1
|
Fenollar À, Ros-Lucas A, Pía Alberione M, Martínez-Peinado N, Ramírez M, Ángel Rosales-Motos M, Y. Lee L, Alonso-Padilla J, Izquierdo L. Compounds targeting GPI biosynthesis or N-glycosylation are active against Plasmodium falciparum. Comput Struct Biotechnol J 2022; 20:850-863. [PMID: 35222844 PMCID: PMC8841962 DOI: 10.1016/j.csbj.2022.01.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023] Open
Abstract
Compounds targeting key steps in GPI biosynthesis abrogate P. falciparum growth. N-glycosylation disruption halts parasite development and induces delayed death. Tunicamycin-induced delayed death is not linked with the synthesis of isoprenoids. In summary, two metabolic pathways are outlined for further drug target exploration.
The emergence of resistance to first-line antimalarials, including artemisinin, the last effective malaria therapy in some regions, stresses the urgent need to develop new effective treatments against this disease. The identification and validation of metabolic pathways that could be targeted for drug development may strongly contribute to accelerate this process. In this study, we use fully characterized specific inhibitors targeting glycan biosynthetic pathways as research tools to analyze their effects on the growth of the malaria parasite Plasmodium falciparum and to validate these metabolic routes as feasible chemotherapeutic targets. Through docking simulations using models predicted by AlphaFold, we also shed new light into the modes of action of some of these inhibitors. Molecules inhibiting N-acetylglucosaminyl-phosphatidylinositol de-N-acetylase (GlcNAc-PI de-N-acetylase, PIGL/GPI12) or the inositol acyltransferase (GWT1), central for glycosylphosphatidylinositol (GPI) biosynthesis, halt the growth of intraerythrocytic asexual parasites during the trophozoite stages of the intraerythrocytic developmental cycle (IDC). Remarkably, the nucleoside antibiotic tunicamycin, which targets UDP-N-acetylglucosamine:dolichyl-phosphate N-acetylglucosaminephosphotransferase (ALG7) and N-glycosylation in other organisms, induces a delayed-death effect and inhibits parasite growth during the second IDC after treatment. Our data indicate that tunicamycin induces a specific inhibitory effect, hinting to a more substantial role of the N-glycosylation pathway in P. falciparum intraerythrocytic asexual stages than previously thought. To sum up, our results place GPI biosynthesis and N-glycosylation pathways as metabolic routes with potential to yield much-needed therapeutic targets against the parasite.
Collapse
Affiliation(s)
- Àngel Fenollar
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain
| | - Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain
| | - María Pía Alberione
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain
| | - Nieves Martínez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain
| | - Miriam Ramírez
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain
| | - Miguel Ángel Rosales-Motos
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain
| | - Ling Y. Lee
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
- Corresponding author at: Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain.
| |
Collapse
|
2
|
Florin-Christensen M, Rodriguez AE, Suárez CE, Ueti MW, Delgado FO, Echaide I, Schnittger L. N-Glycosylation in Piroplasmids: Diversity within Simplicity. Pathogens 2021; 10:50. [PMID: 33429911 PMCID: PMC7826898 DOI: 10.3390/pathogens10010050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/03/2023] Open
Abstract
N-glycosylation has remained mostly unexplored in Piroplasmida, an order of tick-transmitted pathogens of veterinary and medical relevance. Analysis of 11 piroplasmid genomes revealed three distinct scenarios regarding N-glycosylation: Babesia sensu stricto (s.s.) species add one or two N-acetylglucosamine (NAcGlc) molecules to proteins; Theileria equi and Cytauxzoon felis add (NAcGlc)2-mannose, while B. microti and Theileria s.s. synthesize dolichol-P-P-NAcGlc and dolichol-P-P-(NAcGlc)2 without subsequent transfer to proteins. All piroplasmids possess the gene complement needed for the synthesis of the N-glycosylation substrates, dolichol-P and sugar nucleotides. The oligosaccharyl transferase of Babesia species, T. equi and C. felis, is predicted to be composed of only two subunits, STT3 and Ost1. Occurrence of short N-glycans in B. bovis merozoites was experimentally demonstrated by fluorescence microscopy using a NAcGlc-specific lectin. In vitro growth of B. bovis was significantly impaired by tunicamycin, an inhibitor of N-glycosylation, indicating a relevant role for N-glycosylation in this pathogen. Finally, genes coding for N-glycosylation enzymes and substrate biosynthesis are transcribed in B. bovis blood and tick stages, suggesting that this pathway is biologically relevant throughout the parasite life cycle. Elucidation of the role/s exerted by N-glycans will increase our understanding of these successful parasites, for which improved control measures are needed.
Collapse
Affiliation(s)
- Monica Florin-Christensen
- Instituto de Patobiología Veterinaria (INTA-CONICET), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham 1686, Argentina; (A.E.R.); (F.O.D.); (L.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - Anabel E. Rodriguez
- Instituto de Patobiología Veterinaria (INTA-CONICET), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham 1686, Argentina; (A.E.R.); (F.O.D.); (L.S.)
| | - Carlos E. Suárez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA; (C.E.S.); (M.W.U.)
- Animal Disease Research Unit, United States Department of Agricultural-Agricultural Research Service, Pullman, WA 99163, USA
| | - Massaro W. Ueti
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA; (C.E.S.); (M.W.U.)
- Animal Disease Research Unit, United States Department of Agricultural-Agricultural Research Service, Pullman, WA 99163, USA
| | - Fernando O. Delgado
- Instituto de Patobiología Veterinaria (INTA-CONICET), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham 1686, Argentina; (A.E.R.); (F.O.D.); (L.S.)
| | - Ignacio Echaide
- Estación Experimental Agrícola INTA-Rafaela, Santa Fe, Provincia de Buenos Aires S2300, Argentina;
| | - Leonhard Schnittger
- Instituto de Patobiología Veterinaria (INTA-CONICET), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham 1686, Argentina; (A.E.R.); (F.O.D.); (L.S.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
3
|
Computational Chemogenomics Drug Repositioning Strategy Enables the Discovery of Epirubicin as a New Repurposed Hit for Plasmodium falciparum and P. vivax. Antimicrob Agents Chemother 2020; 64:AAC.02041-19. [PMID: 32601162 PMCID: PMC7449180 DOI: 10.1128/aac.02041-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Among the seven drugs identified as promising antimalarial candidates, the anthracycline epirubicin was selected for further experimental validation. Epirubicin was shown to be potent in vitro against sensitive and multidrug-resistant P. falciparum strains and P. vivax field isolates in the nanomolar range, as well as being effective against an in vivo murine model of Plasmodium yoelii. Transmission-blocking activity was observed for epirubicin in vitro and in vivo. Finally, using yeast-based haploinsufficiency chemical genomic profiling, we aimed to get insights into the mechanism of action of epirubicin. Beyond the target predicted in silico (a DNA gyrase in the apicoplast), functional assays suggested a GlcNac-1-P-transferase (GPT) enzyme as a potential target. Docking calculations predicted the binding mode of epirubicin with DNA gyrase and GPT proteins. Epirubicin is originally an antitumoral agent and presents associated toxicity. However, its antiplasmodial activity against not only P. falciparum but also P. vivax in different stages of the parasite life cycle supports the use of this drug as a scaffold for hit-to-lead optimization in malaria drug discovery.
Collapse
|
4
|
Gomes PS, Tanghe S, Gallego-Delgado J, Conde L, Freire-de-Lima L, Lima AC, Freire-de-Lima CG, Lima Junior JDC, Moreira O, Totino P, Rodriguez A, Todeschini AR, Morrot A. Targeting the Hexosamine Biosynthetic Pathway Prevents Plasmodium Developmental Cycle and Disease Pathology in Vertebrate Host. Front Microbiol 2019; 10:305. [PMID: 30873136 PMCID: PMC6403127 DOI: 10.3389/fmicb.2019.00305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 02/05/2019] [Indexed: 11/13/2022] Open
Abstract
Cerebral malaria (CM) is a clinical syndrome involving irreversible and lethal signs of brain injury associated to infection by parasites of the genus Plasmodium. The pathogenesis of CM derives from infection-induced proinflammatory cytokines associated with cytoadherence of parasitized red blood cells to brain microvasculature. Glycoconjugates are very abundant in the surface of Plasmodium spp., and are critical mediators of parasite virulence in host–pathogen interactions. Herein, we show that 6-Diazo-5-oxo-L-norleucine (DON) therapeutically used for blocking hexosamine biosynthetic pathway leads to recovery in experimental murine cerebral malaria. DON-induced protection was associated with decreased parasitism, which severely reduced Plasmodium transmission to mosquitoes. These findings point to a potential use of DON in combination therapies against malaria.
Collapse
Affiliation(s)
- Pollyanna Stephanie Gomes
- Centro de Pesquisas em Tuberculose, Instituto de Microbiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Scott Tanghe
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York City, NY, United States
| | - Julio Gallego-Delgado
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York City, NY, United States
| | - Luciana Conde
- Centro de Pesquisas em Tuberculose, Instituto de Microbiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Célio Geraldo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Paulo Totino
- Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Rodriguez
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York City, NY, United States
| | - Adriane Regina Todeschini
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Centro de Pesquisas em Tuberculose, Instituto de Microbiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Deciphering the role of IspD (2‑C‑methyl‑D‑erythritol 4‑phosphate cytidyltransferase) enzyme as a potential therapeutic drug target against Plasmodium vivax. Gene 2018; 675:240-253. [PMID: 29958953 DOI: 10.1016/j.gene.2018.06.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 11/21/2022]
Abstract
Biosynthesis of isoprenoids (MEP Pathway) in apicoplast has an important role during the erythrocytic stages of Plasmodium, as it is the sole pathway to provide the major isoprene units required as metabolic precursor for various housekeeping activities. With the intensifying need to identify a novel therapeutic drug target against Plasmodium, the MEP pathway and its components are considered as potential therapeutic targets, due to the difference in the isoprenoid synthesis route (MVA) functional in the host cells. While few major components have already been studied from this pathway for their potential as a drug target, IspD (2-C-methyl-D-erythritol-4-phosphate cytidyltransferase) enzyme, the enzyme catalyzing the third step of the pathway has only been tested against a synthetic compound from Malaria box called MMV008138, which also has not shown adequate inhibitory activity against P. vivax IspD. In the present study, to validate the potential of PvIspD as a drug target, various antimicrobial agents were screened for their inhibition possibilities, using in-vitro High Throughput Screening (HTS) technique. Shortlisted antimicrobial drug molecules like Cefepime, Tunicamycin and Rifampicin were further validated by in-vitro biochemical enzyme inhibition assays where they showed activity at nanomolar concentrations suggesting them or their derivatives as prospective future antimalarials. This study also confirmed the in-vivo expression of PvIspD protein during asexual stages by sub-cellular localization in apicoplast and explores the importance of the IspD enzyme in the development of new therapeutics.
Collapse
|
6
|
Cova M, Rodrigues JA, Smith TK, Izquierdo L. Sugar activation and glycosylation in Plasmodium. Malar J 2015; 14:427. [PMID: 26520586 PMCID: PMC4628283 DOI: 10.1186/s12936-015-0949-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/21/2015] [Indexed: 11/24/2022] Open
Abstract
Glycoconjugates are important mediators of host-pathogen interactions and are usually very abundant in the surface of many protozoan parasites. However, in the particular case of Plasmodium species, previous works show that glycosylphosphatidylinositol anchor modifications, and to an unknown extent, a severely truncated N-glycosylation are the only glycosylation processes taking place in the parasite. Nevertheless, a detailed analysis of the parasite genome and the recent identification of the sugar nucleotide precursors biosynthesized by Plasmodium falciparum support a picture in which several overlooked, albeit not very prominent glycosylations may be occurring during the parasite life cycle. In this work,
the authors review recent developments in the characterization of the biosynthesis of glycosylation precursors in the parasite, focusing on the outline of the possible fates of these precursors.
Collapse
Affiliation(s)
- Marta Cova
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
| | - João A Rodrigues
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Edificio Egas Moniz, 1649-028, Lisbon, Portugal.
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| | - Luis Izquierdo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
7
|
Atorvastatin is a promising partner for antimalarial drugs in treatment of Plasmodium falciparum malaria. Antimicrob Agents Chemother 2009; 53:2248-52. [PMID: 19307369 DOI: 10.1128/aac.01462-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Atorvastatin (AVA) is a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. AVA exposure resulted in the reduced in vitro growth of 22 Plasmodium falciparum strains, with the 50% inhibitory concentrations (IC(50)s) ranging from 2.5 microM to 10.8 microM. A significant positive correlation was found between the strains' responses to AVA and mefloquine (r = 0.553; P = 0.008). We found no correlation between the responses to AVA and to chloroquine, quinine, monodesethylamodiaquine, lumefantrine, dihydroartemisinin, atovaquone, or doxycycline. These data could suggest that the mechanism of AVA uptake and/or the mode of action of AVA is different from those for other antimalarial drugs. The IC(50)s for AVA were unrelated to the occurrence of mutations in the transport protein genes involved in quinoline antimalarial drug resistance, such as the P. falciparum crt, mdr1, mrp, and nhe-1 genes. Therefore, AVA can be ruled out as a substrate for the transport proteins (CRT, Pgh1, and MRP) and is not subject to the pH modification induced by the P. falciparum NHE-1 protein. The absence of in vitro cross-resistance between AVA and chloroquine, quinine, mefloquine, monodesethylamodiaquine, lumefantrine, dihydroartemisinin, atovaquone, and doxycycline argues that these antimalarial drugs could potentially be paired with AVA as a treatment for malaria. In conclusion, the present observations suggest that AVA is a good candidate for further studies on the use of statins in association with drugs known to have activities against the malaria parasite.
Collapse
|
8
|
Statins as potential antimalarial drugs: low relative potency and lack of synergy with conventional antimalarial drugs. Antimicrob Agents Chemother 2009; 53:2212-4. [PMID: 19258270 DOI: 10.1128/aac.01469-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The in vitro sensitivity of Plasmodium falciparum to atorvastatin and rosuvastatin was assessed using chloroquine-sensitive and chloroquine-resistant strains. Although atorvastatin was more potent, it had weak activity (mean 50% inhibitory concentration of > or = 17 microM) and an indifferent interaction with chloroquine and dihydroartemisinin. Bioassay of plasma from an atorvastatin-treated subject showed similar results.
Collapse
|
9
|
Pradines B, Torrentino-Madamet M, Fontaine A, Henry M, Baret E, Mosnier J, Briolant S, Fusai T, Rogier C. Atorvastatin is 10-fold more active in vitro than other statins against Plasmodium falciparum. Antimicrob Agents Chemother 2007; 51:2654-5. [PMID: 17502414 PMCID: PMC1913261 DOI: 10.1128/aac.01330-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|