with three pain-related neuropeptides, CGRP, neuropeptide Y and galanin, both in intact and injured DRGs, and with galanin also in local neurons in the superficial dorsal horn. Taken together, the present results provide novel information on the localization and phenotype of DRG and spinal neurons expressing the second galanin receptor, Gal2-R, and on phenotypic changes following peripheral nerve injury. Gal2-R may also be involved in autoreceptor signaling.
Collapse
Affiliation(s)
- Chuang Lyu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, PR China.
| | - Sheng Xia
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Gong-Wei Lyu
- Department of Neurology, 1st Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Xin-Peng Dun
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Kang Zheng
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Jie Su
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Zhi-Qing David Xu
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Neurobiology, Capital Medical University, Beijing 100069, PR China
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Tie-Jun Sten Shi
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway.
| |
Collapse
|
9
|
Sandercock DA, Barnett MW, Coe JE, Downing AC, Nirmal AJ, Di Giminiani P, Edwards SA, Freeman TC. Transcriptomics Analysis of Porcine Caudal Dorsal Root Ganglia in Tail Amputated Pigs Shows Long-Term Effects on Many Pain-Associated Genes. Front Vet Sci 2019; 6:314. [PMID: 31620455 PMCID: PMC6760028 DOI: 10.3389/fvets.2019.00314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/03/2019] [Indexed: 12/24/2022] Open
Abstract
Tail amputation by tail docking or as an extreme consequence of tail biting in commercial pig production potentially has serious implications for animal welfare. Tail amputation causes peripheral nerve injury that might be associated with lasting chronic pain. The aim of this study was to investigate the short- and long-term effects of tail amputation in pigs on caudal DRG gene expression at different stages of development, particularly in relation to genes associated with nociception and pain. Microarrays were used to analyse whole DRG transcriptomes from tail amputated and sham-treated pigs 1, 8, and 16 weeks following tail treatment at either 3 or 63 days of age (8 pigs/treatment/age/time after treatment; n = 96). Tail amputation induced marked changes in gene expression (up and down) compared to sham-treated intact controls for all treatment ages and time points after tail treatment. Sustained changes in gene expression in tail amputated pigs were still evident 4 months after tail injury. Gene correlation network analysis revealed two co-expression clusters associated with amputation: Cluster A (759 down-regulated) and Cluster B (273 up-regulated) genes. Gene ontology (GO) enrichment analysis identified 124 genes in Cluster A and 61 genes in Cluster B associated with both “inflammatory pain” and “neuropathic pain.” In Cluster A, gene family members of ion channels e.g., voltage-gated potassium channels (VGPC) and receptors e.g., GABA receptors, were significantly down-regulated compared to shams, both of which are linked to increased peripheral nerve excitability after axotomy. Up-regulated gene families in Cluster B were linked to transcriptional regulation, inflammation, tissue remodeling, and regulatory neuropeptide activity. These findings, demonstrate that tail amputation causes sustained transcriptomic expression changes in caudal DRG cells involved in inflammatory and neuropathic pain pathways.
Collapse
Affiliation(s)
- Dale A Sandercock
- Animal and Veterinary Science Research Group, Scotland's Rural College, Roslin Institute Building, Edinburgh, United Kingdom
| | - Mark W Barnett
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer E Coe
- Animal and Veterinary Science Research Group, Scotland's Rural College, Roslin Institute Building, Edinburgh, United Kingdom
| | - Alison C Downing
- Edinburgh Genomics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ajit J Nirmal
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Pierpaolo Di Giminiani
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sandra A Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Rytel L, Snarska A, Gonkowski S, Wojtkiewicz J, Szenci O, Sobiech P. Identification of neuropeptide y in superior cervical ganglion neurons that project to the oesophagus - A combined immunohistochemical labelling and retrograde tracing study in pigs. Acta Vet Hung 2019; 67:98-105. [PMID: 30922095 DOI: 10.1556/004.2019.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuropeptide Y (NPY) is a neuronal active substance taking part in the regulation of gastrointestinal (GI) tract activity. This study used retrograde neuronal tracing and immunofluorescence methods to analyse NPY-positive neurons located in superior cervical ganglion and supplying the cervical oesophagus in the pig. The presence of NPY was observed in 30% of all neurons supplying the part of oesophagus studied. Probably the number of Fast Blue (FB) positive cells depends on the area of the wall injected with FB and the fragment of oesophagus studied. Therefore, the obtained results indicate that the described peptide is an important factor in the extrinsic innervation of this part of the GI tract.
Collapse
Affiliation(s)
- Liliana Rytel
- 1 Division of Internal Disease with Clinic, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-719 Olsztyn, Poland
| | - Anna Snarska
- 1 Division of Internal Disease with Clinic, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-719 Olsztyn, Poland
| | - Slawomir Gonkowski
- 2 Division of Clinical Physiology, University of Warmia and Mazury in Olsztyn, Poland
| | - Joanna Wojtkiewicz
- 3 Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ottó Szenci
- 4 MTA-SZIE Large Animal Clinical Research Group, Üllő, Hungary
| | - Przemyslaw Sobiech
- 1 Division of Internal Disease with Clinic, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-719 Olsztyn, Poland
| |
Collapse
|
11
|
Diaz-delCastillo M, Woldbye DP, Heegaard AM. Neuropeptide Y and its Involvement in Chronic Pain. Neuroscience 2018; 387:162-169. [DOI: 10.1016/j.neuroscience.2017.08.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022]
|
12
|
Visceral hyperalgesia caused by peptide YY deletion and Y2 receptor antagonism. Sci Rep 2017; 7:40968. [PMID: 28106168 PMCID: PMC5247702 DOI: 10.1038/srep40968] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/13/2016] [Indexed: 12/18/2022] Open
Abstract
Altered levels of colonic peptide YY (PYY) have been reported in patients suffering from functional and inflammatory bowel disorders. While the involvement of neuropeptide Y (NPY) and Y receptors in the regulation of nociception is well established, the physiological role of PYY in somatic and visceral pain is poorly understood. In this work, the role of PYY in pain sensitivity was evaluated using PYY knockout (PYY(−/−)) mice and Y2 receptor ligands. PYY(−/−) mice were more sensitive to somatic thermal pain compared to wild type (WT) mice. Visceral pain was assessed by evaluating pain-related behaviors, mouse grimace scale (MGS) and referred hyperalgesia after intrarectal administration of allyl isothiocyanate (AITC, 1 or 2%) or its vehicle, peanut oil. The pain-related behaviors induced by AITC were significantly exaggerated by PYY deletion, whereas the MGS readout and the referred hyperalgesia were not significantly affected. The Y2 receptor antagonist, BII0246, increased pain-related behaviors in response to intrarectal AITC compared to vehicle treatment while the Y2 receptor agonist, PYY(3–36), did not have a significant effect. These results indicate that endogenous PYY has a hypoalgesic effect on somatic thermal and visceral chemical pain. The effect on visceral pain seems to be mediated by peripheral Y2 receptors.
Collapse
|
13
|
Santana N, Artigas F. Expression of Serotonin2CReceptors in Pyramidal and GABAergic Neurons of Rat Prefrontal Cortex: A Comparison with Striatum. Cereb Cortex 2016; 27:3125-3139. [DOI: 10.1093/cercor/bhw148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
14
|
Alvarez-Salas E, Mengod G, García-Luna C, Soberanes-Chávez P, Matamoros-Trejo G, de Gortari P. Mct8 and trh co-expression throughout the hypothalamic paraventricular nucleus is modified by dehydration-induced anorexia in rats. Neuropeptides 2016; 56:33-40. [PMID: 26626087 DOI: 10.1016/j.npep.2015.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 10/21/2015] [Accepted: 11/08/2015] [Indexed: 11/30/2022]
Abstract
Thyrotropin-releasing hormone (TRH) is a neuropeptide with endocrine and neuromodulatory effects. TRH from the paraventricular hypothalamic nucleus (PVN) participates in the control of energy homeostasis; as a neuromodulator TRH has anorexigenic effects. Negative energy balance decreases PVN TRH expression and TSH concentration; in contrast, a particular model of anorexia (dehydration) induces in rats a paradoxical increase in TRH expression in hypophysiotropic cells from caudal PVN and high TSH serum levels, despite their apparent hypothalamic hyperthyroidism and low body weight. We compared here the mRNA co-expression pattern of one of the brain thyroid hormones' transporters, the monocarboxylate transporter-8 (MCT8) with that of TRH in PVN subdivisions of dehydration-induced anorexic (DIA) and control rats. Our aim was to identify whether a low MCT8 expression in anorexic rats could contribute to their high TRH mRNA content.We registered daily food intake and body weight of 7-day DIA and control rats and analyzed TRH and MCT8 mRNA co-expression throughout the PVN by double in situ hybridization assays. We found that DIA rats showed increased number of TRHergic cells in caudal PVN, as well as a decreased percentage of TRH-expressing neurons that co-expressed MCT8 mRNA signal. Results suggest that the reduced proportion of double TRH/MCT8 expressing cells may be limiting the entry of hypothalamic triiodothyronine to the greater number of TRH-expressing neurons from caudal PVN and be in part responsible for the high TRH expression in anorexia rats and for the lack of adaptation of their hypothalamic-pituitary-thyroid axis to their low food intake.
Collapse
Affiliation(s)
- Elena Alvarez-Salas
- Molecular Neurophysiology, Department of Neuroscience Research, National Institute of Psychiatry Ramón de la Fuente Muñiz (INPRFM), México; School of Dietetics and Nutrition, ISSSTE, Callejón Vía San Fernando 12, México City, Mexico.
| | - Guadalupe Mengod
- Department of Neurochemistry and Neuropharmachology, Institut d'Investigacions, Biomèdiques de Barcelona, CSIC-IDIBAPS, CIBERNED, c/Rosselló 161, 6a, E-08036 Barcelona, Spain.
| | - Cinthia García-Luna
- Molecular Neurophysiology, Department of Neuroscience Research, National Institute of Psychiatry Ramón de la Fuente Muñiz (INPRFM), México.
| | - Paulina Soberanes-Chávez
- Molecular Neurophysiology, Department of Neuroscience Research, National Institute of Psychiatry Ramón de la Fuente Muñiz (INPRFM), México.
| | - Gilberto Matamoros-Trejo
- Molecular Neurophysiology, Department of Neuroscience Research, National Institute of Psychiatry Ramón de la Fuente Muñiz (INPRFM), México.
| | - Patricia de Gortari
- Molecular Neurophysiology, Department of Neuroscience Research, National Institute of Psychiatry Ramón de la Fuente Muñiz (INPRFM), México.
| |
Collapse
|
15
|
Zaky AZ, Moftah MZ. Neurogenesis and growth factors expression after complete spinal cord transection in Pleurodeles waltlii. Front Cell Neurosci 2015; 8:458. [PMID: 25628538 PMCID: PMC4292736 DOI: 10.3389/fncel.2014.00458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/16/2014] [Indexed: 01/24/2023] Open
Abstract
Following spinal lesion, connections between the supra-spinal centers and spinal neuronal networks can be disturbed, which causes the deterioration or even the complete absence of sublesional locomotor activity. In mammals, possibilities of locomotion restoration are much reduced since descending tracts either have very poor regenerative ability or do not regenerate at all. However, in lower vertebrates, there is spontaneous locomotion recuperation after complete spinal cord transection at the mid-trunk level. This phenomenon depends on a translesional descending axon re-growth originating from the brainstem. On the other hand, cellular and molecular mechanisms underlying spinal cord regeneration and in parallel, locomotion restoration of the animal, are not well known. Fibroblast growth factor 2 (FGF-2) plays an important role in different processes such as neural induction, neuronal progenitor proliferation and their differentiation. Studies had shown an over expression of this growth factor after tail amputation. Nestin, a protein specific for intermediate filaments, is considered an early marker for neuronal precursors. It has been recently shown that its expression increases after tail transection in urodeles. Using this marker and western blots, our results show that the number of FGF-2 and FGFR2 mRNAs increases and is correlated with an increase in neurogenesis especially in the central canal lining cells immediately after lesion. This study also confirms that spinal cord re-growth through the lesion site initially follows a rostrocaudal direction. In addition to its role known in neuronal differentiation, FGF-2 could be implicated in the differentiation of ependymal cells into neuronal progenitors.
Collapse
Affiliation(s)
- Amira Z Zaky
- Biochemistry Department, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Marie Z Moftah
- Zoology Department, Faculty of Science, Alexandria University Alexandria, Egypt
| |
Collapse
|
16
|
Isensee J, Wenzel C, Buschow R, Weissmann R, Kuss AW, Hucho T. Subgroup-elimination transcriptomics identifies signaling proteins that define subclasses of TRPV1-positive neurons and a novel paracrine circuit. PLoS One 2014; 9:e115731. [PMID: 25551770 PMCID: PMC4281118 DOI: 10.1371/journal.pone.0115731] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/29/2014] [Indexed: 12/24/2022] Open
Abstract
Normal and painful stimuli are detected by specialized subgroups of peripheral sensory neurons. The understanding of the functional differences of each neuronal subgroup would be strongly enhanced by knowledge of the respective subgroup transcriptome. The separation of the subgroup of interest, however, has proven challenging as they can hardly be enriched. Instead of enriching, we now rapidly eliminated the subgroup of neurons expressing the heat-gated cation channel TRPV1 from dissociated rat sensory ganglia. Elimination was accomplished by brief treatment with TRPV1 agonists followed by the removal of compromised TRPV1(+) neurons using density centrifugation. By differential microarray and sequencing (RNA-Seq) based expression profiling we compared the transcriptome of all cells within sensory ganglia versus the same cells lacking TRPV1 expressing neurons, which revealed 240 differentially expressed genes (adj. p<0.05, fold-change>1.5). Corroborating the specificity of the approach, many of these genes have been reported to be involved in noxious heat or pain sensitization. Beyond the expected enrichment of ion channels, we found the TRPV1 transcriptome to be enriched for GPCRs and other signaling proteins involved in adenosine, calcium, and phosphatidylinositol signaling. Quantitative population analysis using a recent High Content Screening (HCS) microscopy approach identified substantial heterogeneity of expressed target proteins even within TRPV1-positive neurons. Signaling components defined distinct further subgroups within the population of TRPV1-positive neurons. Analysis of one such signaling system showed that the pain sensitizing prostaglandin PGD2 activates DP1 receptors expressed predominantly on TRPV1(+) neurons. In contrast, we found the PGD2 producing prostaglandin D synthase to be expressed exclusively in myelinated large-diameter neurons lacking TRPV1, which suggests a novel paracrine neuron-neuron communication. Thus, subgroup analysis based on the elimination rather than enrichment of the subgroup of interest revealed proteins that define subclasses of TRPV1-positive neurons and suggests a novel paracrine circuit.
Collapse
Affiliation(s)
- Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Cologne, Germany
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail:
| | - Carsten Wenzel
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Rene Buschow
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Robert Weissmann
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Andreas W. Kuss
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Cologne, Germany
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
17
|
Tsuboi Y, Honda K, Bae YC, Shinoda M, Kondo M, Katagiri A, Echizenya S, Kamakura S, Lee J, Iwata K. Morphological and functional changes in regenerated primary afferent fibres following mental and inferior alveolar nerve transection. Eur J Pain 2014; 19:1258-66. [PMID: 25523341 DOI: 10.1002/ejp.650] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND It is important to know the mechanisms underlying pain abnormalities associated with inferior alveolar nerve (IAN) regeneration in order to develop the appropriate treatment for orofacial neuropathic pain patients. However, peripheral mechanisms underlying orofacial pain abnormalities following IAN regeneration are not fully understood. METHODS Head withdrawal threshold (HWT), jaw opening reflex (JOR) thresholds, single-fibre recordings of the regenerated mental nerve (MN) fibres, calcitonin gene-related peptide (CGRP), isolectin B4 (IB4), peripherin, neurofilament-200 (NF-200) and transient receptor potential vanilloid 1 (TRPV1) expression in trigeminal ganglion (TG) cells, and electron microscopic (EM) observations of the regenerated MN fibres were studied in MN- and IAN-transected (M-IANX) rats. RESULTS HWT to mechanical or heat stimulation of the mental skin was significantly lower in M-IANX rats compared with sham rats. Mean conduction velocity of action potentials recorded from MN fibres (n = 124) was significantly slower in M-IANX rats compared with sham rats. The percentage of Fluoro-Gold (FG)-labelled CGRP-, peripherin- or TRPV1-immunoreactive (IR) cells was significantly larger in M-IANX rats compared with that of sham rats, whereas that of FG-labelled IB4- and NF-200-IR cells was significantly smaller in M-IANX rats compared with sham rats. Large-sized myelinated nerve fibres were rarely observed in M-IANX rats, whereas large-sized unmyelinated nerve fibres were frequently observed and were aggregated in the bundles at the distal portion of regenerated axons. CONCLUSIONS These findings suggest that the demyelination of MN fibres following regeneration may be involved in peripheral sensitization, resulting in the orofacial neuropathic pain associated with trigeminal nerve injury.
Collapse
Affiliation(s)
- Y Tsuboi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - K Honda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan.,Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, Tokyo, Japan
| | - Y C Bae
- Department of Oral Anatomy, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - M Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - M Kondo
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - A Katagiri
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - S Echizenya
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - S Kamakura
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - J Lee
- Department of Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - K Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
18
|
Goswami SC, Mishra SK, Maric D, Kaszas K, Gonnella GL, Clokie SJ, Kominsky HD, Gross JR, Keller JM, Mannes AJ, Hoon MA, Iadarola MJ. Molecular signatures of mouse TRPV1-lineage neurons revealed by RNA-Seq transcriptome analysis. THE JOURNAL OF PAIN 2014; 15:1338-1359. [PMID: 25281809 DOI: 10.1016/j.jpain.2014.09.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/10/2014] [Accepted: 09/19/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED Disorders of pain neural systems are frequently chronic and, when recalcitrant to treatment, can severely degrade the quality of life. The pain pathway begins with sensory neurons in dorsal root or trigeminal ganglia, and the neuronal subpopulations that express the transient receptor potential cation channel, subfamily V, member 1 (TRPV1) ion channel transduce sensations of painful heat and inflammation and play a fundamental role in clinical pain arising from cancer and arthritis. In the present study, we elucidate the complete transcriptomes of neurons from the TRPV1 lineage and a non-TRPV1 neuroglial population in sensory ganglia through the combined application of next-gen deep RNA-Seq, genetic neuronal labeling with fluorescence-activated cell sorting, or neuron-selective chemoablation. RNA-Seq accurately quantitates gene expression, a difficult parameter to determine with most other methods, especially for very low and very high expressed genes. Differentially expressed genes are present at every level of cellular function from the nucleus to the plasma membrane. We identified many ligand receptor pairs in the TRPV1 population, suggesting that autonomous presynaptic regulation may be a major regulatory mechanism in nociceptive neurons. The data define, in a quantitative, cell population-specific fashion, the molecular signature of a distinct and clinically important group of pain-sensing neurons and provide an overall framework for understanding the transcriptome of TRPV1 nociceptive neurons. PERSPECTIVE Next-gen RNA-Seq, combined with molecular genetics, provides a comprehensive and quantitative measurement of transcripts in TRPV1 lineage neurons and a contrasting transcriptome from non-TRPV1 neurons and cells. The transcriptome highlights previously unrecognized protein families, identifies multiple molecular circuits for excitatory or inhibitory autocrine and paracrine signaling, and suggests new combinatorial approaches to pain control.
Collapse
Affiliation(s)
- Samridhi C Goswami
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Santosh K Mishra
- Molecular Genetics Unit, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, Bethesda, Maryland
| | - Dragan Maric
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Krisztian Kaszas
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Gian Luigi Gonnella
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Samuel J Clokie
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Hal D Kominsky
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jacklyn R Gross
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jason M Keller
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Andrew J Mannes
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Mark A Hoon
- Molecular Genetics Unit, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, Bethesda, Maryland
| | - Michael J Iadarola
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
19
|
Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations. Brain Struct Funct 2014; 220:3413-34. [DOI: 10.1007/s00429-014-0864-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023]
|
20
|
VGLUTs in Peripheral Neurons and the Spinal Cord: Time for a Review. ISRN NEUROLOGY 2013; 2013:829753. [PMID: 24349795 PMCID: PMC3856137 DOI: 10.1155/2013/829753] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/25/2013] [Indexed: 02/07/2023]
Abstract
Vesicular glutamate transporters (VGLUTs) are key molecules for the incorporation of glutamate in synaptic vesicles across the nervous system, and since their discovery in the early 1990s, research on these transporters has been intense and productive. This review will focus on several aspects of VGLUTs research on neurons in the periphery and the spinal cord. Firstly, it will begin with a historical account on the evolution of the morphological analysis of glutamatergic systems and the pivotal role played by the discovery of VGLUTs. Secondly, and in order to provide an appropriate framework, there will be a synthetic description of the neuroanatomy and neurochemistry of peripheral neurons and the spinal cord. This will be followed by a succinct description of the current knowledge on the expression of VGLUTs in peripheral sensory and autonomic neurons and neurons in the spinal cord. Finally, this review will address the modulation of VGLUTs expression after nerve and tissue insult, their physiological relevance in relation to sensation, pain, and neuroprotection, and their potential pharmacological usefulness.
Collapse
|
21
|
Chéret J, Lebonvallet N, Carré JL, Misery L, Le Gall-Ianotto C. Role of neuropeptides, neurotrophins, and neurohormones in skin wound healing. Wound Repair Regen 2013; 21:772-88. [PMID: 24134750 DOI: 10.1111/wrr.12101] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 07/01/2013] [Indexed: 12/01/2022]
Abstract
Due to the close interactions between the skin and peripheral nervous system, there is increasing evidence that the cutaneous innervation is an important modulator of the normal wound healing process. The communication between sensory neurons and skin cells involves a variety of molecules (neuropeptides, neurohormones, and neurotrophins) and their specific receptors expressed by both neuronal and nonneuronal skin cells. It is well established that neurotransmitters and nerve growth factors released in skin have immunoregulatory roles and can exert mitogenic actions; they could also influence the functions of the different skin cell types during the wound healing process.
Collapse
Affiliation(s)
- Jérémy Chéret
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France
| | | | | | | | | |
Collapse
|
22
|
Expression of α(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors. Int J Neuropsychopharmacol 2013. [PMID: 23195622 DOI: 10.1017/s1461145712001083] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The prefrontal cortex (PFC) is involved in behavioural control and cognitive processes that are altered in schizophrenia. The brainstem monoaminergic systems control PFC function, yet the cells/networks involved are not fully known. Serotonin (5-HT) and norepinephrine (NE) increase PFC neuronal activity through the activation of α(1)-adrenergic receptors (α(1)ARs) and 5-HT(2A) receptors (5-HT(2A)Rs), respectively. Neurochemical and behavioural interactions between these receptors have been reported. Further, classical and atypical antipsychotic drugs share nm in vitro affinity for α(1)ARs while having preferential affinity for D(2) and 5-HT(2A)Rs, respectively. Using double in situ hybridization we examined the cellular expression of α(1)ARs in pyramidal (vGluT1-positive) and GABAergic (GAD(65/67)-positive) neurons in rat PFC and their co-localization with 5-HT(2A)Rs. α(1)ARs are expressed by a high proportion of pyramidal (59-85%) and GABAergic (52-79%) neurons. The expression in pyramidal neurons exhibited a dorsoventral gradient, with a lower percentage of α(1)AR-positive neurons in infralimbic cortex compared to anterior cingulate and prelimbic cortex. The expression of α(1A), α(1B) and α(1D) adrenergic receptors was segregated in different layers and subdivisions. In all them there is a high co-expression with 5-HT(2A)Rs (∼80%). These observations indicate that NE controls the activity of most PFC pyramidal neurons via α(1)ARs, either directly or indirectly, via GABAergic interneurons. Antipsychotic drugs can thus modulate the activity of PFC via α(1)AR blockade. The high co-expression with 5-HT(2A)Rs indicates a convergence of excitatory serotonergic and noradrenergic inputs onto the same neuronal populations. Moreover, atypical antipsychotics may exert a more powerful control of PFC function through the simultaneous blockade of α(1)ARs and 5-HT(2A)Rs.
Collapse
|
23
|
Neuropeptide Y is analgesic in rats after plantar incision. Eur J Pharmacol 2012; 698:206-12. [PMID: 23123350 DOI: 10.1016/j.ejphar.2012.10.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/16/2012] [Accepted: 10/23/2012] [Indexed: 11/22/2022]
Abstract
Previous work has demonstrated that neuropeptide tyrosine (NPY), Y(1) receptor and Y(2) receptor are critical in modulation of pain after nerve injury. We hypothesized that NPY was important for nociception after surgical incision. As a model of postoperative pain, rats underwent a plantar incision in one hindpaw. Western blots were used to quantify changes in protein expression of NPY, Y(1) receptor and Y(2) receptor after incision in skin, muscle, and dorsal root ganglion (DRG). Pain-related behaviors were tested after incision in rats treated with intrathecal NPY, Y(1) receptor antagonist (BIBO3304--Chemical Name: N-[(1R)-1-[[[[4-[[(Aminocarbonyl)amino]methyl]phenyl]methyl]amino]carbonyl]-4-[(aminoiminomethyl)amino]butyl]-α-phenyl-benzeneacetamide ditrifluoroacetate), Y(2) receptor antagonist (BIIE0246--Chemical Name: N-[(1S)-4-[(Aminoiminomethyl)amino]-1-[[[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]amino]carbonyl]butyl]-1-[2-[4-(6,11-dihydro-6-oxo-5H-dibenz[b,e]azepin-11-yl)-1-piperazinyl]-2-oxoethyl]-cyclopentaneacetamide), combined NPY+antagonists, morphine, or vehicle. Pain behaviors were tested after incision in rats treated with locally applied intraplantar injections of NPY, Y(1) receptor and Y(2) receptor antagonists or vehicle. NPY protein expression was significantly downregulated in muscle for two days after incision. In contrast, Y(1) receptor and Y(2) receptor protein expression was upregulated in both skin and muscle. A single intrathecal injection of NPY reduced cumulative guarding pain scores, as did morphine. The intrathecal administration of Y(2) receptor antagonist also reduced pain scores; findings that were not observed when drugs were administered locally. Intrathecal Y(2) receptor antagonists and NPY improved mechanical threshold and heat withdrawal latency 2h after incision. Intrathecal administration of NPY and/or central blockade of Y(2) receptor attenuated pain behaviors early after incision (postoperative day (POD) 1-2). Y(1) receptor antagonist administration blocked the anti-hyperalgesic effect of NPY. Together these data suggest a role for spinal NPY in postoperative pain.
Collapse
|
24
|
Abstract
Here we used an array-based differential screen to uncover the expression of the neuropeptide neuromedin B (NMB) in the trigeminal ganglia of mice. Double-labeling experiments reveal NMB is expressed in a subset of sensory neurons that colabel with calcitonin gene-related peptide and TRPV1 suggestive of a role for NMB in nociception. Indeed, administration of NMB antagonist greatly attenuates edema and nerve sensitization following stimulation of peripheral nerves with mustard oil, demonstrating that NMB contributes to neurogenic inflammation. Moreover, direct injection of NMB causes local swelling and nociceptive sensitization. Interestingly, we also find that the receptor for NMB is expressed in interneurons in the superficial layers of the dorsal horn. We used NMB-saporin to specifically eliminate NMBR-expressing neurons and determined they are required in responses to noxious heat, but not for reaction to mechanical and pruritic stimuli. Thus, NMB may be a neurotransmitter that is selectively involved in the perception of thermal stimuli.
Collapse
|
25
|
Alvarez-Salas E, Aceves C, Anguiano B, Uribe RM, García-Luna C, Sánchez E, de Gortari P. Food-restricted and dehydrated-induced anorexic rats present differential TRH expression in anterior and caudal PVN. Role of type 2 deiodinase and pyroglutamyl aminopeptidase II. Endocrinology 2012; 153:4067-76. [PMID: 22719053 DOI: 10.1210/en.2011-2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TRH synthesized in hypothalamic paraventricular nucleus (PVN) regulates thyroid axis function and is also implicated in anorexigenic effects. Under energy deficit, animals present decreased PVN TRH expression and release, low TSH levels, and increased appetite. Dehydration-induced anorexia (DIA) model allows insight into underlying mechanisms of feeding regulation. Animals drinking a 2.5% NaCl solution for 7 d present body weight reduction; despite their negative energy balance, they avoid food and have increased PVN TRH expression and TSH serum levels. These findings support an inhibiting role of PVN TRH in feeding control. We compared TRH expression by in situ hybridization in PVN subdivisions of 7-d dehydrated male rats to those of a pair-fed group (forced food-restricted) with similar metabolic changes than DIA, but motivated to eat, and to controls. We measured peripheral deiodinase activities, and expression and activity of medial basal hypothalamic type 2 deiodinase and pyroglutamyl-aminopeptidase II, to understand their regulating role in PVN TRH changes between food restriction and anorexia. TRH mRNA levels increased in anterior (aPVN) and medial-caudal subdivisions in DIA rats, whereas it decreased in medial PVN in both experimental groups. We confirmed the nonhypophysiotropic nature of aPVN TRHergic cells by injecting ip fluorogold tracer. Findings support a subspecialization of TRHergic hypophysiotrophic cells that responded differently between anorexic and food-restricted animals; also, that aPVN TRH participates in food intake regulation. Increased type 2 deiodinase activity seemed responsible for low medial PVN TRH synthesis, whereas increased medial basal hypothalamic pyroglutamyl-aminopeptidase II activity in DIA rats might counteract their high TRH release.
Collapse
Affiliation(s)
- E Alvarez-Salas
- Neurofisiología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), México D.F., México
| | | | | | | | | | | | | |
Collapse
|
26
|
Johansson EM, Sanabra C, Mengod G. Sex-related differences of cAMP-specific PDE4B3 mRNA in oligodendrocytes following systemic inflammation. Glia 2012; 60:1815-25. [PMID: 22848007 DOI: 10.1002/glia.22399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/05/2012] [Indexed: 01/28/2023]
Abstract
Sex-related differences have been observed in the incidence and severity of several neurological diseases and in sepsis in humans. Cyclic adenosine monophosphate (cAMP) has been shown to play an important role in modulating the inflammatory environment during neuroinflammation and importantly in protecting myelin from excitotoxic cell death. Considering the sexual dimorphism in the functional properties of oligodendrocytes and the importance of a systemic inflammation in the progression of multiple sclerosis, we focused on identifying possible sex-related differences in the alterations previously reported for the two phosphodiesterase4B (PDE4B) splice-variants (PDE4B2 and PDE4B3) mRNA expression during innate neuroinflammation. PDE4A, PDE4B, and PDE4D are present in oligodendrocytes and we have previously reported that PDE4B3 mRNA is readily expressed in both oligodendrocytes and neurons. In this study, we analyzed the influence of an intraperitoneal lipopolysaccharide injection on the distribution pattern and expression levels of the PDE4B mRNA splicing variants in both male and female mice brains. Clear differences were observed in PDE4B2 and PDE4B3 mRNA expression levels in males compared with females in a time-dependent manner. Furthermore, we observed that the clear downregulation of PDE4B3 mRNA was reflected in a lower percentage of oligodendrocytes positive for this transcript which correlated with a decrease in inducible cAMP early repressor expression in female corpus callosum.
Collapse
Affiliation(s)
- Emily M Johansson
- Departament de Neuroquímica i Neurofarmacologia, Institut d'Investigacions Biomèdiques de Barcelona (CSIC), IDIBAPS, CIBERNED, Barcelona, Spain
| | | | | |
Collapse
|
27
|
Melnick IV. Cell type-specific postsynaptic effects of neuropeptide Y in substantia gelatinosa neurons of the rat spinal cord. Synapse 2012; 66:640-9. [DOI: 10.1002/syn.21550] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/07/2012] [Indexed: 11/11/2022]
|
28
|
Lemons LL, Wiley RG. Galanin receptor-expressing dorsal horn neurons: role in nociception. Neuropeptides 2011; 45:377-83. [PMID: 21880366 DOI: 10.1016/j.npep.2011.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 07/31/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
Abstract
Galanin, along with enkephalins and neuropeptide Y, has been hypothesized to negatively modulate nociception in the superficial dorsal horn of the spinal cord. In the present study, we sought to determine the role of presumably excitatory dorsal horn galanin receptor-expressing neurons in nociception by selectively destroying GalR1-expressing superficial dorsal horn interneurons using lumbar intrathecal injections of the targeted cytotoxin, galanin-saporin (Gal-sap). Lumbar intrathecal injection of Gal-sap (500 ng) reduced immunoperoxidase staining for GalR1 in the superficial dorsal horn without affecting primary afferent neurons in lumbar dorsal root ganglia. Lumbar intrathecal Gal-sap also: 1--reduced nocifensive reflex responding on the thermal plate at 0.3 °C, 44 °C, and 47 °C; 2--increased hot side occupancy in a thermal preference task (15 °C vs 45 °C); and, 3--decreased escape from 44 °C and 47 °C, but not 20 °C. Thus, similar to lesions of mu opiate receptor-expressing dorsal horn interneurons, selective destruction of GalR1-expressing superficial dorsal horn neurons produces heat hypo-algesia, likely due to loss of GalR1-expressing excitatory interneurons leading to reduced activation of nociceptive projection neurons in response to aversive heat. These results are different than those seen with intrathecal neuropeptide Y-saporin and suggest the potential value of selectively targeting GalR1-expressing dorsal horn neurons to control pain.
Collapse
Affiliation(s)
- Laurie L Lemons
- Lab of Experimental Neurology, Neurology Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212-2637, USA.
| | | |
Collapse
|
29
|
Johansson EM, Sanabra C, Cortés R, Vilaró MT, Mengod G. Lipopolysaccharide administration in vivo induces differential expression of cAMP-specific phosphodiesterase 4B mRNA splice variants in the mouse brain. J Neurosci Res 2011; 89:1761-72. [DOI: 10.1002/jnr.22707] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/06/2011] [Accepted: 05/10/2011] [Indexed: 01/13/2023]
|
30
|
Some lumbar sympathetic neurons develop a glutamatergic phenotype after peripheral axotomy with a note on VGLUT₂-positive perineuronal baskets. Exp Neurol 2011; 230:258-72. [PMID: 21596036 DOI: 10.1016/j.expneurol.2011.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 04/27/2011] [Accepted: 05/01/2011] [Indexed: 01/01/2023]
Abstract
Glutamate is the main excitatory neurotransmitter in the nervous system, including in primary afferent neurons. However, to date a glutamatergic phenotype of autonomic neurons has not been described. Therefore, we explored the expression of vesicular glutamate transporter (VGLUT) types 1, 2 and 3 in lumbar sympathetic chain (LSC) and major pelvic ganglion (MPG) of naïve BALB/C mice, as well as after pelvic nerve axotomy (PNA), using immunohistochemistry and in situ hybridization. Colocalization with activating transcription factor-3 (ATF-3), tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT) and calcitonin gene-related peptide was also examined. Sham-PNA, sciatic nerve axotomy (SNA) or naïve mice were included. In naïve mice, VGLUT(2)-like immunoreactivity (LI) was only detected in fibers and varicosities in LSC and MPG; no ATF-3-immunoreactive (IR) neurons were visible. In contrast, PNA induced upregulation of VGLUT(2) protein and transcript, as well as of ATF-3-LI in subpopulations of LSC neurons. Interestingly, VGLUT(2)-IR LSC neurons coexpressed ATF-3, and often lacked the noradrenergic marker TH. SNA only increased VGLUT(2) protein and transcript in scattered LSC neurons. Neither PNA nor SNA upregulated VGLUT(2) in MPG neurons. We also found perineuronal baskets immunoreactive either for VGLUT(2) or the acetylcholinergic marker VAChT in non-PNA MPGs, usually around TH-IR neurons. VGLUT(1)-LI was restricted to some varicosities in MPGs, was absent in LSCs, and remained largely unaffected by PNA or SNA. This was confirmed by the lack of expression of VGLUT(1) or VGLUT(3) mRNAs in LSCs, even after PNA or SNA. Taken together, axotomy of visceral and non-visceral nerves results in a glutamatergic phenotype of some LSC neurons. In addition, we show previously non-described MPG perineuronal glutamatergic baskets.
Collapse
|
31
|
Sanabra C, Mengod G. Neuroanatomical distribution and neurochemical characterization of cells expressing adenylyl cyclase isoforms in mouse and rat brain. J Chem Neuroanat 2010; 41:43-54. [PMID: 21094251 DOI: 10.1016/j.jchemneu.2010.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/02/2010] [Accepted: 11/03/2010] [Indexed: 12/15/2022]
Abstract
Transmembrane adenylyl cyclases (Adcy) are involved in the regulation of multiple brain processes such as synaptic plasticity, learning and memory. They synthesize intracellular cyclic adenosine monophosphate (cAMP) following activation by G-protein coupled receptors. We examined the neuroanatomical distribution of the nine Adcy isoforms in rat and mouse brain by in situ hybridization, as well as their location in glutamatergic, GABAergic and cholinergic neurons in several mouse brain areas by double in situ hybridization. The Adcys are widely distributed throughout the brain in both rat and mouse, being especially abundant in cortex, hippocampus, thalamic nuclei, the olfactory system and the granular layer of the cerebellum. Double-labeling experiments showed that Adcy isoforms are differently expressed in glutamatergic, GABAergic and cholinergic neuronal cell populations. We report the neuroanatomical distribution of the nine known Adcy isoforms in rat and mouse brain and their cellular localization.
Collapse
Affiliation(s)
- Cristina Sanabra
- Departament de Neuroquímica i Neurofarmacologia, Institut d'Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, CIBERNED, 08036 Barcelona, Spain
| | | |
Collapse
|
32
|
de Almeida J, Mengod G. D2 and D4 dopamine receptor mRNA distribution in pyramidal neurons and GABAergic subpopulations in monkey prefrontal cortex: implications for schizophrenia treatment. Neuroscience 2010; 170:1133-9. [PMID: 20727949 DOI: 10.1016/j.neuroscience.2010.08.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/09/2010] [Accepted: 08/11/2010] [Indexed: 11/25/2022]
Abstract
D2 and D4 dopamine receptors play an important role in cognitive functions in the prefrontal cortex and they are involved in the pathophysiology of neuropsychiatric disorders such as schizophrenia. The eventual effect of dopamine upon pyramidal neurons in the prefrontal cortex depends on which receptors are expressed in the different neuronal populations. Parvalbumin and calbindin mark two subpopulations of cortical GABAergic interneurons that differently innervate pyramidal cells. Recent hypotheses about schizophrenia hold that the root of the illness is a dysfunction of parvalbumin chandelier cells that produces disinhibition of pyramidal cells. In the present work we report double in situ hybridization histochemistry experiments to determine the prevalence of D2 receptor mRNA and D4 receptor mRNA in glutamatergic neurons, GABAergic interneurons and both parvalbumin and calbindin GABAergic subpopulations in monkey prefrontal cortex layer V. We found that around 54% of glutamatergic neurons express D2 mRNA and 75% express D4 mRNA, while GAD-positive interneurons express around 34% and 47% respectively. Parvalbumin cells mainly expressed D4 mRNA (65%) and less D2 mRNA (15-20%). Finally, calbindin cells expressed both receptors in similar proportions (37%). We hypothesized that D4 receptor could be a complementary target in designing new antipsychotics, mainly because of its predominance in parvalbumin interneurons.
Collapse
Affiliation(s)
- J de Almeida
- Departament de Neuroquimica i Neurofarmacologia, Institut d’Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, CIBERNED, 08036 Barcelona, Spain
| | | |
Collapse
|
33
|
He SQ, Yao JR, Zhang FX, Wang Q, Bao L, Zhang X. Inflammation and nerve injury induce expression of pancreatitis-associated protein-II in primary sensory neurons. Mol Pain 2010; 6:23. [PMID: 20420691 PMCID: PMC2873504 DOI: 10.1186/1744-8069-6-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 04/26/2010] [Indexed: 01/18/2023] Open
Abstract
Pancreatitis-associated protein (PAP)-I and -II, lectin-related secretory proteins, are members of the regenerating gene (Reg) family. Although expression of PAP-I was found in the dorsal root ganglion (DRG) neurons following peripheral nerve injury and cystitis, whether PAP-II could be expressed in DRG neurons in chronic pain models remains unclear. The present study shows an inflammation- and nerve injury-triggered expression of PAP-II in rat DRG neurons. In situ hybridization showed that only a few DRG neurons normally contained PAP-I and -II mRNAs. After peripheral inflammation, PAP-I and -II mRNAs were present in over half of small DRG neurons. Such an elevated expression of PAP-I and -II reached the peak level on the second day. Immunostaining showed that the expression of PAP-II was mostly increased in the isolectin B4-positive subset of small DRG neurons after inflammation. Furthermore, the expression of PAP-II was also induced in DRG neurons after peripheral nerve injury. Interestingly, PAP-II expression was shifted from small neurons on day 2 to large DRG neurons that expressed neuropeptide Y during the later post-injury days. These results suggest that PAP-II may play potential roles in the modulation of spinal sensory pathways in pathological pain states.
Collapse
Affiliation(s)
- Shao-Qiu He
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|
34
|
Kanazawa T, Misawa K, Carey TE. Galanin receptor subtypes 1 and 2 as therapeutic targets in head and neck squamous cell carcinoma. Expert Opin Ther Targets 2010; 14:289-302. [PMID: 20148716 DOI: 10.1517/14728221003598922] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Despite advances in the therapeutic approaches for head and neck squamous cell carcinoma (HNSCC) at some sites, no substantial improvement in treatment efficacy and survival has occurred over the past several decades. Recent application of molecular biology has focused on the importance of galanin and its receptors as potential therapeutic targets for HNSCC. AREAS COVERED IN THIS REVIEW Our aim is to examine galanin receptor 1 (GALR1) and galanin receptor 2 (GALR2) as HNSCC therapeutic targets and explore opportunities and strategies for making use of GALR1 and GALR2 signaling. WHAT THE READER WILL GAIN This review provides recent data about galanin receptor signaling and function in various cell types, especially HNSCC. Signaling through GALR1 induces cell cycle arrest and suppresses proliferation in HNSCC. Similar to GALR1, GALR2 not only induces cell cycle arrest but also apoptosis, which was not observed with GALR1. TAKE HOME MESSAGES GALR1 and GALR2 act as tumor suppressors in HNSCC, in a p53-independent manner. The current data suggest that GALR1 and GALR2 are potentially significant therapeutic targets and prognostic factors in HNSCC.
Collapse
Affiliation(s)
- Takeharu Kanazawa
- The University of Michigan, Laboratory of Head and Neck Cancer Biology, Ann Arbor, MI 48109-0506, USA
| | | | | |
Collapse
|
35
|
Mitsukawa K, Lu X, Bartfai T. Galanin, galanin receptors, and drug targets. EXPERIENTIA SUPPLEMENTUM (2012) 2010; 102:7-23. [PMID: 21299058 DOI: 10.1007/978-3-0346-0228-0_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Galanin, a neuropeptide widely expressed in the central and peripheral nervous systems and in the endocrine system, has been shown to regulate numerous physiological and pathological processes through interactions with three G-protein-coupled receptors, GalR1 through GalR3. Over the past decade, some of the receptor subtype-specific effects have been elucidated through pharmacological studies using subtype selective ligands, as well as through molecular approaches involving knockout animals. In this chapter, we summarize the current data which constitute the basis of targeting GalR1, GalR2, and GalR3 for the treatment of various human diseases and pathological conditions, including seizure, Alzheimer's disease, mood disorders, anxiety, alcohol intake in addiction, metabolic diseases, pain and solid tumors.
Collapse
Affiliation(s)
- K Mitsukawa
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
36
|
Dopamine D1, D2 and mu-opioid receptors are co-expressed with adenylyl cyclase 5 and phosphodiesterase 7B mRNAs in striatal rat cells. Brain Res 2009; 1310:37-45. [PMID: 19913519 DOI: 10.1016/j.brainres.2009.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 01/04/2023]
Abstract
Intracellular cAMP levels are regulated by cAMP synthesis and degradation rate. Nine isoforms of cAMP-synthesizing enzymes called adenylyl-cyclases (ACs) and eleven phosphodiesterases (PDEs) that degrade cyclic nucleotides have been identified. Both types of enzymes exhibit variations not only in their expression pattern distribution throughout the brain, but also in their regulatory characteristics. Different isoforms of ACs and PDEs may be co-expressed in a single cell, thus a gradient of cAMP intracellular levels is formed, which accounts for the diversity of cell responses. Among these isoforms, AC5 and PDE7B are highly expressed in striatum, where the cAMP pathway is implicated in diverse behavioural functions. Striatal AC5 is involved in drug reinforcing actions and motor activity. Less is known about the role of the PDE7B isoenzyme. We performed a double in situ hybridization analysis of the co-expression patterns of AC5 and PDE7B with mu-opioid-receptor (MOR), D1- and D2-receptor mRNAs to contribute to a better understanding in the regulation of cAMP levels under dopamine or opioidergic pathway activation in striatum. We found co-expression of AC5 and PDE7B mRNAs in caudate-putamen and nucleus accumbens; we also encountered that more than 50% of MOR, D2- and D1-expressing cells contained AC5 and PDE7B mRNAs. The presence of AC5 and PDE7B mRNAs in D1- and D2-containing cells suggests the participation of these enzymes in striatal functions involving dopaminergic pathways. Co-localization of both isoenzyme mRNAs with MOR expressing cells suggests their involvement in opioid reinforcing effects.
Collapse
|
37
|
Dendritic synthesis and release of the neuropeptide galanin: Morphological evidence from studies on rat locus coeruleus neurons. J Comp Neurol 2009; 516:199-212. [DOI: 10.1002/cne.22105] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
38
|
Coronel MF, Musolino PL, Brumovsky PR, Hökfelt T, Villar MJ. Bone marrow stromal cells attenuate injury-induced changes in galanin, NPY and NPY Y1-receptor expression after a sciatic nerve constriction. Neuropeptides 2009; 43:125-32. [PMID: 19168218 DOI: 10.1016/j.npep.2008.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 12/11/2008] [Accepted: 12/12/2008] [Indexed: 12/21/2022]
Abstract
Single ligature nerve constriction (SLNC) of the rat sciatic nerve triggers neuropathic pain-related behaviors and induces changes in neuropeptide expression in primary afferent neurons. Bone marrow stromal cells (MSCs) injected into the lumbar 4 (L4) dorsal root ganglia (DRGs) of animals subjected to a sciatic nerve SLNC selectively migrate to the other ipsilateral lumbar DRGs (L3, L5 and L6) and prevent mechanical and thermal allodynia. In this study, we have evaluated the effect of MSC administration on the expression of the neuropeptides galanin and NPY, as well as the NPY Y(1)-receptor (Y(1)R) in DRG neurons. Animals were subjected to a sciatic nerve SLNC either alone or followed by the administration of MSCs, phosphate-buffered saline (PBS) or bone marrow non-adherent mononuclear cells (BNMCs), directly into the ipsilateral L4 DRG. Seven days after injury, the ipsilateral and contralateral L4-5 DRGs were dissected out and processed for standard immunohistochemistry, using specific antibodies. As previously reported, SLNC induced an ipsilateral increase in the number of galanin and NPY immunoreactive neurons and a decrease in Y(1)R-positive DRG neurons. The intraganglionic injection of PBS or BNMCs did not modify this pattern of expression. In contrast, MSC administration partially prevented the injury-induced changes in galanin, NPY and Y(1)R expression. The large number of Y(1)R-immunoreactive neurons together with high levels of NPY expression in animals injected with MSCs could explain, at least in part, the analgesic effects exerted by these cells. Our results support MSC participation in the modulation of neuropathic pain and give insight into one of the possible mechanisms involved.
Collapse
Affiliation(s)
- M F Coronel
- School of Biomedical Sciences, Austral University, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
39
|
Moftah M, Landry M, Nagy F, Cabelguen JM. Fibroblast growth factor-2 mRNA expression in the brainstem and spinal cord of normal and chronic spinally transected urodeles. J Neurosci Res 2009; 86:3348-58. [PMID: 18627027 DOI: 10.1002/jnr.21776] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Descending pathways in the spinal cord of adult urodele amphibians show a high regenerative ability after body spinal cord transection; regenerated axons regrow into the transected spinal cord, and hindlimb locomotor recovery occurs spontaneously. Little is currently known about the molecular basis of spinal cord regeneration in urodeles, but it is believed that fibroblast growth factor-2 (FGF2) may play an important role by inducing proliferation of neural progenitor cells. The aim of our study, using in situ hybridization in adult Pleurodeles waltlii, was twofold: 1) to document FGF2 mRNA expression pattern along the brainstem-spinal cord of intact salamanders and 2) to investigate the changes in this pattern in animals unable to display hindlimb locomotor movements and in animals having fully recovered hindlimb locomotor activity after body spinal cord transection. This design establishes a firm basis for further studies on the role of FGF2 in functional recovery of hindlimb locomotion. Our results revealed a decreasing rostrocaudal gradient in FGF2 mRNA expression along the brainstem-spinal cord in intact animals. They further demonstrated a long-lasting up-regulation of FGF2 mRNA expression in response to spinal transection at the midtrunk level, both in brainstem and in the spinal cord below the injury. Finally, double immunolabeling showed that FGF2 was up-regulated in neuroglial, presumably undifferentiated, cells. Therefore, we propose that FGF2 may be involved in cell proliferation and/or neuronal differentiation after body spinal cord transection in salamander and could thus play an important role in functional recovery of locomotion after spinal lesion.
Collapse
Affiliation(s)
- Marie Moftah
- INSERM U 862, Neurocentre Magendie, Pathophysiology of Spinal Networks, Bordeaux, France
| | | | | | | |
Collapse
|
40
|
Lopez-Gimenez JF, Vilaró MT, Milligan G. Morphine desensitization, internalization, and down-regulation of the mu opioid receptor is facilitated by serotonin 5-hydroxytryptamine2A receptor coactivation. Mol Pharmacol 2008; 74:1278-91. [PMID: 18703670 DOI: 10.1124/mol.108.048272] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Analysis of the distribution of mRNA encoding the serotonin (5-hydroxytryptamine) 5-HT(2A) receptor and the mu opioid peptide receptor in rat brain demonstrated their coexpression in neurons in several distinct regions. These regions included the periaqueductal gray, an area that plays an important role in morphine-induced analgesia but also in the development of tolerance to morphine. To explore potential cross-regulation between these G protein-coupled receptors, the human mu opioid peptide receptor was expressed stably and constitutively in Flp-In T-REx human embryonic kidney 293 cells that harbored the human 5-HT(2A) receptor at the inducible Flp-In locus. In the absence of the 5-HT(2A) receptor, pretreatment with the enkephalin agonist [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin but not with the alkaloid agonist morphine produced desensitization, internalization, and down-regulation of the mu opioid peptide receptor. Induction of 5-HT(2A) receptor expression in these cells resulted in up-regulation of mu opioid peptide receptor levels that was blocked by both a 5-HT(2A) receptor inverse agonist and selective inhibition of signaling via Galpha(q)/Galpha(11) G proteins. After induction of the 5-HT(2A) receptor, coaddition of 5-HT with morphine now also resulted in desensitization, receptor internalization, and down-regulation of the mu opioid peptide receptor. It has been argued that enhancement of mu opioid peptide receptor internalization in response to morphine would limit the development of tolerance without limiting analgesia. These data suggest that selective activation of the 5-HT(2A) receptor in concert with treatment with morphine might achieve this aim.
Collapse
Affiliation(s)
- Juan F Lopez-Gimenez
- Molecular Pharmacology Group, Neuroscience and Molecular Pharmacology, Faculty of Biochemistry and Molecular Biology, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | |
Collapse
|
41
|
del Burgo LS, Cortes R, Mengod G, Zarate J, Echevarria E, Salles J. Distribution and neurochemical characterization of neurons expressing GIRK channels in the rat brain. J Comp Neurol 2008; 510:581-606. [DOI: 10.1002/cne.21810] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Chiaia NL, Shah A, Crissman RS, Rhoades RW. Prevention of galanin upregulation following neonatal infraorbital nerve transection or attenuation of axoplasmic transport does not rescue central vibrissae-related patterns in the rat. Eur J Neurosci 2008. [DOI: 10.1111/j.1460-9568.2001.01377.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
de Almeida J, Mengod G. Serotonin 1A receptors in human and monkey prefrontal cortex are mainly expressed in pyramidal neurons and in a GABAergic interneuron subpopulation: implications for schizophrenia and its treatment. J Neurochem 2008; 107:488-96. [PMID: 18761712 DOI: 10.1111/j.1471-4159.2008.05649.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serotonin 1A (5-HT(1A)) receptors are found in high densities in prefrontal cortex. However, their distribution within cortical cell populations is unknown in both humans and primates. We used double in situ hybridization histochemistry to quantify the percentage of glutamatergic and GABAergic neurons expressing 5-HT(1A) receptors in human and monkey prefrontal cortex. Moreover, in the case of the monkey, we also quantified the parvalbumin and calbindin GABAergic subpopulations expressing this receptor. 5-HT(1A) receptor mRNAs were expressed in about 80% of glutamatergic neurons in external layers II and upper III, and in around 50% in layer VI; they were also present in approximately 20% of GABAergic neurons in both species. Although they were found in up to 43% of the calbindin cell subpopulation they were rarely present in parvalbumin cells in monkey prefrontal cortex. The knowledge of the phenotype of the prefrontal cortex (PFC) cells expressing 5-HT(1A) will help understanding serotonin actions in PFC.
Collapse
Affiliation(s)
- Julián de Almeida
- Departament de Neuroquimica i Neurofarmacologia, Institut d'Investigacions Biomèdiques de Barcelona (CSIC), IDIBAPS, Barcelona, Spain
| | | |
Collapse
|
44
|
Synaptic relationships between induced neuropeptide Y-like immunoreactive terminals and cuneothalamic projection neurons in the rat cuneate nucleus following median nerve transection. J Chem Neuroanat 2008; 36:27-32. [DOI: 10.1016/j.jchemneu.2008.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 05/18/2008] [Accepted: 05/18/2008] [Indexed: 11/18/2022]
|
45
|
Mundinger TO, Mei Q, Taborsky GJ. Impaired activation of celiac ganglion neurons in vivo after damage to their sympathetic nerve terminals. J Neurosci Res 2008; 86:1981-93. [PMID: 18338798 DOI: 10.1002/jnr.21651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Because damage to sympathetic nerve terminals occurs in a variety of diseases, we tested the hypothesis that nerve terminal damage per se is sufficient to impair ganglionic neurotransmission in vivo. First, we measured the effect of nerve terminal damage produced by the sympathetic nerve terminal toxin 6-hydroxydopamine (6-OHDA) on ganglionic levels of several neurotrophins thought to promote neurotransmission. 6-OHDA-induced nerve terminal damage did not decrease the expression of neurotrophin-4 or brain-derived neurotrophic factor mRNA in the celiac ganglia but did decrease the ganglionic content of both nerve growth factor protein (nadir = -63%) and the mRNA of the alpha-3 subunit of the nicotinic cholinergic receptor (nadir = -49%), a subunit required for neurotransmission. Next, we tested whether this degree of receptor deficiency was sufficient to impair activation of celiac ganglia neurons. Impaired fos mRNA responses to nicotine administration in the celiac ganglia of 6-OHDA-pretreated rats correlated temporally with suppressed expression of functional nicotinic receptors. We verified by Fos protein immunohistochemistry that this ganglionic impairment was specific to principal ganglionic neurons. Last, we tested whether centrally initiated ganglionic neurotransmission is also impaired following nerve terminal damage. The principal neurons in rat celiac ganglia were reflexively activated by 2-deoxy-glucose-induced glucopenia, and the Fos response in the celiac ganglia was markedly inhibited by pretreatment with 6-OHDA. We conclude that sympathetic nerve terminal damage per se is sufficient to impair ganglionic neurotransmission in vivo and that decreased nicotinic receptor production is a likely mediator.
Collapse
Affiliation(s)
- Thomas O Mundinger
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, Veterans Affairs Puget Sound Health Care System and University of Washington, Seattle, Washington 98108, USA.
| | | | | |
Collapse
|
46
|
Ichikawa H, Terayama R, Yamaai T, De Repentigny Y, Kothary R, Sugimoto T. The number of nociceptors in the trigeminal ganglion but not proprioceptors in the mesencephalic trigeminal tract nucleus is reduced in dystonin deficient dystonia musculorum mice. Brain Res 2008; 1226:33-8. [DOI: 10.1016/j.brainres.2008.05.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 05/23/2008] [Accepted: 05/27/2008] [Indexed: 12/31/2022]
|
47
|
Ueda H. Peripheral mechanisms of neuropathic pain - involvement of lysophosphatidic acid receptor-mediated demyelination. Mol Pain 2008; 4:11. [PMID: 18377664 PMCID: PMC2365930 DOI: 10.1186/1744-8069-4-11] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 04/01/2008] [Indexed: 01/23/2023] Open
Abstract
Recent advances in pain research provide a clear picture for the molecular mechanisms of acute pain; substantial information concerning plasticity that occurs during neuropathic pain has also become available. The peripheral mechanisms responsible for neuropathic pain are found in the altered gene/protein expression of primary sensory neurons. With damage to peripheral sensory fibers, a variety of changes in pain-related gene expression take place in dorsal root ganglion neurons. These changes, or plasticity, might underlie unique neuropathic pain-specific phenotype modifications - decreased unmyelinated-fiber functions, but increased myelinated A-fiber functions. Another characteristic change is observed in allodynia, the functional change of tactile to nociceptive perception. Throughout a series of studies, using novel nociceptive tests to characterize sensory-fiber or pain modality-specific nociceptive behaviors, it was demonstrated that communication between innocuous and noxious sensory fibers might play a role in allodynia mechanisms. Because neuropathic pain in peripheral and central demyelinating diseases develops as a result of aberrant myelination in experimental animals, demyelination seems to be a key mechanism of plasticity in neuropathic pain. More recently, we discovered that lysophosphatidic acid receptor activation initiates neuropathic pain, as well as possible peripheral mechanism of demyelination after nerve injury. These results lead to further hypotheses of physical communication between innocuous Abeta- and noxious C- or Adelta-fibers to influence the molecular mechanisms of allodynia.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
48
|
Engert S, Wendland JR, Schwab A, Petersen M. Leukemia inhibitory factor differentially regulates capsaicin and heat sensitivity in cultured rat dorsal root ganglion neurons. Neuropeptides 2008; 42:193-7. [PMID: 18258298 DOI: 10.1016/j.npep.2007.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 12/21/2007] [Accepted: 12/28/2007] [Indexed: 11/19/2022]
Abstract
Thermal hyperalgesia is one hallmark of neuropathic pain conditions. Although the exact pathophysiological mechanisms remain elusive, nerve growth factor (NGF) and leukemia inhibitory factor (LIF) are considered key mediators. Their local availability or synthesis are altered by nerve damage and, in turn, they entail changes in phenotype of affected neurons. We examined the effects of LIF on capsaicin sensitivity, heat responsiveness, and galanin immunoreactivity in rat dorsal root ganglion neurons cultured for up to 6 days without supplemented NGF. Using double labeling, the proportions of heat-sensitive/galanin-immunoreactive (GAL-IR) and capsaicin-sensitive/GAL-IR neurons were compared over time in culture with galanin immunoreactivity being a marker for nociceptive neurons. The time course of the proportions of neurons responding to heat (44 degrees C) or capsaicin (1 microM) which also were GAL-IR was differently affected by LIF. In the absence of LIF, within the population of heat-sensitive neurons, the proportion of neurons also GAL-IR increased from 17% to 32% between 6h and 1 day in culture to stay at this level. For the capsaicin-sensitive neurons, the proportion of neurons also GAL-IR increased from 10% after 6h to 18% at day 2 and then decreased to 4% at day 4. In contrast, LIF prevented the increase in the proportion of heat-sensitive/GAL-IR neurons and the decrease of capsaicin-sensitive/GAL-IR neurons. The results suggest that LIF partially prevents TRPV-1 downregulation in NGF-deprived nociceptive galaninergic DRG neurons. Furthermore, there is evidence that LIF regulates the expression of a heat receptor distinct from TRPV-1.
Collapse
Affiliation(s)
- Sabine Engert
- Department of Obstetrics and Gynecology, University of Würzburg, 97080 Würzburg, Germany
| | | | | | | |
Collapse
|
49
|
Chottová Dvoráková M, Wiegand S, Pesta M, Slavíková J, Grau V, Reischig J, Kuncová J, Kummer W. Expression of neuropeptide Y and its receptors Y1 and Y2 in the rat heart and its supplying autonomic and spinal sensory ganglia in experimentally induced diabetes. Neuroscience 2008; 151:1016-28. [DOI: 10.1016/j.neuroscience.2007.07.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 07/12/2007] [Accepted: 12/06/2007] [Indexed: 12/27/2022]
|
50
|
Castro J, Negredo P, Avendaño C. Fiber composition of the rat sciatic nerve and its modification during regeneration through a sieve electrode. Brain Res 2008; 1190:65-77. [DOI: 10.1016/j.brainres.2007.11.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 11/05/2007] [Accepted: 11/11/2007] [Indexed: 11/25/2022]
|