1
|
Taylor AH, Konje JC, Ayakannu T. Identification of Potentially Novel Molecular Targets of Endometrial Cancer Using a Non-Biased Proteomic Approach. Cancers (Basel) 2023; 15:4665. [PMID: 37760635 PMCID: PMC10527058 DOI: 10.3390/cancers15184665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The present study was aimed at identifying novel proteins in endometrial cancer (EC), employing proteomic analysis of tissues obtained after surgery. A differential MS-based proteomic analysis was conducted from whole tissues dissected from biopsies from post-menopausal women, histologically confirmed as endometrial cancer (two endometrioid and two serous; n = 4) or normal atrophic endometrium (n = 4), providing 888 differentially expressed proteins with 246 of these previously documented elsewhere as expressed in EC and 372 proteins not previously demonstrated to be expressed in EC but associated with other types of cancer. Additionally, 33 proteins not recorded previously in PubMed as being expressed in any forms of cancer were also identified, with only 26 of these proteins having a publication associated with their expression patterns or putative functions. The putative functions of the 26 proteins (GRN, APP, HEXA, CST3, CAD, QARS, SIAE, WARS, MYH8, CLTB, GOLIM4, SCARB2, BOD1L1, C14orf142, C9orf142, CCDC13, CNPY4, FAM169A, HN1L, PIGT, PLCL1, PMFBP1, SARS2, SCPEP1, SLC25A24 and ZC3H4) in other tissues point towards and provide a basis for further investigation of these previously unrecognised novel EC proteins. The developmental biology, disease, extracellular matrix, homeostatic, immune, metabolic (both RNA and protein), programmed cell death, signal transduction, molecular transport, transcriptional networks and as yet uncharacterised pathways indicate that these proteins are potentially involved in endometrial carcinogenesis and thus may be important in EC diagnosis, prognostication and treatment and thus are worthy of further investigation.
Collapse
Affiliation(s)
- Anthony H. Taylor
- Reproductive Sciences Section, Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (J.C.K.)
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Justin C. Konje
- Reproductive Sciences Section, Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (J.C.K.)
- Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
- Weill Cornell Medicine-Qatar, Al Rayyan, Doha P.O. Box 24144, Qatar
| | - Thangesweran Ayakannu
- Reproductive Sciences Section, Department of Cancer Studies & Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (J.C.K.)
- Department of Obstetrics & Gynaecology, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia
- Sunway Medical Centre, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
2
|
Genome-wide association study identified INSC gene associated with Trail Making Test Part A and Alzheimer's disease related cognitive phenotypes. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110393. [PMID: 34224794 DOI: 10.1016/j.pnpbp.2021.110393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The Trail Making Test (TMT) Part A (TMT-A) is a good measure of performance on cognitive processing speed. This study aimed to perform a genome-wide association study of TMT-A in Alzheimer's disease (AD). METHODS A total of 757 individuals with TMT-A phenotypes and 620,901 single nucleotide polymorphisms (SNPs) were extracted from the Alzheimer's Disease Neuroimaging Initiative 1 (ADNI-1) cohort. AD related cognitive phenotypes include TMT-A, TMT-B, Functional Activities Questionnaire (FAQ), Clinical Dementia Rating Sum of Boxes (CDR-SB), and Alzheimer's Disease Assessment Scale-Cognitive Subscale 13 (ADAS13). Multivariable linear regression analysis of TMT-A was conducted using PLINK software. The most TMT-A associated gene was tested with Color Trails Test 1 Form A (CTTA), a culturally fair analog of the TMT-A. Functional annotation of SNPs was performed using the RegulomeDB and Genotype-Tissue Expression (GTEx) databases. RESULTS The best signal with TMT-A was rs1108010 (p = 4.34 × 10-8) at 11p15.2 within INSC gene, which was also associated with TMT-B, FAQ, CDR-SB, and ADAS13 (p = 2.47 × 10-4, 8.56 × 10-3, 0.0127 and 0.0188, respectively). Furthermore, suggestive loci were identified such as FOXD2 and CLTA with TMT-A, GBP1/GBP3 with TMT-B, GRIK2 with FAQ, BAALC and CCDC146 with CDR-SB, BAALC and NKAIN2 with ADAS13. Additionally, the best SNP within INSC associated with CTTA was rs7931705 (p = 6.15 × 10-5). Several SNPs had significant eQTLs using GTEx. CONCLUSIONS We identified several genes/loci associated with TMT-A and AD related phenotypes. These findings offer the potential for new insights into the pathogenesis of cognitive function and Alzheimer's disease.
Collapse
|
3
|
Du C, Weng Y, Lou J, Zeng G, Liu X, Jin H, Lin S, Tang L. Isobaric tags for relative and absolute quantitation‑based proteomics reveals potential novel biomarkers for the early diagnosis of acute myocardial infarction within 3 h. Int J Mol Med 2019; 43:1991-2004. [PMID: 30896787 PMCID: PMC6443345 DOI: 10.3892/ijmm.2019.4137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial infarction (AMI) is one of the most common and life-threatening cardiovascular diseases. However, the ability to diagnose AMI within 3 h is currently lacking. The present study aimed to identify the differentially expressed proteins of AMI within 3 h and to investigate novel biomarkers using isobaric tags for relative and absolute quantitation (ITRAQ) technology. A total of 30 beagle dogs were used for establishing the MI models successfully by injecting thrombin powder and a polyethylene microsphere suspension. Serum samples were collected prior to (0 h) and following MI (1, 2 and 3 h). ITRAQ-coupled liquid chromatography-mass spectrometry (LC-MS) technology was used to identify the differentially expressed proteins. The bioinformatics analysis selected several key proteins in the initiation of MI. Further analysis was performed using STRING software. Finally, western blot analysis was used to evaluate the results obtained from ITRAQ. In total, 28 proteins were upregulated and 23 were downregulated in the 1 h/0 h group, 28 proteins were upregulated and 26 were downregulated in the 2 h/0 h group, and 24 proteins were upregulated and 19 were downregulated in the 3 h/0 h group. The Gene Ontology (GO) annotation and functional enrichment analysis identified 19 key proteins. Protein-protein interactions (PPIs) were investigated using the STRING database. GO enrichment analysis revealed that a number of key proteins, including ATP synthase F1 subunit β (ATP5B), cytochrome c oxidase subunit 2 and cytochrome c, were components of the electron transport chain and were involved in energy metabolism. The western blot analysis demonstrated that the expression of ATP5B decreased significantly at all three time points (P<0.01), which was consistent with the ITRAQ results, whereas the expression of fibrinogen γ chain increased at 2 and 3 h (P<0.01) and the expression of integrator complex subunit 4 increased at all three time points (P<0.01), which differed from the ITRAQ results. According to the proteomics of the beagle dog MI model, ATP5B may serve as the potential biomarkers of AMI. Mitochondrial dysfunction and disruption of the electron transport chain may be critical indicators of early MI within 3 h. These finding may provide a novel direction for the diagnosis of AMI.
Collapse
Affiliation(s)
- Changqing Du
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Yingzheng Weng
- Department of Medicine, School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jiangjie Lou
- Department of Medicine, School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Guangzhong Zeng
- Department of Cardiology, Pingxiang City People's Hospital, Pingxiang, Jiangxi 337055, P.R. China
| | - Xiaowei Liu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Hongfeng Jin
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Senna Lin
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
4
|
Watts GDJ, Thorne M, Kovach MJ, Pestronk A, Kimonis VE. Clinical and genetic heterogeneity in chromosome 9p associated hereditary inclusion body myopathy: exclusion of GNE and three other candidate genes. Neuromuscul Disord 2003; 13:559-67. [PMID: 12921793 DOI: 10.1016/s0960-8966(03)00070-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have previously reported a new autosomal dominant inclusion body myopathy clinically resembling limb girdle muscular dystrophy, associated with Paget disease of bone in the majority and frontotemporal dementia in a third of individuals. The critical locus for this unique disorder now termed IBMPFD is 9 p21.1-p12, spans 5.5 Mb and contains the gene responsible for the recessive quadriceps-sparing inclusion body myopathy (IBM2). Mutation analysis of the GNE gene associated with IBM2 in affected individuals from four IBMPFD families did not identify any mutations, indicating that the two disorders are not allelic. Expression studies indicate that GNE has a tissue-specific splice pattern, with four splice variants. Mutation analysis in three other candidate genes (beta-tropomyosin, NDUFB6 and SMU1) did not identify any mutations.
Collapse
Affiliation(s)
- Giles D J Watts
- Division of Genetics and Metabolism, Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Fegan 5, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
5
|
Miriami E, Margalit H, Sperling R. Conserved sequence elements associated with exon skipping. Nucleic Acids Res 2003; 31:1974-83. [PMID: 12655015 PMCID: PMC152795 DOI: 10.1093/nar/gkg279] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2002] [Revised: 01/28/2003] [Accepted: 01/28/2003] [Indexed: 11/12/2022] Open
Abstract
One of the major forms of alternative splicing, which generates multiple mRNA isoforms differing in the precise combinations of their exon sequences, is exon skipping. While in constitutive splicing all exons are included, in the skipped pattern(s) one or more exons are skipped. The regulation of this process is still not well understood; so far, cis- regulatory elements (such as exonic splicing enhancers) were identified in individual cases. We therefore set to investigate the possibility that exon skipping is controlled by sequences in the adjacent introns. We employed a computer analysis on 54 sequences documented as undergoing exon skipping, and identified two motifs both in the upstream and downstream introns of the skipped exons. One motif is highly enriched in pyrimidines (mostly C residues), and the other motif is highly enriched in purines (mostly G residues). The two motifs differ from the known cis-elements present at the 5' and 3' splice site. Interestingly, the two motifs are complementary, and their relative positional order is conserved in the flanking introns. These suggest that base pairing interactions can underlie a mechanism that involves secondary structure to regulate exon skipping. Remarkably, the two motifs are conserved in mouse orthologous genes that undergo exon skipping.
Collapse
Affiliation(s)
- Elana Miriami
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | |
Collapse
|
6
|
Eisenberg I, Hochner H, Levi T, Yelin R, Kahan T, Mitrani-Rosenbaum S. Cloning and characterization of a novel human gene RNF38 encoding a conserved putative protein with a RING finger domain. Biochem Biophys Res Commun 2002; 294:1169-76. [PMID: 12074600 DOI: 10.1016/s0006-291x(02)00584-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RING finger (C3HC4-type zinc finger) is a variant zinc finger motif present in a large family of functionally distinct proteins. We describe the cloning and characterization of a novel human transcript RNF38 encoding a new member of the RING finger protein family. The complete mRNA consists of about 6.8 kb widely expressed in human tissues as a single transcript, most abundantly in testis. The predicted proline-rich protein consists of 432 amino acid residues with a coiled-coil motif and a RING-H2 motif (C3H2C2) at its carboxy-terminus. High degree homology was found between the human protein and hypothetical peptides from several other species including Rattus norvegicus, Mus musculus, and Drosophila melanogaster, indicating a significant conservation throughout evolution. The RNF38 genomic structure was determined and comprises at least 13 exons extending over more than 65 kb in the genome, 78 kb centromeric to the GNE gene on human chromosome 9p12-p13. The involvement of this chromosomal segment in a large number of human diseases and in particular in various types of malignancies urges the assessment of the potential functional role of RNF38 in these disorders.
Collapse
Affiliation(s)
- Iris Eisenberg
- Molecular Biology Unit, Hadassah Hospital-Mount Scopus, The Hebrew University-Hadassah Medical School, Jerusalem 91240, Israel
| | | | | | | | | | | |
Collapse
|
7
|
Jiang Z, He H, Hamasima N, Suzuki H, Verrinder G. Comparative mapping of Homo sapiens chromosome 4 (HSA4) and Sus scrofa chromosome 8 (SSC8) using orthologous genes representing different cytogenetic bands as landmarks. Genome 2002; 45:147-56. [PMID: 11908657 DOI: 10.1139/g01-116] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The recently published draft sequence of the human genome will provide a basic reference for the comparative mapping of genomes among mammals. In this study, we selected 214 genes with complete coding sequences on Homo sapiens chromosome 4 (HSA4) to search for orthologs and expressed sequence tag (EST) sequences in eight other mammalian species (cattle, pig, sheep, goat, horse, dog, cat, and rabbit). In particular, 46 of these genes were used as landmarks for comparative mapping of HSA4 and Sus scrofa chromosome 8 (SSC8); most of HSA4 is homologous to SSC8, which is of particular interest because of its association with genes affecting the reproductive performance of pigs. As a reference framework, the 46 genes were selected to represent different cytogenetic bands on HSA4. Polymerase chain reaction (PCR) products amplified from pig DNA were directly sequenced and their orthologous status was confirmed by a BLAST search. These 46 genes, plus 11 microsatellite markers for SSC8, were typed against DNA from a pig-mouse radiation hybrid (RH) panel with 110 lines. RHMAP analysis assigned these 57 markers to 3 linkage groups in the porcine genome, 52 to SSC8, 4 to SSC15, and 1 to SSC17. By comparing the order and orientation of orthologous landmark genes on the porcine RH maps with those on the human sequence map, HSA4 was recognized as being split into nine conserved segments with respect to the porcine genome, seven with SSC8, one with SSC15, and one with SSC17. With 41 orthologous gene loci mapped, this report provides the largest functional gene map of SSC8, with 30 of these loci representing new single-gene assignments to SSC8.
Collapse
Affiliation(s)
- Zhihua Jiang
- Department of Animal and Poultry Science, University of Guelph, ON, Canada.
| | | | | | | | | |
Collapse
|
8
|
Eisenberg I, Avidan N, Potikha T, Hochner H, Chen M, Olender T, Barash M, Shemesh M, Sadeh M, Grabov-Nardini G, Shmilevich I, Friedmann A, Karpati G, Bradley WG, Baumbach L, Lancet D, Asher EB, Beckmann JS, Argov Z, Mitrani-Rosenbaum S. The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat Genet 2001; 29:83-7. [PMID: 11528398 DOI: 10.1038/ng718] [Citation(s) in RCA: 363] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hereditary inclusion body myopathy (HIBM; OMIM 600737) is a unique group of neuromuscular disorders characterized by adult onset, slowly progressive distal and proximal weakness and a typical muscle pathology including rimmed vacuoles and filamentous inclusions. The autosomal recessive form described in Jews of Persian descent is the HIBM prototype. This myopathy affects mainly leg muscles, but with an unusual distribution that spares the quadriceps. This particular pattern of weakness distribution, termed quadriceps-sparing myopathy (QSM), was later found in Jews originating from other Middle Eastern countries as well as in non-Jews. We previously localized the gene causing HIBM in Middle Eastern Jews on chromosome 9p12-13 (ref. 5) within a genomic interval of about 700 kb (ref. 6). Haplotype analysis around the HIBM gene region of 104 affected people from 47 Middle Eastern families indicates one unique ancestral founder chromosome in this community. By contrast, single non-Jewish families from India, Georgia (USA) and the Bahamas, with QSM and linkage to the same 9p12-13 region, show three distinct haplotypes. After excluding other potential candidate genes, we eventually identified mutations in the UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) gene in the HIBM families: all patients from Middle Eastern descent shared a single homozygous missense mutation, whereas distinct compound heterozygotes were identified in affected individuals of families of other ethnic origins. Our findings indicate that GNE is the gene responsible for recessive HIBM.
Collapse
Affiliation(s)
- I Eisenberg
- Unit for Molecular Biology, Hadassah, Hospital, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Eisenberg I, Hochner H, Shemesh M, Levi T, Potikha T, Sadeh M, Argov Z, Jackson CL, Mitrani-Rosenbaum S. Physical and transcriptional map of the hereditary inclusion body myopathy locus on chromosome 9p12-p13. Eur J Hum Genet 2001; 9:501-9. [PMID: 11464241 DOI: 10.1038/sj.ejhg.5200665] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2001] [Revised: 03/15/2001] [Accepted: 04/06/2001] [Indexed: 11/09/2022] Open
Abstract
Hereditary inclusion body myopathy (HIBM) is a group of neuromuscular disorders characterised by adult-onset, slowly progressive distal and proximal muscle weakness and typical muscle pathology. Previously, we have mapped the gene responsible for a recessive form of HIBM to chromosome 9p1 and narrowed the interval to one single YAC clone of 1 Mb in size. As a further step towards the identification of the HIBM gene, we have constructed a detailed physical and transcriptional map of this region. A high resolution BAC contig that includes the HIBM critical region, flanked by marker 327GT4 and D9S1859, was constructed. This contig allowed the precise localisation of 25 genes and ESTs to the proximal region of chromosome 9. The expression pattern of those mapped genes and ESTs was established by Northern blot analysis. In the process of refining the HIBM interval, 13 new polymorphic markers were identified, of which 11 are CA-repeats, and two are single nucleotide polymorphisms. Certainly, this map provides an important integration of physical and transcriptional information corresponding to chromosome 9p12-p13, which is expected to facilitate the cloning and identification not only of the HIBM gene, but also other disease genes which map to this region.
Collapse
Affiliation(s)
- I Eisenberg
- The Unit for Development of Molecular Biology and Genetic Engineering, Hadassah Hospital, The Hebrew University-Hadassah Medical School, Jerusalem 91240, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu SH, Wong ML, Craik CS, Brodsky FM. Regulation of clathrin assembly and trimerization defined using recombinant triskelion hubs. Cell 1995; 83:257-67. [PMID: 7585943 DOI: 10.1016/0092-8674(95)90167-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Clathrin polymerization into a polyhedral vesicle coat drives receptor sorting at cellular membranes during endocytosis and organelle biogenesis. To study clathrin self-assembly, we expressed the C-terminal third of the clathrin heavy chain in bacteria. The recombinant fragment trimerized, bound clathrin light chains, and morphologically resembled the hub domain of the triskelion-shaped clathrin molecule. Self-assembly of recombinant hubs demonstrated a regulatory role for clathrin light chains and for the distal portions of triskelion legs in clathrin coat formation. Deletion mutagenesis of the hub localized a domain mediating light chain binding and clathrin self-assembly and mapped a transferable trimerization domain. These studies define molecular interactions controlling clathrin self-assembly and establish a recombinant system for future analysis.
Collapse
Affiliation(s)
- S H Liu
- Department of Pharmacy, School of Pharmacy, University of California, San Francisco 94143-0552, USA
| | | | | | | |
Collapse
|