1
|
Li X, Hu H, Wang H, Liu J, Jiang W, Zhou F, Zhang J. DNA nanotechnology-based strategies for minimising hybridisation-dependent off-target effects in oligonucleotide therapies. MATERIALS HORIZONS 2025; 12:1388-1412. [PMID: 39692461 DOI: 10.1039/d4mh01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Targeted therapy has emerged as a transformative breakthrough in modern medicine. Oligonucleotide drugs, such as antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs), have made significant advancements in targeted therapy. Other oligonucleotide-based therapeutics like clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems are also leading a revolution in targeted gene therapy. However, hybridisation-dependent off-target effects, arising from imperfect base pairing, remain a significant and growing concern for the clinical translation of oligonucleotide-based therapeutics. These mismatches in base pairing can lead to unintended steric blocking or cleavage events in non-pathological genes, affecting the efficacy and safety of the oligonucleotide drugs. In this review, we examine recent developments in oligonucleotide-based targeted therapeutics, explore the factors influencing sequence-dependent targeting specificity, and discuss the current approaches employed to reduce the off-target side effects. The existing strategies, such as chemical modifications and oligonucleotide length optimisation, often require a trade-off between specificity and binding affinity. To further address the challenge of hybridisation-dependent off-target effects, we discuss DNA nanotechnology-based strategies that leverage the collaborative effects of nucleic acid assembly in the design of oligonucleotide-based therapies. In DNA nanotechnology, collaborative effects refer to the cooperative interactions between individual strands or nanostructures, where multiple bindings result in more stable and specific hybridisation behaviour. By requiring multiple complementary interactions to occur simultaneously, the likelihood of unintended partially complementary binding events in nucleic acid hybridisation should be reduced. And thus, with the aid of collaborative effects, DNA nanotechnology has great promise in achieving both high binding affinity and high specificity to minimise the hybridisation-dependent off-target effects of oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Li
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Huanhuan Hu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Hailong Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Jia Liu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Wenting Jiang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Feng Zhou
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Jiantao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| |
Collapse
|
2
|
Topham CM, Smith JC. Peptide nucleic acid Hoogsteen strand linker design for major groove recognition of DNA thymine bases. J Comput Aided Mol Des 2021; 35:355-369. [PMID: 33624202 DOI: 10.1007/s10822-021-00375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Sequence-specific targeting of double-stranded DNA and non-coding RNA via triple-helix-forming peptide nucleic acids (PNAs) has attracted considerable attention in therapeutic, diagnostic and nanotechnological fields. An E-base (3-oxo-2,3-dihydropyridazine), attached to the polyamide backbone of a PNA Hoogsteen strand by a side-chain linker molecule, is typically used in the hydrogen bond recognition of the 4-oxo group of thymine and uracil nucleic acid bases in the major groove. We report on the application of quantum chemical computational methods, in conjunction with spatial constraints derived from the experimental structure of a homopyrimidine PNA·DNA-PNA hetero-triplex, to investigate the influence of linker flexibility on binding interactions of the E-base with thymine and uracil bases in geometry-optimised model systems. Hydrogen bond formation between the N2 E-base atom and target pyrimidine base 4-oxo groups in model systems containing a β-alanine linker (J Am Chem Soc 119:11116, 1997) was found to incur significant internal strain energy and the potential disruption of intra-stand aromatic base stacking interactions in an oligomeric context. In geometry-optimised model systems containing a 3-trans olefin linker (Bioorg Med Chem Lett 14:1551, 2004) the E-base swung out away from the target pyrimidine bases into the solvent. These findings are in qualitative agreement with calorimetric measurements in hybridisation experiments at T-A and U-A inversion sites. In contrast, calculations on a novel 2-cis olefin linker design indicate that it could permit simultaneous E-base hydrogen bonding with the thymine 4-oxo group, circumvention and solvent screening of the thymine 5-methyl group, and maintenance of triplex intra-stand base stacking interactions.
Collapse
Affiliation(s)
- Christopher M Topham
- Molecular Forces Consulting, 24 Avenue Jacques Besse, 81500, Lavaur, France.
- Computational Molecular Biophysics, IWR Der Universität Heidelberg, Im Neuenheimer Feld 368, 69120, Heidelberg, Germany.
- Center for Molecular Biophysics, University of Tennessee / Oak Ridge National Laboratory, P.O.Box 2008, Oak Ridge, TN, 37831-6309, USA.
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN, 37996, USA.
| | - Jeremy C Smith
- Computational Molecular Biophysics, IWR Der Universität Heidelberg, Im Neuenheimer Feld 368, 69120, Heidelberg, Germany
- Center for Molecular Biophysics, University of Tennessee / Oak Ridge National Laboratory, P.O.Box 2008, Oak Ridge, TN, 37831-6309, USA
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN, 37996, USA
| |
Collapse
|
3
|
Deck MK, Anderson ES, Buckner RJ, Colasante G, Davis TE, Coull JM, Crystal B, Latta PD, Fuchs M, Fuller D, Harris W, Hazen K, Klimas LL, Lindao D, Meltzer MC, Morgan M, Shepard J, Stevens S, Wu F, Fiandaca MJ. Rapid detection of Enterococcus spp. direct from blood culture bottles using Enterococcus QuickFISH method: a multicenter investigation. Diagn Microbiol Infect Dis 2013; 78:338-42. [PMID: 24439447 DOI: 10.1016/j.diagmicrobio.2013.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 12/03/2013] [Accepted: 12/08/2013] [Indexed: 01/03/2023]
Abstract
The performance of a diagnostic method for detection and identification of Enterococcus spp. directly from positive blood culture was evaluated in a clinical study. The method, Enterococcus QuickFISH BC, is a second-generation peptide nucleic acid (PNA) fluorescence in situ hybridization (FISH) test, which uses a simplified, faster assay procedure. The test uses fluorescently labeled PNA probes targeting 16S rRNA to differentiate Enterococcus faecalis from other Enterococcus spp. by the color of the cellular fluorescence. Three hundred fifty-six routine blood culture samples were tested; only 2 discordant results were recorded. The sensitivities for detection of Enterococcus faecalis and non-faecalis Enterococcus were 100% (106/106) and 97.0% (65/67), respectively, and the combined specificity of the assay was 100%. The combined positive and negative predictive values of the assay were 100% (171/171) and 98.9% (185/187), respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Phyllis Della Latta
- Columbia University Medical Center, NewYork-Presbyterian Medical Center, New York, NY
| | | | - Deanna Fuller
- Indiana University School of Medicine, Indianapolis, IN
| | | | | | | | | | | | | | | | | | - Fann Wu
- Columbia University Medical Center, NewYork-Presbyterian Medical Center, New York, NY
| | | |
Collapse
|
4
|
Chen WY, Chen HC, Yang YS, Huang CJ, Chan HWH, Hu WP. Improved DNA detection by utilizing electrically neutral DNA probe in field-effect transistor measurements as evidenced by surface plasmon resonance imaging. Biosens Bioelectron 2012; 41:795-801. [PMID: 23116544 DOI: 10.1016/j.bios.2012.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 12/20/2022]
Abstract
Intensive efforts have been focused on the development of ultrasensitive DNA biosensors capable of quantitative gene expression analysis. Various neutralized nucleic acids have been demonstrated as alternative and attractive probe for the design of a DNA chip. However, the mechanism of the improvements has not been clearly revealed. In this investigation, we used a newly developed neutral ethylated DNA (E-DNA), a DNA analog with the "RO-P-O" backbone (wherein R could be methyl, ethyl, aryl, or alkyl group) obtained from synthetic procedures, and a silicon nanowire (SiNW) field-effect transistor (FET) to evaluate the difference in DNA detection performance while using E-DNA and DNA as probes. It is demonstrated that using the E-DNA probe in the FET measurement could have a significantly enhanced effect upon the detection sensitivity. Surface plasmon resonance imaging (SPRi) was used to evidence the mechanism of the improved detection sensitivity. SPRi analysis showed the amounts of probe immobilization on the sensor surface and the hybridization efficiency were both enhanced with the use of E-DNA. Consequently, neutral ethylated DNA probe hold a great promise for DNA sensing, especially in the electrical-based sensor.
Collapse
Affiliation(s)
- Wen-Yih Chen
- Department of Chemical and Materials Engineering, National Central University, Jhong-Li 320, Taiwan.
| | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Cerqueira L, Azevedo NF, Almeida C, Jardim T, Keevil CW, Vieira MJ. DNA mimics for the rapid identification of microorganisms by fluorescence in situ hybridization (FISH). Int J Mol Sci 2008; 9:1944-60. [PMID: 19325728 PMCID: PMC2635612 DOI: 10.3390/ijms9101944] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 09/24/2008] [Accepted: 10/06/2008] [Indexed: 12/23/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) is a well-established technique that is used for a variety of purposes, ranging from pathogen detection in clinical diagnostics to the determination of chromosomal stability in stem cell research. The key step of FISH involves the detection of a nucleic acid region and as such, DNA molecules have typically been used to probe for the sequences of interest. However, since the turn of the century, an increasing number of laboratories have started to move on to the more robust DNA mimics methods, most notably peptide and locked nucleic acids (PNA and LNA). In this review, we will cover the state-of-the-art of the different DNA mimics in regard to their application as efficient markers for the presence of individual microbial cells, and consider their potential advantages and pitfalls. Available PNA probes are then reassessed in terms of sensitivity and specificity using rRNA databases. In addition, we also attempt to predict the applicability of DNA mimics in well-known techniques attempting to detect in situ low number of copies of specific nucleic acid sequences such as catalyzed reporter deposition (CARD) and recognition of individual genes (RING) FISH.
Collapse
Affiliation(s)
- Laura Cerqueira
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal. E-Mails:
(L. C.);
(C. A.);
(T. J.);
(M. V.)
| | - Nuno F. Azevedo
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal. E-Mails:
(L. C.);
(C. A.);
(T. J.);
(M. V.)
- Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK. E-Mail:
(N. A.)
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +351-253605413; Fax: +351-253678986
| | - Carina Almeida
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal. E-Mails:
(L. C.);
(C. A.);
(T. J.);
(M. V.)
- Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK. E-Mail:
(N. A.)
| | - Tatiana Jardim
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal. E-Mails:
(L. C.);
(C. A.);
(T. J.);
(M. V.)
| | - Charles William Keevil
- Environmental Healthcare Unit, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK. E-Mail:
(N. A.)
| | - Maria J. Vieira
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar 4710-057, Braga, Portugal. E-Mails:
(L. C.);
(C. A.);
(T. J.);
(M. V.)
| |
Collapse
|
7
|
In situ detection of non-polyadenylated RNA molecules using Turtle Probes and target primed rolling circle PRINS. BMC Biotechnol 2007; 7:69. [PMID: 17945012 PMCID: PMC2203993 DOI: 10.1186/1472-6750-7-69] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 10/18/2007] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND In situ detection is traditionally performed with long labeled probes often followed by a signal amplification step to enhance the labeling. Whilst short probes have several advantages over long probes (e.g. higher resolution and specificity) they carry fewer labels per molecule and therefore require higher amplification for detection. Furthermore, short probes relying only on hybridization for specificity can result in non-specific signals appearing anywhere the probe attaches to the target specimen. One way to obtain high amplification whilst minimizing the risk of false positivity is to use small circular probes (e.g. Padlock Probes) in combination with target primed rolling circle DNA synthesis. This has previously been used for DNA detection in situ, but not until now for RNA targets. RESULTS We present here a proof of principle investigation of a novel rolling circle technology for the detection of non-polyadenylated RNA molecules in situ, including a new probe format (the Turtle Probe) and optimized procedures for its use on formalin fixed paraffin embedded tissue sections and in solid support format applications. CONCLUSION The method presented combines the high discriminatory power of short oligonucleotide probes with the impressive amplification power and selectivity of the rolling circle reaction, providing excellent signal to noise ratios in combination with exact target localization due to the target primed reaction. Furthermore, the procedure is easily multiplexed, allowing visualization of several different RNAs.
Collapse
|
8
|
Brukner I, El-Ramahi R, Gorska-Flipot I, Krajinovic M, Labuda D. An in vitro selection scheme for oligonucleotide probes to discriminate between closely related DNA sequences. Nucleic Acids Res 2007; 35:e66. [PMID: 17426126 PMCID: PMC1888810 DOI: 10.1093/nar/gkm156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Using an in vitro selection, we have obtained oligonucleotide probes with high discriminatory power against multiple, similar nucleic acid sequences, which is often required in diagnostic applications for simultaneous testing of such sequences. We have tested this approach, referred to as iterative hybridizations, by selecting probes against six 22-nt-long sequence variants representing human papillomavirus, (HPV). We have obtained probes that efficiently discriminate between HPV types that differ by 3–7 nt. The probes were found effective to recognize HPV sequences of the type 6, 11, 16, 18 and a pair of type 31 and 33, either when immobilized on a solid support or in a reverse configuration, as well to discriminate HPV types from the clinical samples. This methodology can be extended to generate diagnostic kits that rely on nucleic acid hybridization between closely related sequences. In this approach, instead of adjusting hybridization conditions to the intended set of probe–target pairs, we ‘adjust’, through in vitro selection, the probes to the conditions we have chosen. Importantly, these conditions have to be ‘relaxed’, allowing the formation of a variety of not fully complementary complexes from which those that efficiently recognize and discriminate intended from non-intended targets can be readily selected.
Collapse
Affiliation(s)
- Ivan Brukner
- Centre de Recherche, Hôpital Sainte-Justine, Montréal, QC, Canada, Centre de Recherche, Hôpital Hôtel-Dieu, Montréal, QC, Canada, Département de Pédiatrie, Université de Montréal, Montréal, QC, Canada and Départment de pathologie, Université de Montréal, Montréal, PQ, Canada
- *To whom correspondence should be addressed. (514) 345-4931 ext. 3586/3282(514) 345-4731 Correspondence may also be addressed to Damian Labuda. (514) 345-4931 ext. 3586/3282 (514) 345-4731
| | - Razan El-Ramahi
- Centre de Recherche, Hôpital Sainte-Justine, Montréal, QC, Canada, Centre de Recherche, Hôpital Hôtel-Dieu, Montréal, QC, Canada, Département de Pédiatrie, Université de Montréal, Montréal, QC, Canada and Départment de pathologie, Université de Montréal, Montréal, PQ, Canada
| | - Izabella Gorska-Flipot
- Centre de Recherche, Hôpital Sainte-Justine, Montréal, QC, Canada, Centre de Recherche, Hôpital Hôtel-Dieu, Montréal, QC, Canada, Département de Pédiatrie, Université de Montréal, Montréal, QC, Canada and Départment de pathologie, Université de Montréal, Montréal, PQ, Canada
| | - Maja Krajinovic
- Centre de Recherche, Hôpital Sainte-Justine, Montréal, QC, Canada, Centre de Recherche, Hôpital Hôtel-Dieu, Montréal, QC, Canada, Département de Pédiatrie, Université de Montréal, Montréal, QC, Canada and Départment de pathologie, Université de Montréal, Montréal, PQ, Canada
| | - Damian Labuda
- Centre de Recherche, Hôpital Sainte-Justine, Montréal, QC, Canada, Centre de Recherche, Hôpital Hôtel-Dieu, Montréal, QC, Canada, Département de Pédiatrie, Université de Montréal, Montréal, QC, Canada and Départment de pathologie, Université de Montréal, Montréal, PQ, Canada
- *To whom correspondence should be addressed. (514) 345-4931 ext. 3586/3282(514) 345-4731 Correspondence may also be addressed to Damian Labuda. (514) 345-4931 ext. 3586/3282 (514) 345-4731
| |
Collapse
|
9
|
Plant Breeding: Antisense ODN Inhibition in in vitro spike cultures as a powerful Diagnostic Tool in Studies on Cereal Grain Development. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/978-3-540-36832-8_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
10
|
|
11
|
Abstract
The potential for exploration of peptide nucleic acid (PNA) as an experimental and therapeutic regulator of gene expression has been hampered by a poor delivery and a lack of site-specific targeting. In the present study, we have developed an efficient strategy for nuclear delivery of PNA by combining cationically charged PNA-peptide conjugates and photochemical internalization (PCI) technology. When using the S100A4 gene as a model system, a consistent downregulation to around 10% remaining protein signal was obtained in three selected cell lines. Furthermore, a dose-dependent and time-dependent inhibition of the S100A4 protein was demonstrated. A main benefit of the strategy proposed is the possibility of site-specific targeting.
Collapse
Affiliation(s)
- S Bøe
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Montebello, NO-0310 Oslo, Norway.
| | | |
Collapse
|
12
|
Balaji BS, Gallazzi F, Jia F, Lewis MR. An efficient, convenient solid-phase synthesis of amino acid-modified peptide nucleic acid monomers and oligomers. Bioconjug Chem 2006; 17:551-8. [PMID: 16536490 DOI: 10.1021/bc0502208] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and highly versatile method for the synthesis of amino acid-modified peptide nucleic acid (PNA) monomers is described. By using solid-phase Fmoc techniques, such monomers can be assembled readily in a stepwise manner and obtained in high yield with minimal purification. Protected neutral hydrophilic, acidic, and basic amino acids were coupled to 2-chlorotrityl chloride resin. Following Fmoc removal, innovative conditions for the key step, reductive alkylation with N-Fmoc-aminoacetaldehyde, were developed to circumvent problems encountered with previously reported methods. Activation and coupling of pyrimidine and purine nucleobases to the resulting secondary amines afforded amino acid-modified PNA monomers. The mild reaction conditions utilized were compatible with sensitive and labile functional groups, such as tert-butyl ethers and tert-butyl esters. PNA monomers were obtained in 36-42% overall yield and very high purity, after cleavage and purification. Using standard solid-phase Fmoc chemistry, two of these monomers were incorporated with high coupling efficiency into a variety of modified PNA oligomers, including four tetradecamers designed to target bcl-2 mRNA. Such modified oligomers have the potential to enhance water solubility and cell portability, while maintaining hybridization affinity and promoting favorable biodistribution properties.
Collapse
Affiliation(s)
- Baghavathy S Balaji
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
13
|
Murugan R. Effect of external fluctuations on the affinity-specificity negative correlation in DNA-probe interactions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:051915. [PMID: 16802975 DOI: 10.1103/physreve.73.051915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 01/25/2006] [Indexed: 05/10/2023]
Abstract
We show that the site-specific interaction of a probe DNA with the template DNA can be well modeled as an unbiased random jump process, where the probe molecule first nonspecifically binds to the template DNA and then searches for the specific site via unbiased random jump motion on the template DNA. By investigating the effects of increasing the jump size, and the fluctuations in the position of the specific site and the fluctuations in the specific site interval on the affinity-specificity negative correlation, we show that (1) increasing the jump size will in turn increase the affinity of the probe toward its target site on the template DNA, however, with a limiting value--the maximum affinity condition; (2) the degree of supercoiling or condensation of the template DNA as well as the electrostatic interactions between the probe and the template in turn control the jump size associated with the dynamics of the probe on the template DNA; (3) under a maximum specificity condition (therefore with minimum affinity), by introducing an external fluctuation in the relative position of the target site on the template DNA with respect to the probe, one can still improve the affinity rate; (4) on the other hand, one can improve the specificity of the probe toward the target site on the template DNA by introducing external fluctuations in the target-site interval. Finally, we propose the design strategies and optimum experimental conditions to simultaneously enhance the affinity as well as the specificity of probe toward its target site on the template DNA.
Collapse
Affiliation(s)
- R Murugan
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India, 400005.
| |
Collapse
|
14
|
|
15
|
Shi F, Hoekstra D. Effective intracellular delivery of oligonucleotides in order to make sense of antisense. J Control Release 2005; 97:189-209. [PMID: 15196747 DOI: 10.1016/j.jconrel.2004.03.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 03/12/2004] [Indexed: 01/28/2023]
Abstract
For more than two decades, antisense oligonucleotides (ODNs) have been used to modulate gene expression for the purpose of applications in cell biology and for development of novel sophisticated medical therapeutics. Conceptually, the antisense approach represents an elegant strategy, involving the targeting to and association of an ODN sequence with a specific mRNA via base-pairing, resulting in an impairment of functional and/or harmful protein expression in normal and diseased cells/tissue, respectively. Apart from ODN stability, its efficiency very much depends on intracellular delivery and release/access to the target side, issues that are still relatively poorly understood. Since free ODNs enter cells relatively poorly, appropriate carriers, often composed of polymers and cationic lipids, have been developed. Such carriers allow efficient delivery of ODNs into cells in vitro, and the mechanisms of delivery, both in terms of biophysical requirements for the carrier and cell biological features of uptake, are gradually becoming apparent. To become effective, ODNs require delivery into the nucleus, which necessitates release of internalized ODNs from endosomal compartments, an event that seems to depend on the nature of the delivery vehicle and distinct structural shape changes. Interestingly, evidence is accumulating which suggests that by modulating the surface properties of the carrier, the kinetics of such changes can be controlled, thus providing possibilities for programmable release of the carrier contents. Here, consideration will also be given to antisense design and chemistry, and the challenge of extra- and intracellular barriers to be overcome in the delivery process.
Collapse
Affiliation(s)
- Fuxin Shi
- Department of Membrane Cell Biology, Faculty of Medical Sciences, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | |
Collapse
|
16
|
Murugan R. On the origin of affinity--specificity negative correlation in DNA--probe interactions. Biophys Chem 2005; 116:105-9. [PMID: 15950822 DOI: 10.1016/j.bpc.2005.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 01/30/2005] [Indexed: 11/28/2022]
Abstract
Affinity (the fastness) and specificity (the correctness) are the two important factors that decide the efficiency of a nucleic acid probe to target its specific site on a DNA lattice. DNA-probe interactions differ from protein-ligand interactions in a way that here the specificity and the affinity of the interactions correlate negatively with each other. We present a simple phenomenological theory to explain the negative correlation between the specificity and the affinity of the probe towards its target site on the template DNA under solution conditions. We show that a simple random jump model can explain this fact and we also predict that the negative correlation between the affinity and specificity diminishes as the temperature increases or the viscosity of the medium decreases. Moreover, the length of target DNA and the distance between the initial position of the probe on the template DNA lattice and the target site increases the magnitude of affinity-specificity negative correlation. These results are consistent with experimental observations. Finally we propose practical strategies to coherently improve the specificity and the affinity with respect to important molecular biological techniques such as PCR and Southern blotting.
Collapse
Affiliation(s)
- R Murugan
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India.
| |
Collapse
|
17
|
Slutsky M, Mirny LA. Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential. Biophys J 2004; 87:4021-35. [PMID: 15465864 PMCID: PMC1304911 DOI: 10.1529/biophysj.104.050765] [Citation(s) in RCA: 374] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recognition and binding of specific sites on DNA by proteins is central for many cellular functions such as transcription, replication, and recombination. In the process of recognition, a protein rapidly searches for its specific site on a long DNA molecule and then strongly binds this site. Here we aim to find a mechanism that can provide both a fast search (1-10 s) and high stability of the specific protein-DNA complex (Kd=10(-15)-10(-8) M). Earlier studies have suggested that rapid search involves sliding of the protein along the DNA. Here we consider sliding as a one-dimensional diffusion in a sequence-dependent rough energy landscape. We demonstrate that, despite the landscape's roughness, rapid search can be achieved if one-dimensional sliding is accompanied by three-dimensional diffusion. We estimate the range of the specific and nonspecific DNA-binding energy required for rapid search and suggest experiments that can test our mechanism. We show that optimal search requires a protein to spend half of its time sliding along the DNA and the other half diffusing in three dimensions. We also establish that, paradoxically, realistic energy functions cannot provide both rapid search and strong binding of a rigid protein. To reconcile these two fundamental requirements we propose a search-and-fold mechanism that involves the coupling of protein binding and partial protein folding. The proposed mechanism has several important biological implications for search in the presence of other proteins and nucleosomes, simultaneous search by several proteins, etc. The proposed mechanism also provides a new framework for interpretation of experimental and structural data on protein-DNA interactions.
Collapse
Affiliation(s)
- Michael Slutsky
- Department of Physics and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
18
|
Krupnik OV, Fadeeva NV, Kvitko NP, Shepelev VA, Nielsen PE, Lazurkin YS. Stability and transformations of bis-PNA/DNA triplex structural isomers. J Biomol Struct Dyn 2004; 21:503-12. [PMID: 14692795 DOI: 10.1080/07391102.2004.10506944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Structurally isomeric complexes formed between homopyrimidine bis-PNAs (T(2)JT(2)JT(4)-linker-T(4)CT(2)CT(2)) and single- and double-stranded DNA targets were investigated. These complexes are triplexes designated S1, S2 and S3 in order of increased mobility by polyacrylamide gel electrophoresis. It is shown that the S3 isomer is formed only on double-stranded DNA and possesses highest stability. Isomers S2 and S1 are formed upon binding of bis-PNA to double-stranded as well as to single-stranded DNA. It was found that the stability of the isomer S1 increases dramatically in the presence of excess single-stranded oligonucleotide complementary to the bis-PNA. The structure of the stabilized S1 isomer is proposed to consist of two bis-PNA/DNA triplexes. The relationship between the yield of the isomer S1 formed on single-stranded DNA and the bis-PNA concentration was investigated and a kinetic model of the formation of S1 is presented.
Collapse
Affiliation(s)
- Olga V Krupnik
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia.
| | | | | | | | | | | |
Collapse
|
19
|
Demidov VV, Frank-Kamenetskii MD. Two sides of the coin: affinity and specificity of nucleic acid interactions. Trends Biochem Sci 2004; 29:62-71. [PMID: 15102432 DOI: 10.1016/j.tibs.2003.12.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the past decade, synthetic nucleobase oligomers have found wide use in biochemical sciences, biotechnology and molecular medicine, both as research and/or diagnostic tools and as therapeutics. Numerous applications of common and modified oligonucleotides and oligonucleotide mimics rely on their ability to sequence-specifically recognize nucleic acid targets (DNA or RNA) by forming duplexes or triplexes. In general, these applications would benefit significantly from enhanced binding affinities of nucleobase oligomers in the formation of various secondary structures. However, for high-affinity probes, the selectivity of sequence recognition must also be improved to avoid undesirable associations with mismatched DNA and RNA sites. Here, we review recent progress in understanding the molecular mechanisms of nucleic acid interactions and the development of new high-affinity plus high-specificity oligonucleotides and their mimics, with particular emphasis on peptide nucleic acids.
Collapse
Affiliation(s)
- Vadim V Demidov
- Center for Advanced Biotechnology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
20
|
PNA-mediated Whiplash PCR. ACTA ACUST UNITED AC 2002. [DOI: 10.1007/3-540-48017-x_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
Demidov VV, Protozanova E, Izvolsky KI, Price C, Nielsen PE, Frank-Kamenetskii MD. Kinetics and mechanism of the DNA double helix invasion by pseudocomplementary peptide nucleic acids. Proc Natl Acad Sci U S A 2002; 99:5953-8. [PMID: 11972051 PMCID: PMC122883 DOI: 10.1073/pnas.092127999] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2001] [Accepted: 03/06/2002] [Indexed: 11/18/2022] Open
Abstract
If adenines and thymines in two mutually complementary mixed-base peptide nucleic acid (PNA) oligomers are substituted with diaminopurines and thiouracils, respectively, so-called pseudocomplementary PNAs (pcPNAs) are created. Pairs of pcPNAs have recently demonstrated an ability to highly selectively target essentially any designated site on double-stranded DNA (dsDNA) by forming very stable PNA-DNA strand-displacement complexes via double duplex invasion (helix invasion). These properties of pcPNAs make them unique and very promising ligands capable of denying the access of DNA-binding proteins to dsDNA. To elucidate the sequence-unrestricted mechanism of sequence-specific dsDNA recognition by pcPNAs, we have studied the kinetics of formation of corresponding PNA-DNA complexes at various temperatures by the gel-shift assay. In parallel, the conditions for possible self-hybridization of pcPNA oligomers have been assayed by mixing curve (Job plot) and thermal melting experiments. The data indicate that, at physiological temperatures ( approximately 37 degrees C), the equilibrium is shifted toward the pairing of corresponding pcPNAs with each other. This finding explains a linear concentration dependence, within the submicromolar range, of the pcPNA invasion rate into dsDNA at 37 degrees C. At elevated temperatures (>50 degrees C), the rather unstable pcPNA duplexes dissociate, yielding the expected quadratic dependence for the rate of pcPNA invasion on the PNA concentration. The polycationic character of pcPNA pairs, carrying the duplicated number of protonated terminal PNA residues commonly used to increase the PNA solubility and binding affinity, also explains the self-inhibition of pcPNA invasion observed at higher PNA concentrations. Melting of pcPNA duplexes occurs with the integral transition enthalpies ranged from -235 to -280 kJ.mol(-1), contributing to an anomalously high activation energy of approximately 150 kJ.mol(-1) found for the helix invasion of pcPNAs carrying four different nucleobases. A simplified kinetic model for pcPNAs helix invasion is proposed that interprets all unusual features of pcPNAs binding to dsDNA. Our findings have important implications for rational use of pcPNAs.
Collapse
Affiliation(s)
- Vadim V Demidov
- Center for Advanced Biotechnology, Boston University, 36 Cummington Street, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Rose JA, Deaton RJ, Hagiya M, Suyama A. Equilibrium analysis of the efficiency of an autonomous molecular computer. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2002; 65:021910. [PMID: 11863566 DOI: 10.1103/physreve.65.021910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2000] [Revised: 09/25/2001] [Indexed: 05/23/2023]
Abstract
In the whiplash polymerase chain reaction (WPCR), autonomous molecular computation is implemented in vitro by the recursive, self-directed polymerase extension of a mixture of DNA hairpins. Although computational efficiency is known to be reduced by a tendency for DNAs to self-inhibit by backhybridization, both the magnitude of this effect and its dependence on the reaction conditions have remained open questions. In this paper, the impact of backhybridization on WPCR efficiency is addressed by modeling the recursive extension of each strand as a Markov chain. The extension efficiency per effective polymerase-DNA encounter is then estimated within the framework of a statistical thermodynamic model. Model predictions are shown to provide close agreement with the premature halting of computation reported in a recent in vitro WPCR implementation, a particularly significant result, given that backhybridization had been discounted as the dominant error process. The scaling behavior further indicates completion times to be sufficiently long to render WPCR-based massive parallelism infeasible. A modified architecture, PNA-mediated WPCR (PWPCR) is then proposed in which the occupancy of backhybridized hairpins is reduced by targeted PNA(2)/DNA triplex formation. The efficiency of PWPCR is discussed using a modified form of the model developed for WPCR. Predictions indicate the PWPCR efficiency is sufficient to allow the implementation of autonomous molecular computation on a massive scale.
Collapse
Affiliation(s)
- John A Rose
- Institute of Physics, The University of Tokyo, Tokyo 153-8902, Japan.
| | | | | | | |
Collapse
|
23
|
Krupnik OV, Guscho Y, Sluchanko K, Nielsen P, Lazurkin Y. Thermodynamics of the melting of PNA(2)/DNA triple helices. J Biomol Struct Dyn 2001; 19:535-42. [PMID: 11790151 DOI: 10.1080/07391102.2001.10506761] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Equilibrium melting curves were obtained for triplexes, formed by single stranded DNA containing an A10 target with bis-PNA consisting of two T10 decamers. Thermodynamic parameters of melting were determined for Na(+) concentrations 50, 200 and 600mM by two methods. The melting enthalpy Delta H degrees was evaluated from the width of the differential melting curves and from the concentration dependence of the melting temperature. The latter method allowed also evaluating the melting entropy Delta S degrees. The following results were obtained: Delta H degrees = - 137 kcal/M, Delta S degrees = - 368 cal/M.K, Delta G degrees (298)= - 27 kcal/M. No dependence of Delta H degrees, Delta S degrees and Delta G degrees (298) was observed upon ionic strength within the accuracy of the experiment (+/- 10%). The absolute values of Delta H degrees, Delta S degrees and Delta G degrees(298) are 2 to 3 times higher than the published values of corresponding melting parameters for decameric PNA/DNA duplexes of various nucleic base sequences. The origin of the extremely high stability of the triplexes is discussed.
Collapse
Affiliation(s)
- O V Krupnik
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | | | | | | | | |
Collapse
|
24
|
Demidov VV. Maxim D. Frank-Kamenetskii: Diamond Jubilee of A Brilliant Scientist. J Biomol Struct Dyn 2001; 19:365-368. [DOI: 10.1080/07391102.2001.10506746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Demidov VV, Frank-Kamenetskii MD. Sequence-specific targeting of duplex DNA by peptide nucleic acids via triplex strand invasion. Methods 2001; 23:108-22. [PMID: 11181030 DOI: 10.1006/meth.2000.1112] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Because of a set of exceptional chemical, physical, and biological properties, polyamide or peptide nucleic acids (PNAs) hold a distinctive position among various synthetic ligands designed for DNA-targeting purposes. Cationic pyrimidine PNAs (cpyPNAs) represent a special group of PNAs, which effectively form strand invasion triplexes with double-stranded DNA (dsDNA) also known as P-loops. Extraordinary stability of the invasion triplexes and high sequence specificity of their formation combined with local opening of the DNA double helix within the P-loops make these complexes very attractive for sequence-specific manipulation with dsDNA. Important for applications is the fact that the discrimination between correct and mismatched binding sites in dsDNA by cpyPNAs is a nonequilibrium, kinetically controlled process. Therefore, a careful choice of experimental conditions that are optimal for the kinetic discrimination of correct versus mismatched cpyPNA binding is crucial for sequence-specific recognition of dsDNA by cpyPNAs. The experimental and theoretical data presented make it possible to select those solution parameters and cpyPNA constructions that are most favorable for sequence specificity without compromising the affinity of dsDNA targeting.
Collapse
Affiliation(s)
- V V Demidov
- Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, 36 Cummington Street, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
26
|
Chandler DP, Stults JR, Cebula S, Schuck BL, Weaver DW, Anderson KK, Egholm M, Brockman FJ. Affinity purification of DNA and RNA from environmental samples with peptide nucleic acid clamps. Appl Environ Microbiol 2000; 66:3438-45. [PMID: 10919804 PMCID: PMC92168 DOI: 10.1128/aem.66.8.3438-3445.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bispeptide nucleic acids (bis-PNAs; PNA clamps), PNA oligomers, and DNA oligonucleotides were evaluated as affinity purification reagents for subfemtomolar 16S ribosomal DNA (rDNA) and rRNA targets in soil, sediment, and industrial air filter nucleic acid extracts. Under low-salt hybridization conditions (10 mM NaPO(4), 5 mM disodium EDTA, and 0.025% sodium dodecyl sulfate [SDS]) a PNA clamp recovered significantly more target DNA than either PNA or DNA oligomers. The efficacy of PNA clamps and oligomers was generally enhanced in the presence of excess nontarget DNA and in a low-salt extraction-hybridization buffer. Under high-salt conditions (200 mM NaPO(4), 100 mM disodium EDTA, and 0.5% SDS), however, capture efficiencies with the DNA oligomer were significantly greater than with the PNA clamp and PNA oligomer. Recovery and detection efficiencies for target DNA concentrations of > or =100 pg were generally >20% but depended upon the specific probe, solution background, and salt condition. The DNA probe had a lower absolute detection limit of 100 fg of target (830 zM [1 zM = 10(-21) M]) in high-salt buffer. In the absence of exogenous DNA (e.g., soil background), neither the bis-PNA nor the PNA oligomer achieved the same absolute detection limit even under a more favorable low-salt hybridization condition. In the presence of a soil background, however, both PNA probes provided more sensitive absolute purification and detection (830 zM) than the DNA oligomer. In varied environmental samples, the rank order for capture probe performance in high-salt buffer was DNA > PNA > clamp. Recovery of 16S rRNA from environmental samples mirrored quantitative results for DNA target recovery, with the DNA oligomer generating more positive results than either the bis-PNA or PNA oligomer, but PNA probes provided a greater incidence of detection from environmental samples that also contained a higher concentration of nontarget DNA and RNA. Significant interactions between probe type and environmental sample indicate that the most efficacious capture system depends upon the particular sample type (and background nucleic acid concentration), target (DNA or RNA), and detection objective.
Collapse
MESH Headings
- Chromatography, Affinity
- DNA Probes
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/isolation & purification
- DNA, Ribosomal/metabolism
- Deltaproteobacteria/genetics
- Deltaproteobacteria/isolation & purification
- Environmental Microbiology
- Nucleic Acid Conformation
- Nucleic Acid Hybridization
- Peptide Nucleic Acids/chemistry
- Peptide Nucleic Acids/metabolism
- Polymerase Chain Reaction
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/isolation & purification
- RNA, Ribosomal, 16S/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sensitivity and Specificity
Collapse
Affiliation(s)
- D P Chandler
- Environmental Microbiology Group, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Villa R, Folini M, Lualdi S, Veronese S, Daidone MG, Zaffaroni N. Inhibition of telomerase activity by a cell-penetrating peptide nucleic acid construct in human melanoma cells. FEBS Lett 2000; 473:241-8. [PMID: 10812083 DOI: 10.1016/s0014-5793(00)01540-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We investigated the effect of two peptide nucleic acids (PNAs), which are complementary to the RNA component of human telomerase, on the catalytic activity of the enzyme. PNAs induced a dose-dependent reduction of telomerase activity in cell extracts from human melanoma cell lines and surgical specimens. To down-regulate telomerase in intact cells, we generated a chimeric molecule synthesized by coupling the 13-mer PNA to the Antennapedia peptide. The PNA construct induced a dose- and time-dependent inhibition of telomerase activity. However, a 20-day exposure to the PNA construct only caused a slight increase in melanoma cell doubling time and failed to induce any telomere shortening.
Collapse
Affiliation(s)
- R Villa
- Department of Experimental Oncology, Unit # 10, National Cancer Institute, Via Venezian 1, 20133, Milan, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Mayfield LD, Corey DR. Automated synthesis of peptide nucleic acids and peptide nucleic acid-peptide conjugates. Anal Biochem 1999; 268:401-4. [PMID: 10075832 DOI: 10.1006/abio.1998.3052] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- L D Mayfield
- Howard Hughes Medical Institute, Department of Pharmacology, Universityof Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235-9050, USA
| | | |
Collapse
|
29
|
Kuhn H, Demidov VV, Nielsen PE, Frank-Kamenetskii MD. An experimental study of mechanism and specificity of peptide nucleic acid (PNA) binding to duplex DNA. J Mol Biol 1999; 286:1337-45. [PMID: 10064701 DOI: 10.1006/jmbi.1998.2578] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the mechanism and kinetic specificity of binding of peptide nucleic acid clamps (bis-PNAs) to double-stranded DNA (dsDNA). Kinetic specificity is defined as a ratio of initial rates of PNA binding to matched and mismatched targets on dsDNA. Bis-PNAs consist of two homopyrimidine PNA oligomers connected by a flexible linker. While complexing with dsDNA, they are known to form P-loops, which consist of a [PNA]2-DNA triplex and the displaced DNA strand. We report here a very strong pH-dependence, within the neutral pH range, of binding rates and kinetic specificity for a bis-PNA consisting of only C and T bases. The specificity of binding reaches a very sharp and high maximum at pH 6.9. In contrast, if all the cytosine bases in one of the two PNA oligomers within the bis-PNA are replaced by pseudoisocytosine bases (J bases), which do not require protonation to form triplexes, a weak dependence on pH of the rates and specificity of the P-loop formation is observed. A theoretical analysis of the data suggests that for (C+T)-containing bis-PNA the first, intermediate step of PNA binding to dsDNA occurs via Hoogsteen pairing between the duplex target and one oligomer of bis-PNA. After that, the strand invasion occurs via Watson-Crick pairing between the second bis-PNA oligomer and the homopurine strand of the target DNA, thus resulting in the ultimate formation of the P-loop. The data for the (C/J+T)-containing bis-PNA show that its high affinity to dsDNA at neutral pH does not seriously compromise the kinetic specificity of binding. These findings support the earlier expectation that (C/J+T)-containing PNA constructions may be advantageous for use in vivo.
Collapse
Affiliation(s)
- H Kuhn
- Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, 36 Cummington St, Boston, MA, 02215, USA
| | | | | | | |
Collapse
|
30
|
Ishihara T, Corey DR. Rules for Strand Invasion by Chemically Modified Oligonucleotides. J Am Chem Soc 1999. [DOI: 10.1021/ja983834e] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tsutomu Ishihara
- Contribution from the Howard Hughes Medical Institute, Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75235-9041
| | - David R. Corey
- Contribution from the Howard Hughes Medical Institute, Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75235-9041
| |
Collapse
|