1
|
Beenken L, Stroheker S, Dubach V, Schlegel M, Queloz V, Gross A. Microstrobilinia castrans, a new genus and species of the Sclerotiniaceae parasitizing pollen cones of Picea spp. Mycol Prog 2023. [DOI: 10.1007/s11557-023-01865-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AbstractThe fungal pathogens of spruce are well known in Europe and elsewhere. Therefore, it was surprising to discover a new fungal species and genus in Central Europe that attacks the pollen cones of three spruce species. The new ascomycete forms apothecia on stromatized pollen cones of Norway spruce (Picea abies) and Serbian spruce (Picea omorika) in mountain areas and on West Himalayan spruce (Picea smithiana) planted in urban lowland regions of Switzerland, Germany, and Italy. It was also detected in France, based on metabarcode sequences deposited in the GlobalFungi database. Its sudden appearance and the different origins of the host trees in Europe and Asia leave the origin of the fungus unclear. The new fungus might be a neomycete for Europe. A phylogenetic analysis using SSU, LSU, ITS, RPB2, and TEF1 sequences classified the fungus as a member of Sclerotiniaceae (Helotiales, Leotiomycetes). However, it differs morphologically from the other genera of this family in having an ascus without apical apparatus containing four mainly citriform spores with 16 nuclei each. Furthermore, it is the only known cup fungus that parasitizes pollen cones of conifers by stromatizing their tissue and infecting pollen grains. The fungus does not seem to cause major damage to the spruce populations, as only a few pollen cones per tree are affected. All this leads us to describe the newly discovered fungus as the new species and new genus Microstrobilinia castrans, the fungus that castrates pollen cones of spruce.
Collapse
|
2
|
Rico-Ramírez AM, Pedro Gonçalves A, Louise Glass N. Fungal Cell Death: The Beginning of the End. Fungal Genet Biol 2022; 159:103671. [PMID: 35150840 DOI: 10.1016/j.fgb.2022.103671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
Death is an important part of an organism's existence and also marks the end of life. On a cellular level, death involves the execution of complex processes, which can be classified into different types depending on their characteristics. Despite their "simple" lifestyle, fungi carry out highly specialized and sophisticated mechanisms to regulate the way their cells die, and the pathways underlying these mechanisms are comparable with those of plants and metazoans. This review focuses on regulated cell death in fungi and discusses the evidence for the occurrence of apoptotic-like, necroptosis-like, pyroptosis-like death, and the role of the NLR proteins in fungal cell death. We also describe recent data on meiotic drive elements involved in "spore killing" and the molecular basis of allorecognition-related cell death during cell fusion of genetically dissimilar cells. Finally, we discuss how fungal regulated cell death can be relevant in developing strategies to avoid resistance and tolerance to antifungal agents.
Collapse
Affiliation(s)
- Adriana M Rico-Ramírez
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720
| | - A Pedro Gonçalves
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720.
| |
Collapse
|
3
|
Belov AA, Witte TE, Overy DP, Smith ML. Transcriptome analysis implicates secondary metabolite production, redox reactions, and programmed cell death during allorecognition in Cryphonectria parasitica. G3-GENES GENOMES GENETICS 2021; 11:6025178. [PMID: 33561228 PMCID: PMC7849911 DOI: 10.1093/g3journal/jkaa021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/16/2020] [Indexed: 02/04/2023]
Abstract
The underlying molecular mechanisms of programmed cell death associated with fungal allorecognition, a form of innate immunity, remain largely unknown. In this study, transcriptome analysis was used to infer mechanisms activated during barrage formation in vic3-incompatible strains of Cryphonectria parasitica, the chestnut blight fungus. Pronounced differential expression occurred in barraging strains of genes involved in mating pheromone (mf2-1, mf2-2), secondary metabolite production, detoxification (including oxidative stress), apoptosis-related, RNA interference, and HET-domain genes. Evidence for secondary metabolite production and reactive oxygen species (ROS) accumulation is supported through UPLC-HRMS analysis and cytological staining, respectively. Differential expression of mating-related genes and HET-domain genes was further examined by RT-qPCR of incompatible interactions involving each of the six vegetative incompatibility (vic) loci in C. parasitica and revealed distinct recognition process networks. We infer that vegetative incompatibility in C. parasitica activates defence reactions that involve secondary metabolism, resulting in increased toxicity of the extra- and intracellular environment. Accumulation of ROS (and other potential toxins) may result in detoxification failure and activation of apoptosis, sporulation, and the expression of associated pheromone genes. The incompatible reaction leaves abundant traces of a process-specific metabolome as conidiation is initiated.
Collapse
Affiliation(s)
- Anatoly A Belov
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Thomas E Witte
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - David P Overy
- Agriculture and Agri-Food Canada, Ottawa, ON, K1Y 4X2, Canada
| | - Myron L Smith
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
4
|
Gonçalves AP, Heller J, Daskalov A, Videira A, Glass NL. Regulated Forms of Cell Death in Fungi. Front Microbiol 2017; 8:1837. [PMID: 28983298 PMCID: PMC5613156 DOI: 10.3389/fmicb.2017.01837] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Cell death occurs in all domains of life. While some cells die in an uncontrolled way due to exposure to external cues, other cells die in a regulated manner as part of a genetically encoded developmental program. Like other eukaryotic species, fungi undergo programmed cell death (PCD) in response to various triggers. For example, exposure to external stress conditions can activate PCD pathways in fungi. Calcium redistribution between the extracellular space, the cytoplasm and intracellular storage organelles appears to be pivotal for this kind of cell death. PCD is also part of the fungal life cycle, in which it occurs during sexual and asexual reproduction, aging, and as part of development associated with infection in phytopathogenic fungi. Additionally, a fungal non-self-recognition mechanism termed heterokaryon incompatibility (HI) also involves PCD. Some of the molecular players mediating PCD during HI show remarkable similarities to major constituents involved in innate immunity in metazoans and plants. In this review we discuss recent research on fungal PCD mechanisms in comparison to more characterized mechanisms in metazoans. We highlight the role of PCD in fungi in response to exogenic compounds, fungal development and non-self-recognition processes and discuss identified intracellular signaling pathways and molecules that regulate fungal PCD.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Jens Heller
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Asen Daskalov
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Arnaldo Videira
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do PortoPorto, Portugal.,I3S - Instituto de Investigação e Inovação em SaúdePorto, Portugal
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| |
Collapse
|
5
|
Abstract
This article provides an overview of sexual reproduction in the ascomycetes, a phylum of fungi that is named after the specialized sacs or "asci" that hold the sexual spores. They have therefore also been referred to as the Sac Fungi due to these characteristic structures that typically contain four to eight ascospores. Ascomycetes are morphologically diverse and include single-celled yeasts, filamentous fungi, and more complex cup fungi. The sexual cycles of many species, including those of the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe and the filamentous saprobes Neurospora crassa, Aspergillus nidulans, and Podospora anserina, have been examined in depth. In addition, sexual or parasexual cycles have been uncovered in important human pathogens such as Candida albicans and Aspergillus fumigatus, as well as in plant pathogens such as Fusarium graminearum and Cochliobolus heterostrophus. We summarize what is known about sexual fecundity in ascomycetes, examine how structural changes at the mating-type locus dictate sexual behavior, and discuss recent studies that reveal that pheromone signaling pathways can be repurposed to serve cellular roles unrelated to sex.
Collapse
|
6
|
Wood A, Damm U, van der Linde E, Groenewald J, Cheewangkoon R, Crous P. Finding the missing link: Resolving the Coryneliomycetidae within Eurotiomycetes. PERSOONIA 2016; 37:37-56. [PMID: 28232760 PMCID: PMC5315291 DOI: 10.3767/003158516x689800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/11/2015] [Indexed: 11/25/2022]
Abstract
Species belonging to the Coryneliaceae and parasitizing Podocarpaceae hosts were collected from different locations in South Africa and studied morphologically by light microscopy and molecularly by obtaining partial nrDNA (ITS-1/5.8S/ITS-2, 18S and 28S) gene sequences. The position of the Coryneliaceae within the Eurotiomycetidae was not confirmed and a new subclass, Coryneliomycetidae, was introduced. While Eurotiomycetidae usually form cleistothecia/gymnothecia with evanescent, unitunicate asci, and Chaetothyriomycetidae mostly perithecia with bitunicate/fissitunicate to evanescent asci, Coryneliomycetidae form pseudothecial mazaedial ascomata, initially with double-walled asci with the outer layer deliquescing, resulting in passive ascospore release. The Coryneliomycetidae thus occupies a unique position in the Eurotiomycetes. Furthermore, epitypes were designated for Corynelia uberata, the type species of Corynelia (type genus of the family, order and subclass), Lagenulopsis bispora, the type species of Lagenulopsis, and Tripospora tripos the type species of Tripospora, with Lagenulopsis and Tripospora confirmed as belonging to the Coryneliaceae. Corynelia uberata resolved into three clades, one on Afrocarpus (= Podocarpus) falcatus and A. gracilior, and two clades occurring on P. latifolius, herein described as C. africana and C. fructigena. Morphologically these three species are not readily distinguishable, although they differ in spore dimensions, ascomata shape, ornamentation and DNA phylogeny. It is likely that several more species from other parts of the world are currently erroneously placed in C. uberata.
Collapse
Affiliation(s)
- A.R. Wood
- Weed Division, ARC-Plant Protection Research Institute, P. Bag X5017, Stellenbosch 7599, South Africa
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - E.J. van der Linde
- Biosystematics Division, ARC-Plant Protection Research Institute, P. Bag X134, Queenswood 0121, South Africa
| | - J.Z. Groenewald
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - R. Cheewangkoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - P.W. Crous
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
7
|
Doughan B, Rollins JA. Characterization of MAT gene functions in the life cycle of Sclerotinia sclerotiorum reveals a lineage-specific MAT gene functioning in apothecium morphogenesis. Fungal Biol 2016; 120:1105-17. [PMID: 27567717 DOI: 10.1016/j.funbio.2016.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/09/2016] [Accepted: 06/07/2016] [Indexed: 01/13/2023]
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is a phytopathogenic fungus that relies on the completion of the sexual cycle to initiate aerial infections. The sexual cycle produces apothecia required for inoculum dispersal. In this study, insight into the regulation of apothecial multicellular development was pursued through functional characterization of mating-type genes. These genes are hypothesized to encode master regulatory proteins required for aspects of sexual development ranging from fertilization through fertile fruiting body development. Experimentally, loss-of-function mutants were created for the conserved core mating-type genes (MAT1-1-1, and MAT1-2-1), and the lineage-specific genes found only in S. sclerotiorum and closely related fungi (MAT1-1-5, and MAT1-2-4). The MAT1-1-1, MAT1-1-5, and MAT1-2-1 mutants are able to form ascogonia but are blocked in all aspects of apothecium development. These mutants also exhibit defects in secondary sexual characters including lower numbers of spermatia. The MAT1-2-4 mutants are delayed in carpogenic germination accompanied with altered disc morphogenesis and ascospore production. They too produce lower numbers of spermatia. All four MAT gene mutants showed alterations in the expression of putative pheromone precursor (Ppg-1) and pheromone receptor (PreA, PreB) genes. Our findings support the involvement of MAT genes in sexual fertility, gene regulation, meiosis, and morphogenesis in S. sclerotiorum.
Collapse
Affiliation(s)
- Benjamin Doughan
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611-0680, USA
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611-0680, USA.
| |
Collapse
|
8
|
Xu L, Jardini TM, Chen W. Direct repeat-mediated DNA deletion of the mating type MAT1-2 genes results in unidirectional mating type switching in Sclerotinia trifoliorum. Sci Rep 2016; 6:27083. [PMID: 27255676 PMCID: PMC4891775 DOI: 10.1038/srep27083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/13/2016] [Indexed: 11/18/2022] Open
Abstract
The necrotrophic fungal pathogen Sclerotinia trifoliorum exhibits ascospore dimorphism and unidirectional mating type switching - self-fertile strains derived from large ascospores produce both self-fertile (large-spores) and self-sterile (small-spores) offsprings in a 4:4 ratio. The present study, comparing DNA sequences at MAT locus of both self-fertile and self-sterile strains, found four mating type genes (MAT1-1-1, MAT1-1-5, MAT1-2-1 and MAT1-2-4) in the self-fertile strain. However, a 2891-bp region including the entire MAT1-2-1 and MAT1-2-4 genes had been completely deleted from the MAT locus in the self-sterile strain. Meanwhile, two copies of a 146-bp direct repeat motif flanking the deleted region were found in the self-fertile strain, but only one copy of this 146-bp motif (a part of the MAT1-1-1 gene) was present in the self-sterile strain. The two direct repeats were believed to be responsible for the deletion through homologous intra-molecular recombination in meiosis. Tetrad analyses showed that all small ascospore-derived strains lacked the missing DNA between the two direct repeats that was found in all large ascospore-derived strains. In addition, heterokaryons at the MAT locus were observed in field isolates as well as in laboratory derived isolates.
Collapse
MESH Headings
- Ascomycota/genetics
- Ascomycota/growth & development
- Ascomycota/metabolism
- Base Sequence
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA, Intergenic/genetics
- DNA, Intergenic/metabolism
- Genes, Mating Type, Fungal
- Genetic Loci
- Genome, Fungal
- Homologous Recombination
- Meiosis
- Repetitive Sequences, Nucleic Acid
- Sequence Alignment
- Sequence Deletion
- Spores, Fungal/genetics
- Spores, Fungal/growth & development
- Spores, Fungal/metabolism
Collapse
Affiliation(s)
- Liangsheng Xu
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Teresa M. Jardini
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Weidong Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
- USDA-ARS, Grain Legume Genetics and Physiology Research Unit, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
9
|
Wyatt TT, van Leeuwen MR, Wösten HAB, Dijksterhuis J. Mannitol is essential for the development of stress-resistant ascospores in Neosartorya fischeri (Aspergillus fischeri). Fungal Genet Biol 2014; 64:11-24. [PMID: 24412483 DOI: 10.1016/j.fgb.2013.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 12/24/2013] [Accepted: 12/30/2013] [Indexed: 11/25/2022]
Abstract
The polyol mannitol is one of the main compatible solutes in Neosartorya fischeri and accumulates in conidia and ascospores. Here, it is shown that biosynthesis of mannitol in N. fischeri mainly depends on mannitol 1-phosphate dehydrogenase (MpdA). Reporter studies and qPCR analysis demonstrated that mpdA is moderately expressed in vegetative hyphae and conidiophores, while it is highly expressed during development of ascospores. Deletion of mpdA reduced mannitol in whole cultures as much as 85% of the wild type, while trehalose levels had increased more than 4-fold. Decreased mannitol accumulation had no effect on mycelial growth irrespective of heat- or oxidative stress. Notably, conidia of the ΔmpdA strain had higher mannitol and lower trehalose levels. They were more sensitive to heat stress. The most distinct phenotype of mpdA deletion was the absence of full development of ascospores. Formation of cleistothecia, and asci was not affected. The ascus cell wall, however, did not dissolve and asci contained incompletely formed or aborted ascospores. Addition of the Mpd inhibitor nitrophenide to the wild type strain also resulted in disturbed ascospore formation. Taken together, these results show that mannitol has a role in sexual development of N. fischeri and in stress resistance of conidia.
Collapse
Affiliation(s)
- T T Wyatt
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| | - M R van Leeuwen
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| | - H A B Wösten
- Utrecht University, Microbiology, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - J Dijksterhuis
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
10
|
Chitrampalam P, Inderbitzin P, Maruthachalam K, Wu BM, Subbarao KV. The Sclerotinia sclerotiorum mating type locus (MAT) contains a 3.6-kb region that is inverted in every meiotic generation. PLoS One 2013; 8:e56895. [PMID: 23457637 PMCID: PMC3574095 DOI: 10.1371/journal.pone.0056895] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/15/2013] [Indexed: 12/29/2022] Open
Abstract
Sclerotinia sclerotiorum is a fungal plant pathogen and the causal agent of lettuce drop, an economically important disease of California lettuce. The structure of the S. sclerotiorum mating type locus MAT has previously been reported and consists of two idiomorphs that are fused end-to-end as in other homothallics. We investigated the diversity of S. sclerotiorum MAT using a total of 283 isolates from multiple hosts and locations, and identified a novel MAT allele that differed by a 3.6-kb inversion and was designated Inv+, as opposed to the previously known S. sclerotiorum MAT that lacked the inversion and was Inv-. The inversion affected three of the four MAT genes: MAT1-2-1 and MAT1-2-4 were inverted and MAT1-1-1 was truncated at the 3'-end. Expression of MAT genes differed between Inv+ and Inv- isolates. In Inv+ isolates, only one of the three MAT1-2-1 transcript variants of Inv- isolates was detected, and the alpha1 domain of Inv+ MAT1-1-1 transcripts was truncated. Both Inv- and Inv+ isolates were self-fertile, and the inversion segregated in a 1∶1 ratio regardless of whether the parent was Inv- or Inv+. This suggested the involvement of a highly regulated process in maintaining equal proportions of Inv- and Inv+, likely associated with the sexual state. The MAT inversion region, defined as the 3.6-kb MAT inversion in Inv+ isolates and the homologous region of Inv- isolates, was flanked by a 250-bp inverted repeat on either side. The 250-bp inverted repeat was a partial MAT1-1-1 that through mediation of loop formation and crossing over, may be involved in the inversion process. Inv+ isolates were widespread, and in California and Nebraska constituted half of the isolates examined. We speculate that a similar inversion region may be involved in mating type switching in the filamentous ascomycetes Chromocrea spinulosa, Sclerotinia trifoliorum and in certain Ceratocystis species.
Collapse
Affiliation(s)
- Periasamy Chitrampalam
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Patrik Inderbitzin
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Karunakaran Maruthachalam
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Bo-Ming Wu
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
11
|
Complex mechanisms regulate developmental expression of the matA (HMG) mating type gene in homothallic Aspergillus nidulans. Genetics 2011; 189:795-808. [PMID: 21868608 DOI: 10.1534/genetics.111.131458] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sexual reproduction is a fundamental developmental process that allows for genetic diversity through the control of zygote formation, recombination, and gametogenesis. The correct regulation of these events is paramount. Sexual reproduction in filamentous fungi, including mating strategy (self-fertilization/homothallism or outcrossing/heterothallism), is determined by the expression of mating type genes at mat loci. Aspergillus nidulans matA encodes a critical regulator that is a fungal ortholog of the hSRY/SOX9 HMG box proteins. In contrast to well-studied outcrossing systems, the molecular basis of homothallism and role of mating type genes during a self-fertile sexual cycle remain largely unknown. In this study the genetic model organism, A. nidulans, has been used to investigate the regulation and molecular functions of the matA mating type gene in a homothallic system. Our data demonstrate that complex regulatory mechanisms underlie functional matA expression during self-fertilization and sexual reproduction in A. nidulans. matA expression is suppressed in vegetative hyphae and is progressively derepressed during the sexual cycle. Elevated levels of matA transcript are required for differentiation of fruiting bodies, karyogamy, meiosis, and efficient formation of meiotic progeny. matA expression is driven from both initiator (Inr) and novel promoter elements that are tightly developmentally regulated by position-dependent and position-independent mechanisms. Deletion of an upstream silencing element, matA SE, results in derepressed expression from wild-type (wt) promoter elements and activation of an additional promoter. These studies provide novel insights into the molecular basis of homothallism in fungi and genetic regulation of sexual reproduction in eukaryotes.
Collapse
|
12
|
|
13
|
Damm U, Fourie P, Crous P. Coniochaeta (Lecythophora), Collophora gen. nov. and Phaeomoniella species associated with wood necroses of Prunus trees. PERSOONIA 2010; 24:60-80. [PMID: 20664761 PMCID: PMC2890157 DOI: 10.3767/003158510x500705] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 02/08/2010] [Indexed: 11/25/2022]
Abstract
Species of the genus Coniochaeta (anamorph: Lecythophora) are known as pathogens of woody hosts, but can also cause opportunistic human infections. Several fungi with conidial stages resembling Lecythophora were isolated from necrotic wood samples of Prunus trees in South Africa. In order to reveal their phylogenetic relationships, these fungi were studied on a morphological and molecular (5.8S nrDNA, ITS-1, ITS-2, GAPDH, EF-1alpha, 28S nrDNA, 18S nrDNA) basis. Some of the isolates were identified as Coniochaeta (Sordariomycetes), including C. velutina and two new species, C. africana and C. prunicola. The majority of the isolates, however, formed pycnidial or pseudopycnidial synanamorphs and were not closely related to Coniochaeta. According to their 28S nrDNA phylogeny, they formed two distinct groups, one of which was closely related to Helotiales (Leotiomycetes). The new genus Collophora is proposed, comprising five species that frequently occur in necrotic peach and nectarine wood, namely Co. africana, Co. capensis, Co. paarla, Co. pallida and Co. rubra. The second group was closely related to Phaeomoniella chlamydospora (Eurotiomycetes), occurring mainly in plum wood. Besides P. zymoides occurring on Prunus salicina, four new species are described, namely P. dura, P. effusa, P. prunicola and P. tardicola. In a preliminary inoculation study, pathogenicity was confirmed for some of the new species on apricot, peach or plum wood.
Collapse
Affiliation(s)
- U. Damm
- Department of Plant Pathology, University of Stellenbosch, P. Bag X1, Stellenbosch 7602, South Africa
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - P.H. Fourie
- Department of Plant Pathology, University of Stellenbosch, P. Bag X1, Stellenbosch 7602, South Africa
- Citrus Research International, P.O. Box 2201, Stellenbosch 7602, South Africa
| | - P.W. Crous
- Department of Plant Pathology, University of Stellenbosch, P. Bag X1, Stellenbosch 7602, South Africa
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
14
|
Abstract
Dodge's early work (1927-1940) on Neurospora genetics and sexual biology inspired Beadle and Tatum at Stanford to use N.crassa for their landmark discovery that genes specify enzymes. Neurospora has since become a model organism for numerous genetic, cytogenetic, biochemical, molecular and population biology studies. Neurospora is haploid in the vegetative phase with a transient diploid sexual phase. Its meiotic cells (asci) are large, allowing easy examination of dividing nuclei and chromosomes under a light microscope. The haploid meiotic products are themselves the sexual progeny that grow into vegetative cultures, thus avoiding the cumbersome testcrosses and complex dominance -recessive relationships, as in diploid organisms.The Perkins'laboratory at Stanford (1949-2007) played a pivotal role in advancing our knowledge of Neurospora genetics, sexual biology, cytogenetics and population biology. Since 1974, I have taken advantage of various chromosome-staining methods to examine ascus and ascospore development in wild type and in numerous mutant strains. In addition,I have used GFP-tagged genes to visualize the expression or silencing of unpaired genes in a post-transcriptional gene silencing process (meiotic silencing by unpaired DNA) that operates specifically during meiosis. The genome of N. crassa contains over 10 000 protein- coding genes. Gene knockouts or mutations in specific sequences may now be readily correlated with the observed cytological defects in the sexual stage, thus advancing our molecular understanding of complex processes during ascus and ascospore development.
Collapse
Affiliation(s)
- Namboori B Raju
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
15
|
Sharon A, Finkelstein A, Shlezinger N, Hatam I. Fungal apoptosis: function, genes and gene function. FEMS Microbiol Rev 2009; 33:833-54. [PMID: 19416362 DOI: 10.1111/j.1574-6976.2009.00180.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cells of all living organisms are programmed to self-destruct under certain conditions. The most well known form of programmed cell death is apoptosis, which is essential for proper development in higher eukaryotes. In fungi, apoptotic-like cell death occurs naturally during aging and reproduction, and can be induced by environmental stresses and exposure to toxic metabolites. The core apoptotic machinery in fungi is similar to that in mammals, but the apoptotic network is less complex and of more ancient origin. Only some of the mammalian apoptosis-regulating proteins have fungal homologs, and the number of protein families is drastically reduced. Expression in fungi of animal proteins that do not have fungal homologs often affects apoptosis, suggesting functional conservation of these components despite the absence of protein-sequence similarity. Functional analysis of Saccharomyces cerevisiae apoptotic genes, and more recently of those in some filamentous species, has revealed partial conservation, along with substantial differences in function and mode of action between fungal and human proteins. It has been suggested that apoptotic proteins might be suitable targets for novel antifungal treatments. However, implementation of this approach requires a better understanding of fungal apoptotic networks and identification of the key proteins regulating apoptotic-like cell death in fungi.
Collapse
Affiliation(s)
- Amir Sharon
- Department of Plant Sciences, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | |
Collapse
|
16
|
|
17
|
Affiliation(s)
- Namboori B Raju
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|
18
|
Kasbekar DP. Successful beyond expectation: David Perkins's research with chromosome rearrangements in Neurospora. J Biosci 2007; 32:191-5. [PMID: 17435311 DOI: 10.1007/s12038-007-0019-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Mousavi SAA, Robson GD. Oxidative and amphotericin B-mediated cell death in the opportunistic pathogen Aspergillus fumigatus is associated with an apoptotic-like phenotype. MICROBIOLOGY-SGM 2004; 150:1937-1945. [PMID: 15184579 DOI: 10.1099/mic.0.26830-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
When protoplasts of the opportunistic fungal pathogen Aspergillus fumigatus were treated with low but toxic levels of hydrogen peroxide (0.1 mM) or amphotericin B (0.5 microg ml(-1)), loss of cell viability and death were associated with a number of phenotypic changes characteristic of apoptosis. The percentage of protoplasts staining positive with annexin V-FITC, an indicator of the externalization of phosphatidylserine and an early marker of apoptosis, rose to approximately 55 % within 1 h. This was followed by a similar increase in apoptotic DNA fragmentation detected by the TUNEL assay, and led to a loss of cell permeability and death in approximately 90 % of protoplasts, as indicated by the uptake of propidium iodide. The development of an apoptotic phenotype was blocked when protoplasts were pre-treated with the protein synthesis inhibitor cycloheximide, indicating active participation of the cell in the process. However, no significant activity against synthetic caspase substrates was detected, and the inclusion of the cell-permeant broad-spectrum caspase inhibitor Z-VAD-fmk did not block the development of the apoptotic-like phenotype. Higher concentrations of H(2)O(2) (1.8 mM) and amphotericin B (1 microg ml(-1)) caused protoplasts to die without inducing an apoptotic phenotype. As predicted, the fungistatic antifungal agent itraconazole, which inhibits growth without causing immediate cell death, did not induce an apoptotic-like phenotype.
Collapse
Affiliation(s)
- S Amin A Mousavi
- School of Biological Sciences, 1.800 Stopford Building, University of Manchester, Manchester M13 9PT, UK
| | - Geoffrey D Robson
- School of Biological Sciences, 1.800 Stopford Building, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
20
|
McGuire IC, Marra RE, Milgroom MG. Mating-type heterokaryosis and selfing in Cryphonectria parasitica. Fungal Genet Biol 2004; 41:521-33. [PMID: 15050541 DOI: 10.1016/j.fgb.2003.12.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Accepted: 12/17/2003] [Indexed: 11/28/2022]
Abstract
Selfing in the chestnut blight fungus, Cryphonectria parasitica, occurs by two different genetic mechanisms. Most self-fertile isolates of C. parasitica are heterokaryotic for mating type, and the progeny from selfing segregate for mating type. Further, we resolved mating-type (MAT) heterokaryons into homokaryons of both mating types by isolating uninucleate asexual spores (conidia). However, because ascospore progeny, with rare exceptions, are not MAT heterokaryons, C. parasitica must lack a regular mechanism to maintain heterokaryosis by selfing. We hypothesize that heterokaryon formation may occur either because of recurrent biparental inbreeding, or by mating-type switching, possibly one involving some kind of parasexual process. The second mechanism found for selfing in C. parasitica occurred less frequently. Three single-conidial isolates (MAT-1 and MAT-2) selfed and produced progeny that did not segregate for mating type. It is currently not known if meiosis occurs during ascospore formation by this mechanism.
Collapse
Affiliation(s)
- I Cristina McGuire
- Department of Plant Pathology, Cornell University, 334 Plant Science Building, Ithaca, NY 14853, USA
| | | | | |
Collapse
|