1
|
Shen Y, Lin P. The Role of Cytokines in Postherpetic Neuralgia. J Integr Neurosci 2025; 24:25829. [PMID: 40302252 DOI: 10.31083/jin25829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 05/02/2025] Open
Abstract
Nerve injury is a significant cause of postherpetic neuralgia (PHN). It is marked by upregulated expression of cytokines secreted by immune cells such as tumor necrosis factor alpha, interleukin 1 beta (IL-1β), IL-6, IL-18, and IL-10. In neuropathic pain (NP) due to nerve injury, cytokines are important for the induction of neuroinflammation, activation of glial cells, and expression of cation channels. The release of chemokines due to nerve injury promotes immune cell infiltration, recruiting inflammatory cytokines and further amplifying the inflammatory response. The resulting disequilibrium in neuroimmune response and neuroinflammation leads to a reduction of nerve fibers, altered nerve excitability, and neuralgia. PHN is a typical NP and cytokines may induce PHN by promoting central and peripheral sensitization. Currently, treating PHN is challenging and research on the role of cytokine signaling pathways in PHN is lacking. This review summarizes the potential mechanisms of cytokine-mediated PHN and discusses the cytokine signaling pathways associated with the central and peripheral sensitization of PHN. By elucidating the mechanisms of cytokines, the cells and molecules that regulate cytokines, and their signaling systems in PHN, this review reveals important research developments regarding cytokines and their signaling pathways mediating PHN, highlighting new targets of action for the development of analgesic drugs.
Collapse
Affiliation(s)
- Yunyan Shen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang, China
| | - Ping Lin
- Department of Geriatrics, Hangzhou Third People's Hospital, 310009 Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Drinovac Vlah V, Bach-Rojecky L. Mirror-Image Pain Update: Complex Interactions Between Central and Peripheral Mechanisms. Mol Neurobiol 2024; 61:1-18. [PMID: 38602655 DOI: 10.1007/s12035-024-04102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
The appearance of contralateral effects after unilateral injury has been shown in various experimental pain models, as well as in clinics. They consist of a diversity of phenomena in contralateral peripheral nerves, sensory ganglia, or spinal cord: from structural changes and altered gene or protein expression to functional consequences such as the development of mirror-image pain (MP). Although MP is a well-documented phenomenon, the exact molecular mechanism underlying the induction and maintenance of mirror-like spread of pain is still an unresolved challenge. MP has generally been explained by central sensitization mechanisms leading to facilitation of pain impulse transfer through neural connections between the two sides of the central nervous system. On the contrary, the peripheral nervous system (PNS) was usually regarded unlikely to evoke such a symmetrical phenomenon. However, recent findings provided evidence that events in the PNS could play a significant role in MP induction. This manuscript provides an updated and comprehensive synthesis of the MP phenomenon and summarizes the available data on the mechanisms. A more detailed focus is placed on reported evidence for peripheral mechanisms behind the MP phenomenon, which were not reviewed up to now.
Collapse
Affiliation(s)
- Višnja Drinovac Vlah
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, Domagojeva 2, 10000, Zagreb, Croatia
| | - Lidija Bach-Rojecky
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, Domagojeva 2, 10000, Zagreb, Croatia.
| |
Collapse
|
3
|
Sharma KK, Fatima N, Ali Z, Moshin M, Chandra P, Verma A, Goshain O, Kumar G. Neuropathy, its Profile and Experimental Nerve Injury Neuropathic Pain Models: A Review. Curr Pharm Des 2023; 29:3343-3356. [PMID: 38058089 DOI: 10.2174/0113816128274200231128065425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
Neuropathy is a terrible disorder that has a wide range of etiologies. Drug-induced neuropathy, which happens whenever a chemical agent damages the peripheral nerve system, has been linked here to the iatrogenic creation of some drugs. It is potentially permanent and causes sensory impairments and paresthesia that typically affects the hands, feet, and stockings; motor participation is uncommon. It might appear suddenly or over time, and the long-term outlook varies. The wide range of chronic pain conditions experienced by people has been one of the main obstacles to developing new, more effective medications for the treatment of neuropathic pain. Animal models can be used to examine various neuropathic pain etiologies and symptoms. Several models investigate the peripheral processes of neuropathic pain, whereas some even investigate the central mechanisms, such as drug induce models like vincristine, cisplatin, bortezomib, or thalidomide, etc., and surgical models like sciatic nerve chronic constriction injury (CCI), sciatic nerve ligation through spinal nerve ligation (SNL), sciatic nerve damage caused by a laser, SNI (spared nerve injury), etc. The more popular animal models relying on peripheral nerve ligatures are explained. In contrast to chronic sciatic nerve contraction, which results in behavioral symptoms of less reliable stressful neuropathies, (SNI) spared nerve injury generates behavioral irregularities that are more feasible over a longer period. This review summarizes the latest methods models as well as clinical ideas concerning this mechanism. Every strongest current information on neuropathy is discussed, along with several popular laboratory models for causing neuropathy.
Collapse
Affiliation(s)
- Krishana Kumar Sharma
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh 244001, India
| | - Nishat Fatima
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh 244001, India
| | - Zeeshan Ali
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh 244001, India
| | - Mohd Moshin
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh 244001, India
| | - Phool Chandra
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh 244001, India
| | - Anurag Verma
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh 244001, India
| | - Omprakash Goshain
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh 244001, India
| | - Gajendra Kumar
- Department of Chemistry, Constituent Government College (M.J.P.R.U.), Hasanpur, Uttar Pradesh 244241, India
| |
Collapse
|
4
|
Cheng T, Xu Z, Ma X. The role of astrocytes in neuropathic pain. Front Mol Neurosci 2022; 15:1007889. [PMID: 36204142 PMCID: PMC9530148 DOI: 10.3389/fnmol.2022.1007889] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Neuropathic pain, whose symptoms are characterized by spontaneous and irritation-induced painful sensations, is a condition that poses a global burden. Numerous neurotransmitters and other chemicals play a role in the emergence and maintenance of neuropathic pain, which is strongly correlated with common clinical challenges, such as chronic pain and depression. However, the mechanism underlying its occurrence and development has not yet been fully elucidated, thus rendering the use of traditional painkillers, such as non-steroidal anti-inflammatory medications and opioids, relatively ineffective in its treatment. Astrocytes, which are abundant and occupy the largest volume in the central nervous system, contribute to physiological and pathological situations. In recent years, an increasing number of researchers have claimed that astrocytes contribute indispensably to the occurrence and progression of neuropathic pain. The activation of reactive astrocytes involves a variety of signal transduction mechanisms and molecules. Signal molecules in cells, including intracellular kinases, channels, receptors, and transcription factors, tend to play a role in regulating post-injury pain once they exhibit pathological changes. In addition, astrocytes regulate neuropathic pain by releasing a series of mediators of different molecular weights, actively participating in the regulation of neurons and synapses, which are associated with the onset and general maintenance of neuropathic pain. This review summarizes the progress made in elucidating the mechanism underlying the involvement of astrocytes in neuropathic pain regulation.
Collapse
|
5
|
Liu XG. Normalization of Neuroinflammation: A New Strategy for Treatment of Persistent Pain and Memory/Emotional Deficits in Chronic Pain. J Inflamm Res 2022; 15:5201-5233. [PMID: 36110505 PMCID: PMC9469940 DOI: 10.2147/jir.s379093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/18/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic pain, which affects around 1/3 of the world population and is often comorbid with memory deficit and mood depression, is a leading source of suffering and disability. Studies in past decades have shown that hyperexcitability of primary sensory neurons resulting from abnormal expression of ion channels and central sensitization mediated pathological synaptic plasticity, such as long-term potentiation in spinal dorsal horn, underlie the persistent pain. The memory/emotional deficits are associated with impaired synaptic connectivity in hippocampus. Dysregulation of numerous endogenous proteins including receptors and intracellular signaling molecules is involved in the pathological processes. However, increasing knowledge contributes little to clinical treatment. Emerging evidence has demonstrated that the neuroinflammation, characterized by overproduction of pro-inflammatory cytokines and glial activation, is reliably detected in humans and animals with chronic pain, and is sufficient to induce persistent pain and memory/emotional deficits. The abnormal expression of ion channels and pathological synaptic plasticity in spinal dorsal horn and in hippocampus are resulting from neuroinflammation. The neuroinflammation is initiated and maintained by the interactions of circulating monocytes, glial cells and neurons. Obviously, unlike infectious diseases and cancer, which are caused by pathogens or malignant cells, chronic pain is resulting from alterations of cells and molecules which have numerous physiological functions. Therefore, normalization (counterbalance) but not simple inhibition of the neuroinflammation is the right strategy for treating neuronal disorders. Currently, no such agent is available in clinic. While experimental studies have demonstrated that intracellular Mg2+ deficiency is a common feature of chronic pain in animal models and supplement Mg2+ are capable of normalizing the neuroinflammation, activation of upregulated proteins that promote recovery, such as translocator protein (18k Da) or liver X receptors, has a similar effect. In this article, relevant experimental and clinical evidence is reviewed and discussed.
Collapse
Affiliation(s)
- Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Neuroimmune Mechanisms Underlying Neuropathic Pain: The Potential Role of TNF-α-Necroptosis Pathway. Int J Mol Sci 2022; 23:ijms23137191. [PMID: 35806192 PMCID: PMC9266916 DOI: 10.3390/ijms23137191] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
The neuroimmune mechanism underlying neuropathic pain has been extensively studied. Tumor necrosis factor-alpha (TNF-α), a key pro-inflammatory cytokine that drives cytokine storm and stimulates a cascade of other cytokines in pain-related pathways, induces and modulates neuropathic pain by facilitating peripheral (primary afferents) and central (spinal cord) sensitization. Functionally, TNF-α controls the balance between cell survival and death by inducing an inflammatory response and two programmed cell death mechanisms (apoptosis and necroptosis). Necroptosis, a novel form of programmed cell death, is receiving increasing attraction and may trigger neuroinflammation to promote neuropathic pain. Chronic pain is often accompanied by adverse pain-associated emotional reactions and cognitive disorders. Overproduction of TNF-α in supraspinal structures such as the anterior cingulate cortex (ACC) and hippocampus plays an important role in pain-associated emotional disorders and memory deficits and also participates in the modulation of pain transduction. At present, studies reporting on the role of the TNF-α–necroptosis pathway in pain-related disorders are lacking. This review indicates the important research prospects of this pathway in pain modulation based on its role in anxiety, depression and memory deficits associated with other neurodegenerative diseases. In addition, we have summarized studies related to the underlying mechanisms of neuropathic pain mediated by TNF-α and discussed the role of the TNF-α–necroptosis pathway in detail, which may represent an avenue for future therapeutic intervention.
Collapse
|
7
|
Li QY, Chen SX, Liu JY, Yao PW, Duan YW, Li YY, Zang Y. Neuroinflammation in the anterior cingulate cortex: the potential supraspinal mechanism underlying the mirror-image pain following motor fiber injury. J Neuroinflammation 2022; 19:162. [PMID: 35725625 PMCID: PMC9210588 DOI: 10.1186/s12974-022-02525-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Peripheral nerve inflammation or lesion can affect contralateral healthy structures, and thus result in mirror-image pain. Supraspinal structures play important roles in the occurrence of mirror pain. The anterior cingulate cortex (ACC) is a first-order cortical region that responds to painful stimuli. In the present study, we systematically investigate and compare the neuroimmune changes in the bilateral ACC region using unilateral- (spared nerve injury, SNI) and mirror-(L5 ventral root transection, L5-VRT) pain models, aiming to explore the potential supraspinal neuroimmune mechanism underlying the mirror-image pain. Methods The up-and-down method with von Frey hairs was used to measure the mechanical allodynia. Viral injections for the designer receptors exclusively activated by designer drugs (DREADD) were used to modulate ACC glutamatergic neurons. Immunohistochemistry, immunofluorescence, western blotting, protein microarray were used to detect the regulation of inflammatory signaling. Results Increased expressions of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and chemokine CX3CL1 in ACC induced by unilateral nerve injury were observed on the contralateral side in the SNI group but on the bilateral side in the L5-VRT group, representing a stronger immune response to L5-VRT surgery. In remote ACC, both SNI and L5-VRT induced robust bilateral increase in the protein level of Nav1.6 (SCN8A), a major voltage-gated sodium channel (VGSC) that regulates neuronal activity in the mammalian nervous system. However, the L5-VRT-induced Nav1.6 response occurred at PO 3d, earlier than the SNI-induced one, 7 days after surgery. Modulating ACC glutamatergic neurons via DREADD-Gq or DREADD-Gi greatly changed the ACC CX3CL1 levels and the mechanical paw withdrawal threshold. Neutralization of endogenous ACC CX3CL1 by contralateral anti-CX3CL1 antibody attenuated the induction and the maintenance of mechanical allodynia and eliminated the upregulation of CX3CL1, TNF-α and Nav1.6 protein levels in ACC induced by SNI. Furthermore, contralateral ACC anti-CX3CL1 also inhibited the expression of ipsilateral spinal c-Fos, Iba1, CD11b, TNF-α and IL-6. Conclusions The descending facilitation function mediated by CX3CL1 and its downstream cascade may play a pivotal role, leading to enhanced pain sensitization and even mirror-image pain. Strategies that target chemokine-mediated ACC hyperexcitability may lead to novel therapies for the treatment of neuropathic pain. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02525-8.
Collapse
Affiliation(s)
- Qiao-Yun Li
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, People's Republic of China
| | - Shao-Xia Chen
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Jin-Yu Liu
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, People's Republic of China
| | - Pei-Wen Yao
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, People's Republic of China
| | - Yi-Wen Duan
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, People's Republic of China
| | - Yong-Yong Li
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, People's Republic of China
| | - Ying Zang
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
8
|
Thalidomide alleviates neuropathic pain through microglial IL-10/β-endorphin signaling pathway. Biochem Pharmacol 2021; 192:114727. [PMID: 34390739 DOI: 10.1016/j.bcp.2021.114727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 01/08/2023]
Abstract
Thalidomide is an antiinflammatory, antiangiogenic and immunomodulatory agent which has been used for the treatment of erythema nodosum leprosum and multiple myeloma. It has also been employed in treating complex regional pain syndromes. The current study aimed to reveal the molecular mechanisms underlying thalidomide-induced pain antihypersensitive effects in neuropathic pain. Thalidomide gavage, but not its more potent analogs lenalidomide and pomalidomide, inhibited mechanical allodynia and thermal hyperalgesia in neuropathic pain rats induced by tight ligation of spinal nerves, with ED50 values of 44.9 and 23.5 mg/kg, and Emax values of 74% and 84% MPE respectively. Intrathecal injection of thalidomide also inhibited mechanical allodynia and thermal hyperalgesia in neuropathic pain. Treatment with thalidomide, lenalidomide and pomalidomide reduced peripheral nerve injury-induced proinflammatory cytokines (TNFα, IL-1β and IL-6) in the ipsilateral spinal cords of neuropathic rats and LPS-treated primary microglial cells. In contrast, treatment with thalidomide, but not lenalidomide or pomalidomide, stimulated spinal expressions of IL-10 and β-endorphin in neuropathic rats. Particularly, thalidomide specifically stimulated IL-10 and β-endorphin expressions in microglia but not astrocytes or neurons. Furthermore, pretreatment with the IL-10 antibody blocked upregulation of β-endorphin in neuropathic rats and cultured microglial cells, whereas it did not restore thalidomide-induced downregulation of proinflammatory cytokine expression. Importantly, pretreatment with intrathecal injection of the microglial metabolic inhibitor minocycline, IL-10 antibody, β-endorphin antiserum, and preferred or selective μ-opioid receptor antagonist naloxone or CTAP entirely blocked thalidomide gavage-induced mechanical antiallodynia. Our results demonstrate that thalidomide, but not lenalidomide or pomalidomide, alleviates neuropathic pain, which is mediated by upregulation of spinal microglial IL-10/β-endorphin expression, rather than downregulation of TNFα expression.
Collapse
|
9
|
Yuan Q, Liu X, Xian YF, Yao M, Zhang X, Huang P, Wu W, Lin ZX. Satellite glia activation in dorsal root ganglion contributes to mechanical allodynia after selective motor fiber injury in adult rats. Biomed Pharmacother 2020; 127:110187. [PMID: 32361638 DOI: 10.1016/j.biopha.2020.110187] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence suggests that activation of satellite glia cells (SGCs) in sensory ganglia play important roles in the development of neuropathic pain. The present study aimed to investigate the involvement of SGC activation in a novel model of motor nerve injury induced pain hypersensitivity. The neuropathic pain model was established by cervical 8 ventral root avulsion (C8VA). Glial fibrillary acidic protein (GFAP) was used as a marker of SGC activation. Unilateral C8VA resulted in mechanical allodynia, but not thermal hyperalgesia in bilateral paws. Expectedly, SGCs were robustly activated on as early as 1 day and persisted for at least 7 days in the ipsilateral and contralateral dorsal root ganglia (DRG) of C6, C7 and C8 after C8VA. Double immunofluorescence showed that almost all the activated SGCs enveloped neurofilament 200 (NF200) positive myelinated neurons in DRG. Local application of fluorocitrate (FC), a glial metabolism inhibitor, significantly decreased the number of activated SGCs and alleviated bilateral mechanical allodynia. These results suggest that SGC activation contributed to ipsilateral and mirror-image pain hypersensitivity after C8VA. Inhibition of SGC activation represented a promising therapeutic strategy for the management of neuropathic pain following brachial plexus root avulsion.
Collapse
Affiliation(s)
- Qiuju Yuan
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, China.
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Min Yao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Xie Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Pengyun Huang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, China
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, China; Brain Research Centre, Faculty of Medicine, The Chinese University of Hong Kong, China.
| |
Collapse
|
10
|
Xie MX, Zhu HQ, Pang RP, Wen BT, Liu XG. Mechanisms for therapeutic effect of bulleyaconitine A on chronic pain. Mol Pain 2019; 14:1744806918797243. [PMID: 30180777 PMCID: PMC6125851 DOI: 10.1177/1744806918797243] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bulleyaconitine A, a diterpenoid alkaloid isolated from Aconitum bulleyanum plants, has been used for the treatment of chronic pain in China since 1985. Clinical studies show that the oral administration of bulleyaconitine A is effective for treating different kinds of chronic pain, including back pain, joint pain, and neuropathic pain with minimal side effect in human patients. The experimental studies have revealed that bulleyaconitine A at therapeutic doses potently inhibits the peripheral sensitization and central sensitization that underlie chronic pain and has no effect on acute pain. Bulleyaconitine A preferably blocks tetrodotoxin-sensitive voltage-gated sodium channels in dorsal root ganglion neurons by inhibition of protein kinase C, and the effect is around 600 times more potent in neuropathic animals than in naïve ones. Bulleyaconitine A at 5 nM inhibits the hypersensitivity of dorsal root ganglion neurons in neuropathic rats but has no effect on excitability of dorsal root ganglion neurons in sham group. Bulleyaconitine A inhibits long-term potentiation at C-fiber synapses in spinal dorsal horn, a synaptic model of pathological pain, preferably in neuropathic pain rats over naïve rats. The following mechanisms may underlie the selective effect of bulleyaconitine A on chronic pain. (1) In neuropathic conditions, protein kinase C and voltage-gated sodium channels in dorsal root ganglion neurons are upregulated, which enhances bulleyaconitine A's effect. (2) Bulleyaconitine A use-dependently blocks voltage-gated sodium channels and therefore inhibits the ectopic discharges that are important for neuropathic pain. (3) Bulleyaconitine A is shown to inhibit neuropathic pain by the modulation of spinal microglia, which are involved in the chronic pain but not in acute (nociceptive) pain. Moreover, bulleyaconitine A facilitates the anesthetic effect of morphine and inhibits morphine tolerance in rats. Together, bulleyaconitine A is able to inhibit chronic pain by targeting at multiple molecules. Further clinical and experimental studies are needed for evaluating the efficacy of bulleyaconitine A in different forms of chronic pain in patients and for exploring the underlying mechanisms.
Collapse
Affiliation(s)
- Man-Xiu Xie
- 1 Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - He-Quan Zhu
- 2 Pain Research Center, Sun Yat-sen University, Guangzhou, China
| | - Rui-Ping Pang
- 2 Pain Research Center, Sun Yat-sen University, Guangzhou, China
| | - Bing-Ting Wen
- 2 Pain Research Center, Sun Yat-sen University, Guangzhou, China
| | - Xian-Guo Liu
- 2 Pain Research Center, Sun Yat-sen University, Guangzhou, China.,3 Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
11
|
Yang J, Xie MX, Hu L, Wang XF, Mai JZ, Li YY, Wu N, Zhang C, Li J, Pang RP, Liu XG. Upregulation of N-type calcium channels in the soma of uninjured dorsal root ganglion neurons contributes to neuropathic pain by increasing neuronal excitability following peripheral nerve injury. Brain Behav Immun 2018; 71:52-65. [PMID: 29709527 DOI: 10.1016/j.bbi.2018.04.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 01/05/2023] Open
Abstract
N-type voltage-gated calcium (Cav2.2) channels are expressed in the central terminals of dorsal root ganglion (DRG) neurons, and are critical for neurotransmitter release. Cav2.2 channels are also expressed in the soma of DRG neurons, where their function remains largely unknown. Here, we showed that Cav2.2 was upregulated in the soma of uninjured L4 DRG neurons, but downregulated in those of injured L5 DRG neurons following L5 spinal nerve ligation (L5-SNL). Local application of specific Cav2.2 blockers (ω-conotoxin GVIA, 1-100 μM or ZC88, 10-1000 μM) onto L4 and 6 DRGs on the operated side, but not the contralateral side, dose-dependently reversed mechanical allodynia induced by L5-SNL. Patch clamp recordings revealed that both ω-conotoxin GVIA (1 μM) and ZC88 (10 μM) depressed hyperexcitability in L4 but not in L5 DRG neurons of L5-SNL rats. Consistent with this, knockdown of Cav2.2 in L4 DRG neurons with AAV-Cav2.2 shRNA substantially prevented L5-SNL-induced mechanical allodynia and hyperexcitability of L4 DRG neurons. Furthermore, in L5-SNL rats, interleukin-1 beta (IL-1β) and IL-10 were upregulated in L4 DRGs and L5 DRGs, respectively. Intrathecal injection of IL-1β induced mechanical allodynia and Cav2.2 upregulation in bilateral L4-6 DRGs of naïve rats, whereas injection of IL-10 substantially prevented mechanical allodynia and Cav2.2 upregulation in L4 DRGs in L5-SNL rats. Finally, in cultured DRG neurons, Cav2.2 was dose-dependently upregulated by IL-1β and downregulated by IL-10. These data indicate that the upregulation of Cav2.2 in uninjured DRG neurons via IL-1β over-production contributes to neuropathic pain by increasing neuronal excitability following peripheral nerve injury.
Collapse
Affiliation(s)
- Jie Yang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Man-Xiu Xie
- Department of Anesthesiology, Cancer Center, Sun Yat-sen University, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, East 651 Dongfeng Rd, Guangzhou 510060, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, 16 Lincui Rd, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Fang Wang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Jie-Zhen Mai
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Yong-Yong Li
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Cheng Zhang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Rui-Ping Pang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China.
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou 510080, China.
| |
Collapse
|
12
|
Chen SX, Wang SK, Yao PW, Liao GJ, Na XD, Li YY, Zeng WA, Liu XG, Zang Y. Early CALP2 expression and microglial activation are potential inducers of spinal IL-6 up-regulation and bilateral pain following motor nerve injury. J Neurochem 2018; 145:154-169. [DOI: 10.1111/jnc.14317] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Shao-Xia Chen
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
- Department of Anesthesiology; Cancer Center, Sun Yat-Sen University; State Key Laboratory of Oncology in South China; Collaborative, Innovation Center for Cancer Medicine; Guangzhou China
| | - Shao-Kun Wang
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
| | - Pei-Wen Yao
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
| | - Guang-Jie Liao
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
| | - Xiao-Dong Na
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
- Department of Pathophysiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
| | - Yong-Yong Li
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
| | - Wei-an Zeng
- Department of Anesthesiology; Cancer Center, Sun Yat-Sen University; State Key Laboratory of Oncology in South China; Collaborative, Innovation Center for Cancer Medicine; Guangzhou China
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
| | - Ying Zang
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
| |
Collapse
|
13
|
Calpain-2 Regulates TNF-α Expression Associated with Neuropathic Pain Following Motor Nerve Injury. Neuroscience 2018; 376:142-151. [DOI: 10.1016/j.neuroscience.2018.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/05/2018] [Accepted: 02/14/2018] [Indexed: 11/17/2022]
|
14
|
Zhang XL, Ding HH, Xu T, Liu M, Ma C, Wu SL, Wei JY, Liu CC, Zhang SB, Xin WJ. Palmitoylation of δ-catenin promotes kinesin-mediated membrane trafficking of Nav1.6 in sensory neurons to promote neuropathic pain. Sci Signal 2018; 11:11/523/eaar4394. [PMID: 29588412 DOI: 10.1126/scisignal.aar4394] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiao-Long Zhang
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Huan-Huan Ding
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ting Xu
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng Liu
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chao Ma
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shao-Ling Wu
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jia-You Wei
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Cui-Cui Liu
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Su-Bo Zhang
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Wen-Jun Xin
- Neuroscience Program, Zhongshan School of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
15
|
Bigbee AJ, Akhavan M, Havton LA. Plasticity of Select Primary Afferent Projections to the Dorsal Horn after a Lumbosacral Ventral Root Avulsion Injury and Root Replantation in Rats. Front Neurol 2017; 8:291. [PMID: 28824522 PMCID: PMC5534445 DOI: 10.3389/fneur.2017.00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/06/2017] [Indexed: 11/16/2022] Open
Abstract
Injuries to the conus medullaris and cauda equina portions of the spinal cord result in neurological impairments, including paralysis, autonomic dysfunction, and pain. In experimental studies, earlier investigations have shown that a lumbosacral ventral root avulsion (VRA) injury results in allodynia, which may be ameliorated by surgical replantation of the avulsed ventral roots. Here, we investigated the long-term effects of an L6 + S1 VRA injury on the plasticity of three populations of afferent projections to the dorsal horn in rats. At 8 weeks after a unilateral L6 + S1 VRA injury, quantitative morphological studies of the adjacent L5 dorsal horn showed reduced immunoreactivity (IR) for the vesicular glutamate transporter, VGLUT1 and isolectin B4 (IB4) binding, whereas IR for calcitonin gene-related peptide (CGRP) was unchanged. The IR for VGLUT1 and CGRP as well as IB4 binding was at control levels in the L5 dorsal horn at 8 weeks following an acute surgical replantation of the avulsed L6 + S1 ventral roots. Quantitative morphological studies of the L5 dorsal root ganglia (DRGs) showed unchanged neuronal numbers for both the VRA and replanted series compared to shams. The portions of L5 DRG neurons expressing IR for VGLUT1 and CGRP, and IB4 binding were also the same between the VRA, replanted, and sham-operated groups. We conclude that the L5 dorsal horn shows selective plasticity for VGLUT1 and IB4 primary afferent projections after an L6 + S1 VRA injury and surgical repair.
Collapse
Affiliation(s)
- Allison J Bigbee
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Mahnaz Akhavan
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States
| | - Leif A Havton
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
16
|
Lewis SS, Grace PM, Hutchinson MR, Maier SF, Watkins LR. Constriction of the buccal branch of the facial nerve produces unilateral craniofacial allodynia. Brain Behav Immun 2017; 64:59-64. [PMID: 27993689 PMCID: PMC5474358 DOI: 10.1016/j.bbi.2016.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 01/23/2023] Open
Abstract
Despite pain being a sensory experience, studies of spinal cord ventral root damage have demonstrated that motor neuron injury can induce neuropathic pain. Whether injury of cranial motor nerves can also produce nociceptive hypersensitivity has not been addressed. Herein, we demonstrate that chronic constriction injury (CCI) of the buccal branch of the facial nerve results in long-lasting, unilateral allodynia in the rat. An anterograde and retrograde tracer (3000MW tetramethylrhodamine-conjugated dextran) was not transported to the trigeminal ganglion when applied to the injury site, but was transported to the facial nucleus, indicating that this nerve branch is not composed of trigeminal sensory neurons. Finally, intracisterna magna injection of interleukin-1 (IL-1) receptor antagonist reversed allodynia, implicating the pro-inflammatory cytokine IL-1 in the maintenance of neuropathic pain induced by facial nerve CCI. These data extend the prior evidence that selective injury to motor axons can enhance pain to supraspinal circuits by demonstrating that injury of a facial nerve with predominantly motor axons is sufficient for neuropathic pain, and that the resultant pain has a neuroimmune component.
Collapse
Affiliation(s)
- Susannah S. Lewis
- Department of Psychology & Neuroscience, University of Colorado, Boulder, USA
| | - Peter M. Grace
- Department of Psychology & Neuroscience, University of Colorado, Boulder, USA,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Mark R. Hutchinson
- School of Medicine, University of Adelaide, Adelaide, Australia,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, Australia
| | - Steven F. Maier
- Department of Psychology & Neuroscience, University of Colorado, Boulder, USA
| | - Linda R. Watkins
- Department of Psychology & Neuroscience, University of Colorado, Boulder, USA,Corresponding author: Department of Psychology, Campus Box 345, University of Colorado at Boulder, Boulder, Colorado, USA 80309-0345, , Fax: (303) 492-2967, Phone: (303) 492-7034
| |
Collapse
|
17
|
mir-500-Mediated GAD67 Downregulation Contributes to Neuropathic Pain. J Neurosci 2017; 36:6321-31. [PMID: 27277808 DOI: 10.1523/jneurosci.0646-16.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/28/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Neuropathic pain is a common neurobiological disease involving multifaceted maladaptations ranging from gene modulation to synaptic dysfunction, but the interactions between synaptic dysfunction and the genes that are involved in persistent pain remain elusive. In the present study, we found that neuropathic pain induced by the chemotherapeutic drug paclitaxel or L5 ventral root transection significantly impaired the function of GABAergic synapses of spinal dorsal horn neurons via the reduction of the GAD67 expression. We also found that mir-500 expression was significantly increased and involved in the modulation of GAD67 expression via targeting the specific site of Gad1 gene in the dorsal horn. In addition, knock-out of mir-500 or using mir-500 antagomir rescued the GABAergic synapses in the spinal dorsal horn neurons and attenuated the sensitized pain behavior in the rats with neuropathic pain. To our knowledge, this is the first study to investigate the function significance and the underlying molecular mechanisms of mir-500 in the process of neuropathic pain, which sheds light on the development of novel therapeutic options for neuropathic pain. SIGNIFICANCE STATEMENT Neuropathic pain is a common neurobiological disease involving multifaceted maladaptations ranging from gene modulation to synaptic dysfunction, but the underlying molecular mechanisms remain elusive. The present study illustrates for the first time a mir-500-mediated mechanism underlying spinal GABAergic dysfunction and sensitized pain behavior in neuropathic pain induced by the chemotherapeutic drug paclitaxel or L5 ventral root transection, which sheds light on the development of novel therapeutic options for neuropathic pain.
Collapse
|
18
|
Chang HL, Wang HC, Chunag YT, Chou CW, Lin IL, Lai CS, Chang LL, Cheng KI. miRNA Expression Change in Dorsal Root Ganglia After Peripheral Nerve Injury. J Mol Neurosci 2016; 61:169-177. [PMID: 28012097 DOI: 10.1007/s12031-016-0876-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
The role of microRNAs (miRNAs) in the regulation of nerve injury-induced neuropathic pain is unclear. The aims of this study were to assess and compare miRNA expression profiles in dorsal root ganglia (DRG) following three different kinds of peripheral nerve injury, including spinal nerve ligation (SNL), dorsal root transection (DRT), and ventral root transection (VRT), in Sprague-Dawley rats. Responses to thermal and mechanical stimuli were measured preoperatively and on postoperative days (PODs) 1, 4, and 7. A miRNA microarray analysis was used to detect the miRNA expression profiles in injured L5 DRG from SNL, DRT, and VRT on POD 7. Validation of miRNA expression was performed by qPCR and in situ hybridization. Rats receiving SNL displayed significantly higher mechanical hypersensitivity, but those receiving DRT developed higher thermal hypersensitivity. The number of miRNAs that were significantly upregulated in L5 DRG was 49 (7.2%), 25 (3.7%), and 146 (21.5%) following SNL, DRT, and VRT, respectively. On the other hand, 35 (5.1%) miRNAs were significantly downregulated in the SNL group, 21 (3.1%) miRNAs in the DRT group, and 41 (6.0%) miRNAs in the VRT group. Of the four miRNAs that were mutually aberrant in all three models, two were significantly upregulated (twofold), miR-21 and miR-31, and two were significantly downregulated, miR-668 and miR-672. Using in situ hybridization, miRNA-21, miRNA-31, miRNA-668, and miRNA-672 were found to localize to neurons in the DRG. Collectively, the mutual abnormal miRNA expression of miR-21, miR-31, miR-668, and miR-677 implied that these miRNAs may be therapeutic targets for alleviating multiple forms of neuropathic pain.
Collapse
Affiliation(s)
- Hsueh-Ling Chang
- Department of Anesthesiology, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Kaohsiung, 807, Republic of China
| | - Hung-Chen Wang
- Department of Neurosurgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Republic of China
| | - Yi-Ta Chunag
- Physical Education Center, Kaohsiung Medical University, Kaohsiung, Republic of China
| | - Chao-Wen Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Republic of China
| | - I-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Republic of China
| | - Chung-Sheng Lai
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Republic of China.,Division of Plastic and Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Republic of China
| | - Lin-Li Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Republic of China. .,Department of Microbiology and Immunology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 807, Republic of China. .,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Republic of China.
| | - Kuang-I Cheng
- Department of Anesthesiology, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Kaohsiung, 807, Republic of China. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Republic of China.
| |
Collapse
|
19
|
Chang HH, Havton LA. A ventral root avulsion injury model for neurogenic underactive bladder studies. Exp Neurol 2016; 285:190-196. [PMID: 27222131 DOI: 10.1016/j.expneurol.2016.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
Detrusor underactivity (DU) is defined as a contraction of reduced strength and/or duration during bladder emptying and results in incomplete and prolonged bladder emptying. The clinical diagnosis of DU is challenging when present alone or in association with other bladder conditions such as detrusor overactivity, urinary retention, detrusor hyperactivity with impaired contractility, aging, and neurological injuries. Several etiologies may be responsible for DU or the development of an underactive bladder (UAB), but the pathobiology of DU or UAB is not well understood. Therefore, new clinically relevant and interpretable models for studies of UAB are much needed in order to make progress towards new treatments and preventative strategies. Here, we review a neuropathic cause of DU in the form of traumatic injuries to the cauda equina (CE) and conus medullaris (CM) portions of the spinal cord. Lumbosacral ventral root avulsion (VRA) injury models in rats mimic the clinical phenotype of CM/CE injuries. Bilateral VRA injuries result in bladder areflexia, whereas a unilateral lesion results in partial impairment of lower urinary tract and visceromotor reflexes. Surgical re-implantation of avulsed ventral roots into the spinal cord and pharmacological strategies can augment micturition reflexes. The translational research need for the development of a large animal model for UAB studies is also presented, and early studies of lumbosacral VRA injuries in rhesus macaques are discussed.
Collapse
Affiliation(s)
- Huiyi H Chang
- Institute of Urology, University of Southern California, Los Angeles, CA, United States.
| | - Leif A Havton
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
20
|
Effect of TRPV4-p38 MAPK Pathway on Neuropathic Pain in Rats with Chronic Compression of the Dorsal Root Ganglion. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6978923. [PMID: 27366753 PMCID: PMC4913001 DOI: 10.1155/2016/6978923] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022]
Abstract
The aim of this study was to investigate the relationships among TRPV4, p38, and neuropathic pain in a rat model of chronic compression of the dorsal root ganglion. Mechanical allodynia appeared after CCD surgery, enhanced via the intrathecal injection of 4α-phorbol 12,13-didecanoate (4α-PDD, an agonist of TRPV4) and anisomycin (an agonist of p38), but was suppressed by Ruthenium Red (RR, an inhibitor of TRPV4) and SB203580 (an inhibitor of p38). The protein expressions of p38 and P-p38 were upregulated by 4α-PDD and anisomycin injection but reduced by RR and SB203580. Moreover, TRPV4 was upregulated by 4α-PDD and SB203580 and downregulated by RR and anisomycin. In DRG tissues, the numbers of TRPV4- or p38-positive small neurons were significantly changed in CCD rats, increased by the agonists, and decreased by the inhibitors. The amplitudes of ectopic discharges were increased by 4α-PDD and anisomycin but decreased by RR and SB203580. Collectively, these results support the link between TRPV4 and p38 and their intermediary role for neuropathic pain in rats with chronic compression of the dorsal root ganglion.
Collapse
|
21
|
Ouyang H, Nie B, Wang P, Li Q, Huang W, Xin W, Zeng W, Liu X. Ulinastatin attenuates neuropathic pain induced by L5-VRT via the calcineurin/IL-10 pathway. Mol Pain 2016; 12:12/0/1744806916646785. [PMID: 27175013 PMCID: PMC4956156 DOI: 10.1177/1744806916646785] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/04/2016] [Indexed: 01/08/2023] Open
Abstract
Previous studies have shown that ulinastatin, an effective inhibitor of the inflammatory response in clinical applications, can attenuate hyperalgesia in rodents. However, the underlying mechanism remains unclear. In the present study, we first examined the change in the calcineurin level, which plays an important role in regulating cytokine release in the nervous system, following lumbar 5 ventral root transection in the rat. Furthermore, we determined whether intraperitoneal (i.p.) injection of ulinastatin attenuated pain behavior via inhibition of the calcineurin-mediated inflammatory response induced by lumbar 5 ventral root transection. The results showed that the paw withdrawal threshold and paw withdrawal latency were significantly decreased following lumbar 5 ventral root transection compared to the sham group. Neuropathic pain induced by lumbar 5 ventral root transection significantly decreased the expression of calcineurin in the DRG, and calcineurin was mostly located with NF-200-positive cells, IB4-positive cells, and CGRP-positive cells and less with GFAP-positive satellite cells. Furthermore, intrathecal (i.t.) injection of exogenous calcineurin attenuated the pain behavior induced by lumbar 5 ventral root transection. Importantly, intraperitoneal injection of ulinastatin alleviated the pain behavior and calcineurin downregulation induced by lumbar 5 ventral root transection. Lastly, the cytokine IL-10 was significantly decreased following lumbar 5 ventral root transection, and application of calcineurin (intrathecal) or ulinastatin (intraperitoneal) inhibited the IL-10 downregulation induced by lumbar 5 ventral root transection. These results suggested that ulinastatin, by acting on the CN/IL-10 pathway, might be a novel and effective drug for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Handong Ouyang
- Department of Anesthesiology, Cancer Center, Sun Yat-Sen University, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Bilin Nie
- Department of Anesthesiology, Cancer Center, Sun Yat-Sen University, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Peizong Wang
- Department of Anesthesiology, Cancer Center, Sun Yat-Sen University, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Qiang Li
- Department of Anesthesiology, Cancer Center, Sun Yat-Sen University, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Wan Huang
- Department of Anesthesiology, Cancer Center, Sun Yat-Sen University, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Wenjun Xin
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Weian Zeng
- Department of Anesthesiology, Cancer Center, Sun Yat-Sen University, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China
| | - Xianguo Liu
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
22
|
Li W, Wang JX, Zhou ZH, Lu Y, Li XQ, Liu BJ, Chen HS. Contribution of capsaicin-sensitive primary afferents to mechanical hyperalgesia induced by ventral root transection in rats: the possible role of BDNF. Neurol Res 2016; 38:80-5. [DOI: 10.1080/01616412.2015.1135570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Neuropathic Pain: Sensory Nerve Injury or Motor Nerve Injury? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 904:59-75. [DOI: 10.1007/978-94-017-7537-3_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Wang XQ, Zhong XL, Li ZB, Wang HT, Zhang J, Li F, Zhang JY, Dai RP, Xin-Fu Z, Li CQ, Li ZY, Bi FF. Differential roles of hippocampal glutamatergic receptors in neuropathic anxiety-like behavior after partial sciatic nerve ligation in rats. BMC Neurosci 2015; 16:14. [PMID: 25884414 PMCID: PMC4372276 DOI: 10.1186/s12868-015-0150-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/25/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Neuropathic pain evoked by nerve injury is frequently accompanied by deterioration of emotional behaviors, but the underlying signaling mechanisms remain elusive. Glutamate (Glu) is the major mediator of excitatory synaptic transmission throughout the brain, and abnormal activity of the glutamatergic system has been implicated in the pathophysiology of pain and associated emotional comorbidities. In this study we used the partial sciatic nerve ligation (PSNL) model of neuropathic pain in rats to characterize the development of anxiety-like behavior, the expression of glutamatergic receptors, and the phosphorylation of extracellular signal-regulated kinase (ERK) in the hippocampus, the region that encodes memories related to emotions. RESULTS We found that the mechanical withdrawal threshold was significantly reduced and an anxiety-like behavior was increased as determined via open field tests and elevated plus-maze tests at 28 days after injury. No significant differences were found in the ratio of sucrose preference and immobility time detected by sucrose preference tests and forced swimming tests respectively, possibly due to the timing factor. The expression of N-methyl-D-aspartate (NMDA) receptor subtypes NR1 and NR2B, but not NR2A, GluR1, or GluR2 (the main subtype of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA] receptor) in the hippocampus of injured rats was significantly reduced. Moreover, PSNL resulted in decreased phosphorylation of ERK1/2 in the hippocampus. Intriguingly, treatment with D-serine (a co-agonist of NMDA receptor, 1 g/kg intraperitoneally) reduced the anxiety-like behavior but not the mechanical hypersensitivity induced by PSNL. CONCLUSIONS PSNL can induce significant anxiety-like but not depression-like behavior, and trigger down-regulation of NMDA but not AMPA receptors in the hippocampus at 28 days after injury.
Collapse
Affiliation(s)
- Xue-Qin Wang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Tongzipo Road 138, Changsha, Hunan, China. .,Department of Anesthesiology, the Third Xiangya Hospital, Central South University, Tongzipo Road 138, Changsha, Hunan, China. .,Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China.
| | - Xiao-Lin Zhong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China.
| | - Zhi-Bin Li
- Department of Neurology, XiangYa Hospital, Central South University, XiangYa Road 88, Changsha, Hunan, China.
| | - Hong-Tao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China.
| | - Juan Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China.
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China.
| | - Jian-Yi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China.
| | - Ru-Ping Dai
- Department of Anesthesia, the Second XiangYa Hospital of Central South University, Ren-Min Road 86, Changsha, Hunan, China.
| | - Zhou Xin-Fu
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, SA, 5000, Australia.
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China.
| | - Zhi-Yuan Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China.
| | - Fang-Fang Bi
- Department of Neurology, XiangYa Hospital, Central South University, XiangYa Road 88, Changsha, Hunan, China.
| |
Collapse
|
25
|
Zang Y, Chen SX, Liao GJ, Zhu HQ, Wei XH, Cui Y, Na XD, Pang RP, Xin WJ, Zhou LJ, Liu XG. Calpain-2 contributes to neuropathic pain following motor nerve injury via up-regulating interleukin-6 in DRG neurons. Brain Behav Immun 2015; 44:37-47. [PMID: 25150005 DOI: 10.1016/j.bbi.2014.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/25/2014] [Accepted: 08/12/2014] [Indexed: 01/09/2023] Open
Abstract
Motor nerve injury by L5 ventral root transection (L5-VRT) initiates interleukin-6 (IL-6) up-regulation in primary afferent system contributing to neuropathic pain. However, the early upstream regulatory mechanisms of IL-6 after L5-VRT are still unknown. Here, we monitored both the activity of calpain, a calcium-dependent protease suggested as one of the earliest mediators for cytokine regulation, and the expression of IL-6 in bilateral L4-L6 dorsal root ganglias (DRGs) soon after L5-VRT. We found that the protein level of calpain-2 in DRGs, but not calpain-1 was increased transiently in the first 10 min(-1)h ipsilaterally and 20 min(-1)h contralaterally after L5-VRT, long before mechanical allodynia was initiated (5-15 h ipsilaterally and 15 h(-1)d contralaterally). The early activation of calpain evaluated by the generation of spectrin breakdown products (SBDP) correlated well with IL-6 up-regulation in bilateral DRGs. Double immunofluorescence staining revealed that almost all the calpain-2 positive neurons expressed IL-6, indicating an association between calpain-2 and IL-6. Inhibition of calpain by pre-treatment with MDL28170 (25mg/kg, i.p.) attenuated the rat mechanical allodynia and prevented the early up-regulation of IL-6 following L5-VRT. Addition of exogenous calpain-2 onto the surface of left L5 DRG triggered a temporal allodynia and increased IL-6 in bilateral DRGs simultaneously. Taken together, the early increase of calpain-2 in L5-VRT rats might be responsible for the induction of allodynia via up-regulating IL-6 in DRG neurons.
Collapse
Affiliation(s)
- Ying Zang
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China.
| | - Shao-Xia Chen
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Guang-Jie Liao
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China; Department of Pathology, The Red Cross Hospital of Yulin, 1 Jinwang Rd., Yulin 537000, China
| | - He-Quan Zhu
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Xu-Hong Wei
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Yu Cui
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Xiao-Dong Na
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China; Department of Pathophysiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Rui-Ping Pang
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Wen-Jun Xin
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Li-Jun Zhou
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou 510080, China
| |
Collapse
|
26
|
|
27
|
Darian-Smith C, Lilak A, Alarcón C. Corticospinal sprouting occurs selectively following dorsal rhizotomy in the macaque monkey. J Comp Neurol 2013; 521:2359-72. [PMID: 23239125 DOI: 10.1002/cne.23289] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/07/2012] [Accepted: 12/11/2012] [Indexed: 12/19/2022]
Abstract
The corticospinal tract in the macaque and human forms the major descending pathway involved in volitional hand movements. Following a unilateral cervical dorsal root lesion, by which sensory input to the first three digits (D1-D3) is removed, monkeys are initially unable to perform a grasp retrieval task requiring sensory feedback. Over several months, however, they recover much of this capability. Past studies in our laboratory have identified a number of changes in the afferent circuitry that occur as function returns, but do changes to the efferent pathways also contribute to compensatory recovery? In this study we examined the role of the corticospinal tract in pathway reorganization following a unilateral cervical dorsal rhizotomy. Several months after animals received a lesion, the corticospinal pathways originating in the primary somatosensory and motor cortex were labeled, and terminal distribution patterns on the two sides of the cervical cord were compared. Tracers were injected only into the region of D1-D3 representation (identified electrophysiologically). We observed a strikingly different terminal labeling pattern post lesion for projections originating in the somatosensory versus motor cortex. The terminal territory from the somatosensory cortex was significantly smaller compared with the contralateral side (area mean = 0.30 vs. 0.55 mm2), indicating retraction or atrophy of terminals. In contrast, the terminal territory from the motor cortex did not shrink, and in three of four animals, aberrant terminal label was observed in the dorsal horn ipsilateral to the lesion, indicating sprouting. These differences suggest that cortical regions play a different role in post-injury recovery
Collapse
Affiliation(s)
- Corinna Darian-Smith
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California 94305-5342, USA.
| | | | | |
Collapse
|
28
|
Contribution of brain-derived neurotrophic factor to mechanical hyperalgesia induced by ventral root transection in rats. Neuroreport 2013; 24:167-70. [DOI: 10.1097/wnr.0b013e32835d4b97] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Xiao L, Cheng J, Zhuang Y, Qu W, Muir J, Liang H, Zhang D. Botulinum Toxin Type A Reduces Hyperalgesia and TRPV1 Expression in Rats with Neuropathic Pain. PAIN MEDICINE 2013; 14:276-86. [DOI: 10.1111/pme.12017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Chew DJ, Murrell K, Carlstedt T, Shortland PJ. Segmental spinal root avulsion in the adult rat: a model to study avulsion injury pain. J Neurotrauma 2013; 30:160-72. [PMID: 22934818 DOI: 10.1089/neu.2012.2481] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Road traffic accidents are the most common cause of avulsion injury, in which spinal roots are torn from the spinal cord. Patients suffer from a loss of sensorimotor function, intractable spontaneous pain, and border-zone hypersensitivity. The neuropathic pains are particularly difficult to treat because the lack of a well-established animal model of avulsion injury prevents identifying the underlying mechanisms and hinders the development of efficacious drugs. This article describes a hindlimb model of avulsion injury in adult rats where the L5 dorsal and ventral spinal root are unilaterally avulsed (spinal root avulsion [SRA]), leaving the adjacent L4 spinal root intact. SRA produced a significant ipsilateral hypersensitivity to mechanical and thermal stimulation by 5 days compared with sham-operated or naïve rats. This hypersensitivity is maintained for up to 60 days. No autotomy was observed and locomotor deficits were minimal. The hypersensitivity to peripheral stimuli could be temporarily ameliorated by administration of amitriptyline and carbamazepine, drugs that are currently prescribed to avulsion patients. Histological assessment of the L4 ganglion cells revealed no significant alterations in calcitonin gene-related peptide (CGRP), IB4, transient receptor potential cation channel subfamily V member 1 (TrpV1), or N52 staining across groups. Immunohistochemistry of the spinal cord revealed a localized glial response, phagocyte infiltration, and neuronal loss within the ipsilateral avulsed segment. A comparable response from glia and phagocytes was also found in the intact L4 spinal cord, supporting the role for central mechanisms within the L4-5 spinal cord in contributing to the generation of the pain-related behavior. The SRA model provides a platform to investigate possible new pharmacological treatments for avulsion injuries.
Collapse
Affiliation(s)
- Daniel J Chew
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, United Kingdom.
| | | | | | | |
Collapse
|
31
|
Wei XH, Na XD, Liao GJ, Chen QY, Cui Y, Chen FY, Li YY, Zang Y, Liu XG. The up-regulation of IL-6 in DRG and spinal dorsal horn contributes to neuropathic pain following L5 ventral root transection. Exp Neurol 2012; 241:159-68. [PMID: 23261764 DOI: 10.1016/j.expneurol.2012.12.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 12/28/2022]
Abstract
Our previous works have shown that pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) plays an important role in neuropathic pain produced by lumber 5 ventral root transection (L5-VRT). In the present work we evaluate the role of interleukin-6 (IL-6), another key inflammatory cytokine, in the L5-VRT model. We found that IL-6 was up-regulated in the ipsilateral L4 and L5 dorsal root ganglian (DRG) neurons and in bilateral lumbar spinal cord following L5-VRT. Double immunofluorescence stainings revealed that in DRGs the increased immunoreactivity (IR) of IL-6 was almost restricted in neuronal cells, while in the spinal dorsal horn IL-6-IR up-regulated in both glial cells (astrocyte and microglia) and neurons. Intrathecal administration of IL-6 neutralizing antibody significantly delayed the induction of mechanical allodynia in bilateral hindpaws after L5-VRT. Furthermore, inhibition of TNF-α synthesis by intraperitoneal thalidomide prevented both mechanical allodynia and the up-regulation of IL-6 in DRGs following L5-VRT. These data suggested that the increased IL-6 in afferent neurons and spinal cord contribute to the development of neuropathic pain following motor fiber injury, and that TNF-α is responsible for the up-regulation of IL-6.
Collapse
Affiliation(s)
- Xu-Hong Wei
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chang HH, Havton LA. Modulation of the visceromotor reflex by a lumbosacral ventral root avulsion injury and repair in rats. Am J Physiol Renal Physiol 2012; 303:F641-7. [PMID: 22696606 DOI: 10.1152/ajprenal.00094.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased abdominal muscle wall activity may be part of a visceromotor reflex (VMR) response to noxious stimulation of the bladder. However, information is sparse regarding the effects of cauda equina injuries on the VMR in experimental models. We studied the effects of a unilateral L6-S1 ventral root avulsion (VRA) injury and acute ventral root reimplantation (VRI) into the spinal cord on micturition reflexes and electromyographic activity of the abdominal wall in rats. Cystometrogram (CMG) and electromyography (EMG) of the abdominal external oblique muscle (EOM) were performed. All rats demonstrated EMG activity of the EOM associated with reflex bladder contractions. At 1 wk after VRA and VRI, the duration of the EOM EMG activity associated with reflex voiding was significantly prolonged compared with age-matched sham rats. However, at 3 wk postoperatively, the duration of the EOM responses remained increased in the VRA series but had normalized in the VRI group. The EOM EMG duration was normalized for both VRA and VRI groups at 8-12 wk postoperatively. CMG recordings show increased contraction duration at 1 and 3 wk postoperatively for the VRA series, whereas the contraction duration was only increased at 1 wk postoperatively for the VRI series. Our studies suggest that a unilateral lumbosacral VRA injury results in a prolonged VMR to bladder filling using a physiological saline solution. An acute root replantation decreased the VMR induced by VRA injury and provides earlier sensory recovery.
Collapse
Affiliation(s)
- Huiyi H Chang
- Dept. of Anesthesiology and Perioperative Care, Reeve-Irvine Research Center, Univ. of California at Irvine School of Medicine, 837 Health Science Road, Irvine, CA 92697, USA
| | | |
Collapse
|
33
|
Ashton JC. Neuropathic pain: an evolutionary hypothesis. Med Hypotheses 2012; 78:641-3. [PMID: 22342252 DOI: 10.1016/j.mehy.2012.01.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 01/27/2012] [Indexed: 11/15/2022]
Abstract
BACKGROUND Whereas nociceptive pain has a clear survival value, the evolutionary origins of neuropathic pain remains unexplained. OBJECTIVES It is argued that neuropathic pain is an adaptation that has evolved to detect non-specific damage to the nervous system, and that it operates on the same principles of an analogous hypothesis that has been put forward to explain the evolutionary utility of motion sickness. Whereas motion sickness has been proposed to arise from an inappropriate activation of a system evolved to respond to incoherence between vestibular and visual reference frames as an indication of acute neurotoxicity, it is proposed that neuropathic pain arises from the activation of a system evolved to respond to incoherence between proprioceptive and motor outputs as an indication of nerve trauma. RESULTS AND CONCLUSIONS Evidence that supports this hypothesis is reviewed, followed by conclusions regarding consequences for pain theory and management.
Collapse
Affiliation(s)
- John C Ashton
- Department of Pharmacology & Toxicology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
34
|
Brownjohn PW, Ashton JC. Microglial encapsulation of motor neurons in models of neuropathic pain: a confound in pain assessment? Eur J Pain 2012; 16:459-60. [PMID: 22337524 DOI: 10.1002/j.1532-2149.2011.00101.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Havton LA. A lumbosacral ventral root avulsion injury and repair model for studies of neuropathic pain in rats. Methods Mol Biol 2012; 851:185-193. [PMID: 22351091 DOI: 10.1007/978-1-61779-561-9_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Neuropathic pain may develop after a variety of injuries to peripheral nerves and roots. Most injury models have included a direct injury to primary afferent fibers or neurons. Recently, it has been demonstrated that injury to motor fibers in ventral roots may also result in neuropathic pain. A lumbosacral ventral root avulsion injury results in acute and persistent mechanical allodynia, but not thermal hyperesthesia. Interestingly, an acute replantation of the avulsed ventral roots into the spinal cord results in amelioration of the neuropathic pain. A detailed description of this injury and repair model is provided.
Collapse
Affiliation(s)
- Leif A Havton
- Department of Anesthesiology, School of Medicine, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
36
|
Carlstedt T, Havton L. The longitudinal spinal cord injury: lessons from intraspinal plexus, cauda equina and medullary conus lesions. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:337-54. [PMID: 23098723 DOI: 10.1016/b978-0-444-52137-8.00021-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Spinal nerve root avulsion injury interrupts the transverse segmental spinal cord nerve fibers. There is degeneration of sensory, motor, and autonomic axons, loss of synapses, deterioration of local segmental connections, nerve cell death, and reactions among non neuronal cells with central nerve system (CNS) scar formation, i.e., a cascade of events similar to those known to occur in any injury to the spinal cord. This is the longitudinal spinal cord injury (SCI). For function to be restored, nerve cells must survive and there must be regrowth of new nerve fibers along a trajectory consisting of CNS growth-inhibitory tissue in the spinal cord as well as peripheral nervous system (PNS) growth-promoting tissue in nerves. Basic science results have been translated into a successful surgical strategy to treat root avulsion injuries in man. In humans, this technique is currently the most promising treatment of any spinal cord injury, with return of useful muscle function together with pain alleviation. Experimental studies have also identified potential candidates for adjunctive therapies that, together with surgical replantation of avulsed roots after brachial plexus and cauda equina injuries, can restore not only motor but also autonomic and sensory trajectories to augment the recovery of neurological function. This is the first example of a spinal cord lesion that can be treated surgically, leading to restoration of somatic and autonomic activity and alleviation of pain.
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW The causes of inflammatory pain and neuropathic pain are fundamentally different. There are, however, common mechanisms underlying the generation of each pain state. We will discuss some specific elements observed in both tissue and nerve injury pain states and consider the hypothesis that these two states actually demonstrate a convergence over time. RECENT FINDINGS The increased pain sensation following tissue and nerve injury results from several mechanisms, including altered ion channel expression in dorsal root ganglion neurons, enhanced dorsal horn glutamate release from primary afferents, enhanced glutamate receptor function in second-order neurons, disinhibition in the dorsal horn and glia cell activation. The role of specific subtypes of receptors, ion channels and glutamate transporters is revealed at peripheral and central sites. Importantly over time, a number of changes, in the dorsal root ganglion and in dorsal horn observed after tissue injury resemble changes observed after nerve injury. SUMMARY Recognition of mechanisms common to both inflammatory pain and neuropathic pain might shed light on the understanding of the transition from acute pain to persistent pain.
Collapse
|
38
|
Chew DJ, Carlstedt T, Shortland PJ. A comparative histological analysis of two models of nerve root avulsion injury in the adult rat. Neuropathol Appl Neurobiol 2011; 37:613-32. [DOI: 10.1111/j.1365-2990.2011.01176.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Xiao L, Cheng J, Dai J, Zhang D. Botulinum toxin decreases hyperalgesia and inhibits P2X3 receptor over-expression in sensory neurons induced by ventral root transection in rats. PAIN MEDICINE 2011; 12:1385-94. [PMID: 21810163 DOI: 10.1111/j.1526-4637.2011.01182.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We aim to determine the effects of Botulinum toxin type A (BTX-A) on neuropathic pain behavior and the expression of P2X(3) receptor in dorsal root ganglion (DRG) in rats with neuropathic pain induced by L5 ventral root transection (L5 VRT). METHODS Neuropathic pain was induced by L5 VRT in male Sprague-Dawley rats. Either saline or BTX-A was administered to the plantar surface. Behavioral tests were conducted preoperatively and at predefined postoperative days. The expression of P2X(3) receptors in DRG neurons was detected by immunoreactivity at postoperative days 3, 7, 14, and 21. RESULTS The number of positive P2X(3) neurons in the ipsilateral L5 DRG increased significantly after L5 VRT (P<0.001). This increase persisted for at least 3 weeks after the operation. No significant changes in P2X(3) expression were detected in the contralateral L5, or in the L4 DRGs bilaterally. Subcutaneous administration of BTX-A, performed on the left hindpaw at days 4, 8, or 16 post VRT surgery, significantly reduced mechanical allodynia bilaterally and inhibited P2X(3) over-expression induced by L5 VRT. CONCLUSIONS L5 VRT led to over-expression of P2X(3) receptors in the L5 DRG and bilateral mechanical allodynia in rats. Subcutaneous injection of BTX-A significantly reversed the neuropathic pain behavior and the over-expression of P2X(3) receptor in nociceptive neurons. These data not only show over-expression of purinergic receptors in the VRT model of neuropathic pain but also reveal a novel mechanism of botulinum toxin action on nociceptive neurons.
Collapse
Affiliation(s)
- Lizu Xiao
- Pain Medicine Department, Shenzhen No. 6 People's Hospital, Shenzhen, China
| | | | | | | |
Collapse
|
40
|
Jeon SM, Sung JK, Cho HJ. Expression of monocyte chemoattractant protein-1 and its induction by tumor necrosis factor receptor 1 in sensory neurons in the ventral rhizotomy model of neuropathic pain. Neuroscience 2011; 190:354-66. [PMID: 21712071 DOI: 10.1016/j.neuroscience.2011.06.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 06/07/2011] [Accepted: 06/11/2011] [Indexed: 12/16/2022]
Abstract
The expression and role of monocyte chemoattractant protein-1 (MCP-1) in the rat dorsal root ganglion (DRG) and spinal cord was evaluated in the lumbar 5 ventral rhizotomy (L5 VR) model of neuropathic pain. MCP-1 protein expression in the L4/L5 DRG neurons following L5 VR peaked after 3 days, and then declined. Immunohistochemistry showed that no MCP-1 immunoreactivity was observed in the spinal cord after L5 VR, while enzyme-linked immunosorbent assay (ELISA) revealed a small but significant increase in MCP-1 protein content. L5 VR resulted in robust and prolonged mechanical allodynia and thermal hyperalgesia. Administration of anti-MCP-1 neutralizing antibody before and at early time points after L5 VR resulted in a significant attenuation of mechanical allodynia and thermal hyperalgesia, while post-treatment had a weaker effect on established neuropathic pain. Extensive colocalization of tumor necrosis factor receptor 1 (TNFR1) and MCP-1 was observed in the L5 DRG following L5 VR, and treatment with TNFR1 antisense oligonucleotide reduced L5 VR-induced MCP-1 expression in L5 DRG neurons and neuropathic pain behaviors. MCP-1/chemokine (C-C motif) receptor 2 signaling has been proposed as a major regulator of macrophage trafficking. In contrast to the effect on pain behaviors, however, intrathecal administration of anti-MCP-1 neutralizing antibody had no effect on the L5 VR-induced increase in ED-1-immunoreactive macrophages in the L5 DRG and the distal stump of the transected L5 ventral root. These data indicate that increased MCP-1 in DRG neurons might participate in the initiation, rather than the maintenance, of neuropathic pain induced by L5 VR. Furthermore, increased MCP-1 in the DRG is induced by TNF-α/TNFR1 and has no effect on the infiltration of macrophages into the DRG following L5 VR.
Collapse
Affiliation(s)
- S-M Jeon
- Department of Anatomy, School of Medicine, Kyungpook National University, 2-101, Dongin Dong, Daegu 700-422, South Korea
| | | | | |
Collapse
|
41
|
Berger JV, Knaepen L, Janssen SPM, Jaken RJP, Marcus MAE, Joosten EAJ, Deumens R. Cellular and molecular insights into neuropathy-induced pain hypersensitivity for mechanism-based treatment approaches. ACTA ACUST UNITED AC 2011; 67:282-310. [PMID: 21440003 DOI: 10.1016/j.brainresrev.2011.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 02/16/2011] [Accepted: 03/18/2011] [Indexed: 12/15/2022]
Abstract
Neuropathic pain is currently being treated by a range of therapeutic interventions that above all act to lower neuronal activity in the somatosensory system (e.g. using local anesthetics, calcium channel blockers, and opioids). The present review highlights novel and often still largely experimental treatment approaches based on insights into pathological mechanisms, which impact on the spinal nociceptive network, thereby opening the 'gate' to higher brain centers involved in the perception of pain. Cellular and molecular mechanisms such as ectopia, sensitization of nociceptors, phenotypic switching, structural plasticity, disinhibition, and neuroinflammation are discussed in relation to their involvement in pain hypersensitivity following either peripheral neuropathies or spinal cord injury. A mechanism-based treatment approach may prove to be successful in effective treatment of neuropathic pain, but requires more detailed insights into the persistence of cellular and molecular pain mechanisms which renders neuropathic pain unremitting. Subsequently, identification of the therapeutic window-of-opportunities for each specific intervention in the particular peripheral and/or central neuropathy is essential for successful clinical trials. Most of the cellular and molecular pain mechanisms described in the present review suggest pharmacological interference for neuropathic pain management. However, also more invasive treatment approaches belong to current and/or future options such as neuromodulatory interventions (including spinal cord stimulation) and cell or gene therapies, respectively.
Collapse
Affiliation(s)
- Julie V Berger
- Department of Anesthesiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
42
|
Dubový P. Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction. Ann Anat 2011; 193:267-75. [PMID: 21458249 DOI: 10.1016/j.aanat.2011.02.011] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 12/29/2022]
Abstract
Wallerian degeneration is a cascade of stereotypical events in reaction to injury of nerve fibres. These events consist of cellular and molecular alterations, including macrophage invasion, activation of Schwann cells, as well as neurotrophin and cytokine upregulation. This review focuses on cellular and molecular changes distal to various types of peripheral nerve injury which simultaneously contribute to axonal regeneration and neuropathic pain induction. In addition to the stereotypical events of Wallerian degeneration, various types of nerve damage provide different conditions for both axonal regeneration and neuropathic pain induction. Wallerian degeneration of injured peripheral nerve is associated with an inflammatory response including rapid upregulation of the immune signal molecules like cytokines, chemokines and transcription factors with both beneficial and detrimental effects on nerve regeneration or neuropathic pain induction. A better understanding of the molecular interactions between the immune system and peripheral nerve injury would open the possibility for targeting these inflammatory mediators in therapeutic interventions. Understanding the pleiotropic effects of cytokines/chemokines, however, requires investigating their highly specific pathways and precise points of action.
Collapse
Affiliation(s)
- Petr Dubový
- Department of Anatomy, Division of Neuroanatomy, Faculty of Medicine and Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 3, Brno, Czech Republic.
| |
Collapse
|
43
|
Chen X, Pang RP, Shen KF, Zimmermann M, Xin WJ, Li YY, Liu XG. TNF-α enhances the currents of voltage gated sodium channels in uninjured dorsal root ganglion neurons following motor nerve injury. Exp Neurol 2011; 227:279-86. [DOI: 10.1016/j.expneurol.2010.11.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 11/19/2010] [Accepted: 11/29/2010] [Indexed: 01/28/2023]
|
44
|
Abstract
PURPOSE OF REVIEW This review will discuss recent progress in experimental and translational research related to surgical repair of proximal nerve root injuries, and emerging potential therapies, which may be combined with replantation surgeries to augment functional outcomes after brachial plexus and cauda equina injuries. RECENT FINDINGS Progress in experimental studies of root and peripheral nerve injuries has identified potential candidates for adjunctive therapies, which may be combined with surgical replantation of avulsed roots after brachial plexus and cauda equina injuries. We will discuss recent advances related to adjunctive neuroprotective strategies, neurotrophic factor delivery, and emerging cellular treatment strategies after extensive nerve root trauma. We will also provide an update on electrical stimulation to promote regenerative axonal growth and new insights on the recovery of sensory functions after root injury and repair. SUMMARY In the light of recent advances in experimental studies, we envision that future repair of brachial plexus and cauda equina injuries will include spinal cord surgery to restore motor and sensory trajectories and a variety of adjunctive therapies to augment the recovery of neurological function.
Collapse
|
45
|
Salegio EAA, Pollard AN, Smith M, Zhou XF. Macrophage presence is essential for the regeneration of ascending afferent fibres following a conditioning sciatic nerve lesion in adult rats. BMC Neurosci 2011; 12:11. [PMID: 21251261 PMCID: PMC3039622 DOI: 10.1186/1471-2202-12-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 01/20/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Injury to the peripheral branch of dorsal root ganglia (DRG) neurons prior to injury to the central nervous system (CNS) DRG branch results in the regeneration of the central branch. The exact mechanism mediating this regenerative trigger is not fully understood. It has been proposed that following peripheral injury, the intraganglionic inflammatory response by macrophage cells plays an important role in the pre-conditioning of injured CNS neurons to regenerate. In this study, we investigated whether the presence of macrophage cells is crucial for this type of regeneration to occur. We used a clodronate liposome technique to selectively and temporarily deplete these cells during the conditioning phase of DRG neurons. RESULTS Retrograde and anterograde tracing results indicated that in macrophage-depleted animals, the regenerative trigger characteristic of pre-conditioned DRG neurons was abolished as compared to injury matched-control animals. In addition, depletion of macrophage cells led to: (i) a reduction in macrophage infiltration into the CNS compartment even after cellular repopulation, (ii) astrocyte up-regulation at rostral regions and down-regulation in brain derived neurotrophic factor (BDNF) concentration in the serum. CONCLUSION Activation of macrophage cells in response to the peripheral nerve injury is essential for the enhanced regeneration of ascending sensory neurons.
Collapse
|
46
|
Nociceptors, Pain, and Spinal Manipulation. Pain Manag 2011. [DOI: 10.1016/b978-1-4377-0721-2.00137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Changes in undamaged fibers following peripheral nerve injury: A role for TNF-α. Pain 2010; 151:237-238. [DOI: 10.1016/j.pain.2010.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/12/2010] [Indexed: 11/18/2022]
|
48
|
Salegio EAA, Pollard AN, Smith M, Zhou XF. Sciatic nerve conditioning lesion increases macrophage response but it does not promote the regeneration of injured optic nerves. Brain Res 2010; 1361:12-22. [PMID: 20863815 DOI: 10.1016/j.brainres.2010.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 07/08/2010] [Accepted: 09/05/2010] [Indexed: 01/30/2023]
Abstract
UNLABELLED Injured optic nerves in the matured central nervous system (CNS), alike injured neurons in other CNS regions, fail to regenerate. Interestingly, activation of inflammatory cells (macrophages) following optic lens injury or implantation of peripheral nerve fragments into the vitreous body, have been previously reported to stimulate retinal ganglion cells (RGCs) to regenerate axons across the injury site and into the distal optic nerve. In addition, the beneficial role of macrophage cells has also been demonstrated in the regeneration of lesioned spinal neurons following sciatic nerve injury. However, it is not known whether these locally activated macrophage cells also contribute to the regeneration of remotely injured neurons within the CNS. Adult Sprague Dawley rats received a conditioning sciatic nerve injury followed by an optic nerve crush (ONC). Retrograde and anterograde tracing results revealed that injured optic axons did not regenerate after peripheral dorsal root ganglion (DRG) lesion, as the beneficial effects of this injury extended only locally. However, a greater inflammatory infiltration/activation was found in injury-combined animals compared to controls, although this was not sufficient to trigger a systemic regenerative response. Proximity of cell body response to injury, accompanied by a timely macrophage activation are critical factors for regeneration of injured CNS neurons to occur. Immune cell surveillance into the CNS compartment was enhanced following peripheral nerve injury. SCOPE nervous system development, regeneration and aging.
Collapse
Affiliation(s)
- Ernesto A Aguilar Salegio
- Department of Human Physiology and Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide 5001, Australia
| | | | | | | |
Collapse
|
49
|
Zang Y, He XH, Xin WJ, Pang RP, Wei XH, Zhou LJ, Li YY, Liu XG. Inhibition of NF-kappaB prevents mechanical allodynia induced by spinal ventral root transection and suppresses the re-expression of Nav1.3 in DRG neurons in vivo and in vitro. Brain Res 2010; 1363:151-8. [PMID: 20858468 DOI: 10.1016/j.brainres.2010.09.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 09/13/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
Abstract
Activation of nucleus factor-kappaB (NF-κB) in the dorsal root ganglia (DRG) is critical for development of neuropathic pain. The underlying mechanisms, however, are largely unknown. In the present work we tested if the activation of NF-κB is required for re-expression of Nav1.3, which is important for development of neuropathic pain, in uninjured DRG neurons. We found that intrathecal injection of pyrrolidine dithiocarbamate (PDTC), a NF-κB inhibitor, completely blocked the mechanical allodynia induced by L5 ventral root transection (L5-VRT), when applied 30 min before or 8h after operation, but at 7d after L5-VRT the same manipulation had no effect on established allodynia. Pre-treatment with PDTC also prevented the re-expression of Nav1.3 induced by L5-VRT. As our previous work has shown that up-regulation of tumor necrosis factor-alpha (TNF-α) in DRG is responsible for the re-expression of Nav1.3 in uninjured DRG neurons following L5 ventral root injury, we investigated whether activation of NF-κB is essential for the up-regulation of Nav1.3 by TNF-α. Results showed that application of rat recombinant TNF-α (rrTNF) into the cultured normal adult rat DRG neurons increased the immunoreactive (IR) of Nav1.3 localized mainly around the cell membrane and pre-treatment with PDTC blocked the change dose-dependently. The data suggested that injury to ventral root might lead to neuropathic pain and the re-expression of Nav1.3 in primary sensory neurons by activation of NF-κB.
Collapse
Affiliation(s)
- Ying Zang
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, 74 Zhongshan Rd 2, Guangzhou 510080, PR China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
TNF-α contributes to up-regulation of Nav1.3 and Nav1.8 in DRG neurons following motor fiber injury. Pain 2010; 151:266-279. [PMID: 20638792 DOI: 10.1016/j.pain.2010.06.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 04/07/2010] [Accepted: 06/10/2010] [Indexed: 12/13/2022]
Abstract
A large body of evidence has demonstrated that the ectopic discharges of action potentials in primary afferents, resulted from the abnormal expression of voltage gated sodium channels (VGSCs) in dorsal root ganglion (DRG) neurons following peripheral nerve injury are important for the development of neuropathic pain. However, how nerve injury affects the expression of VGSCs is largely unknown. Here, we reported that selective injury of motor fibers by L5 ventral root transection (L5-VRT) up-regulated Nav1.3 and Nav1.8 at both mRNA and protein level and increased current densities of TTX-S and TTX-R channels in DRG neurons, suggesting that nerve injury may up-regulate functional VGSCs in sensory neurons indirectly. As the up-regulated Nav1.3 and Nav1.8 were highly co-localized with TNF-α, we tested the hypothesis that the increased TNF-α may lead to over-expression of the sodium channels. Indeed, we found that peri-sciatic administration of recombinant rat TNF-α (rrTNF) without any nerve injury, which produced lasting mechanical allodynia, also up-regulated Nav1.3 and Nav1.8 in DRG neurons in vivo and that rrTNF enhanced the expression of Nav1.3 and Nav1.8 in cultured adult rat DRG neurons in a dose-dependent manner. Furthermore, inhibition of TNF-α synthesis, which prevented neuropathic pain, strongly inhibited the up-regulation of Nav1.3 and Nav1.8. The up-regulation of the both channels following L5-VRT was significantly lower in TNF receptor 1 knockout mice than that in wild type mice. These data suggest that increased TNF-α may be responsible for up-regulation of Nav1.3 and Nav1.8 in uninjured DRG neurons following nerve injury.
Collapse
|