1
|
Bittrich S, Schroeder M, Labudde D. StructureDistiller: Structural relevance scoring identifies the most informative entries of a contact map. Sci Rep 2019; 9:18517. [PMID: 31811259 PMCID: PMC6898053 DOI: 10.1038/s41598-019-55047-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022] Open
Abstract
Protein folding and structure prediction are two sides of the same coin. Contact maps and the related techniques of constraint-based structure reconstruction can be considered as unifying aspects of both processes. We present the Structural Relevance (SR) score which quantifies the information content of individual contacts and residues in the context of the whole native structure. The physical process of protein folding is commonly characterized with spatial and temporal resolution: some residues are Early Folding while others are Highly Stable with respect to unfolding events. We employ the proposed SR score to demonstrate that folding initiation and structure stabilization are subprocesses realized by distinct sets of residues. The example of cytochrome c is used to demonstrate how StructureDistiller identifies the most important contacts needed for correct protein folding. This shows that entries of a contact map are not equally relevant for structural integrity. The proposed StructureDistiller algorithm identifies contacts with the highest information content; these entries convey unique constraints not captured by other contacts. Identification of the most informative contacts effectively doubles resilience toward contacts which are not observed in the native contact map. Furthermore, this knowledge increases reconstruction fidelity on sparse contact maps significantly by 0.4 Å.
Collapse
Affiliation(s)
- Sebastian Bittrich
- University of Applied Sciences Mittweida, Mittweida, 09648, Germany. .,Biotechnology Center (BIOTEC), TU Dresden, Dresden, 01307, Germany. .,Research Collaboratory for Structural Bioinformatics Protein Data Bank, University of California, San Diego, La Jolla, CA, 92093, USA.
| | | | - Dirk Labudde
- University of Applied Sciences Mittweida, Mittweida, 09648, Germany
| |
Collapse
|
2
|
Chen L, He J. A distance- and orientation-dependent energy function of amino acid key blocks. Biopolymers 2016; 101:681-92. [PMID: 24222511 DOI: 10.1002/bip.22440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 01/03/2023]
Abstract
Blocks are the selected portions of amino acids. They have been used effectively to represent amino acids in distinguishing the native conformation from the decoys. Although many statistical energy functions exist, most of them rely on the distances between two or more amino acids. In this study, the authors have developed a pairwise energy function "DOKB" that is both distance and orientation dependent, and it is based on the key blocks that bias the distal ends of side chains. The results suggest that both the distance and the orientation are needed to distinguish the fine details of the packing geometry. DOKB appears to perform well in recognizing native conformations when compared with six other energy functions. Highly packed clusters play important roles in stabilizing the structure. The investigation about the highly packed clusters at the residue level suggests that certain residue pairs in a low-energy region have lower probability to appear in the highly packed clusters than in the entire protein. The cluster energy term appears to significantly improve the recognition of the native conformations in ig_structal decoy set, in which more highly packed clusters are contained than in other decoy sets.
Collapse
Affiliation(s)
- Lin Chen
- Department of Computer Science, Old Dominion University, Norfolk, Virginia
| | | |
Collapse
|
3
|
Maity H, Reddy G. Folding of Protein L with Implications for Collapse in the Denatured State Ensemble. J Am Chem Soc 2016; 138:2609-16. [PMID: 26835789 DOI: 10.1021/jacs.5b11300] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A fundamental question in protein folding is whether the coil to globule collapse transition occurs during the initial stages of folding (burst phase) or simultaneously with the protein folding transition. Single molecule fluorescence resonance energy transfer (FRET) and small-angle X-ray scattering (SAXS) experiments disagree on whether Protein L collapse transition occurs during the burst phase of folding. We study Protein L folding using a coarse-grained model and molecular dynamics simulations. The collapse transition in Protein L is found to be concomitant with the folding transition. In the burst phase of folding, we find that FRET experiments overestimate radius of gyration, Rg, of the protein due to the application of Gaussian polymer chain end-to-end distribution to extract Rg from the FRET efficiency. FRET experiments estimate ≈6 Å decrease in Rg when the actual decrease is ≈3 Å on guanidinium chloride denaturant dilution from 7.5 to 1 M, thereby suggesting pronounced compaction in the protein dimensions in the burst phase. The ≈3 Å decrease is close to the statistical uncertainties of the Rg data measured from SAXS experiments, which suggest no compaction, leading to a disagreement with the FRET experiments. The transition-state ensemble (TSE) structures in Protein L folding are globular and extensive in agreement with the Ψ-analysis experiments. The results support the hypothesis that the TSE of single domain proteins depends on protein topology and is not stabilized by local interactions alone.
Collapse
Affiliation(s)
- Hiranmay Maity
- Solid State and Structural Chemistry Unit, Indian Institute of Science , Bangalore, Karnataka 560012, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science , Bangalore, Karnataka 560012, India
| |
Collapse
|
4
|
Even with nonnative interactions, the updated folding transition states of the homologs Proteins G & L are extensive and similar. Proc Natl Acad Sci U S A 2015; 112:8302-7. [PMID: 26100906 DOI: 10.1073/pnas.1503613112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Experimental and computational folding studies of Proteins L & G and NuG2 typically find that sequence differences determine which of the two hairpins is formed in the transition state ensemble (TSE). However, our recent work on Protein L finds that its TSE contains both hairpins, compelling a reassessment of the influence of sequence on the folding behavior of the other two homologs. We characterize the TSEs for Protein G and NuG2b, a triple mutant of NuG2, using ψ analysis, a method for identifying contacts in the TSE. All three homologs are found to share a common and near-native TSE topology with interactions between all four strands. However, the helical content varies in the TSE, being largely absent in Proteins G & L but partially present in NuG2b. The variability likely arises from competing propensities for the formation of nonnative β turns in the naturally occurring proteins, as observed in our TerItFix folding algorithm. All-atom folding simulations of NuG2b recapitulate the observed TSEs with four strands for 5 of 27 transition paths [Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) Science 334(6055):517-520]. Our data support the view that homologous proteins have similar folding mechanisms, even when nonnative interactions are present in the transition state. These findings emphasize the ongoing challenge of accurately characterizing and predicting TSEs, even for relatively simple proteins.
Collapse
|
5
|
Baker D. Centenary Award and Sir Frederick Gowland Hopkins Memorial Lecture. Protein folding, structure prediction and design. Biochem Soc Trans 2014; 42:225-9. [PMID: 24646222 DOI: 10.1042/bst20130055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
I describe how experimental studies of protein folding have led to advances in protein structure prediction and protein design. I describe the finding that protein sequences are not optimized for rapid folding, the contact order-protein folding rate correlation, the incorporation of experimental insights into protein folding into the Rosetta protein structure production methodology and the use of this methodology to determine structures from sparse experimental data. I then describe the inverse problem (protein design) and give an overview of recent work on designing proteins with new structures and functions. I also describe the contributions of the general public to these efforts through the Rosetta@home distributed computing project and the FoldIt interactive protein folding and design game.
Collapse
Affiliation(s)
- David Baker
- *Department of Biochemistry, University of Washington/HMMI, Seattle, WA 98195, U.S.A
| |
Collapse
|
6
|
Xie X, He K, Zhang A, Zhang H, Wang Q, Li J, Ma Y. Comparative study of the promotion of porcine fetal fibroblast proliferation by overexpression of two transcriptional variants of SIRT6. CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-013-5706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Shandiz AT, Baxa MC, Sosnick TR. A "Link-Psi" strategy using crosslinking indicates that the folding transition state of ubiquitin is not very malleable. Protein Sci 2012; 21:819-27. [PMID: 22528473 DOI: 10.1002/pro.2065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 11/09/2022]
Abstract
Using a combined crosslinking-ψ analysis strategy, we examine whether the structural content of the transition state of ubiquitin can be altered. A synthetic dichloroacetone crosslink is first introduced across two β strands. Whether the structural content in the transition state ensemble has shifted towards the region containing the crosslink is probed by remeasuring the ψ value at another region (ψ identifies the degree to which an inserted bi-Histidine metal ion binding site is formed in the transition state). For sites around the periphery of the obligate transition state nucleus, we find that the resulting changes in ψ values are near or at our detection limit, thereby indicating that the structural content of the transition state has not measurably changed upon crosslinking. This work demonstrates the utility of the simultaneous application of crosslinking and ψ-analysis for examining potential transition state heterogeneity in globular proteins.
Collapse
Affiliation(s)
- Ali T Shandiz
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
8
|
Yoo TY, Adhikari A, Xia Z, Huynh T, Freed KF, Zhou R, Sosnick TR. The folding transition state of protein L is extensive with nonnative interactions (and not small and polarized). J Mol Biol 2012; 420:220-34. [PMID: 22522126 DOI: 10.1016/j.jmb.2012.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/04/2012] [Accepted: 04/11/2012] [Indexed: 10/28/2022]
Abstract
Progress in understanding protein folding relies heavily upon an interplay between experiment and theory. In particular, readily interpretable experimental data that can be meaningfully compared to simulations are required. According to standard mutational ϕ analysis, the transition state for Protein L contains only a single hairpin. However, we demonstrate here using ψ analysis with engineered metal ion binding sites that the transition state is extensive, containing the entire four-stranded β sheet. Underreporting of the structural content of the transition state by ϕ analysis also occurs for acyl phosphatase [Pandit, A. D., Jha, A., Freed, K. F. & Sosnick, T. R., (2006). Small proteins fold through transition states with native-like topologies. J. Mol. Biol.361, 755-770], ubiquitin [Sosnick, T. R., Dothager, R. S. & Krantz, B. A., (2004). Differences in the folding transition state of ubiquitin indicated by ϕ and ψ analyses. Proc. Natl Acad. Sci. USA 101, 17377-17382] and BdpA [Baxa, M., Freed, K. F. & Sosnick, T. R., (2008). Quantifying the structural requirements of the folding transition state of protein A and other systems. J. Mol. Biol.381, 1362-1381]. The carboxy-terminal hairpin in the transition state of Protein L is found to be nonnative, a significant result that agrees with our Protein Data Bank-based backbone sampling and all-atom simulations. The nonnative character partially explains the failure of accepted experimental and native-centric computational approaches to adequately describe the transition state. Hence, caution is required even when an apparent agreement exists between experiment and theory, thus highlighting the importance of having alternative methods for characterizing transition states.
Collapse
Affiliation(s)
- Tae Yeon Yoo
- Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Sadler DP, Petrik E, Taniguchi Y, Pullen JR, Kawakami M, Radford SE, Brockwell DJ. Identification of a mechanical rheostat in the hydrophobic core of protein L. J Mol Biol 2009; 393:237-48. [PMID: 19683005 PMCID: PMC2796179 DOI: 10.1016/j.jmb.2009.08.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/23/2009] [Accepted: 08/07/2009] [Indexed: 11/22/2022]
Abstract
The ability of proteins and their complexes to withstand or respond to mechanical stimuli is vital for cells to maintain their structural organisation, to relay external signals and to facilitate unfolding and remodelling. Force spectroscopy using the atomic force microscope allows the behaviour of single protein molecules under an applied extension to be investigated and their mechanical strength to be quantified. protein L, a simple model protein, displays moderate mechanical strength and is thought to unfold by the shearing of two mechanical sub-domains. Here, we investigate the importance of side-chain packing for the mechanical strength of protein L by measuring the mechanical strength of a series of protein L variants containing single conservative hydrophobic volume deletion mutants. Of the five thermodynamically destabilised variants characterised, only one residue (I60V) close to the interface between two mechanical sub-domains was found to differ in mechanical properties to wild type (ΔFI60V–WT = − 36 pN at 447 nm s− 1, ΔxuI60V–WT = 0.2 nm). Φ-value analysis of the unfolding data revealed a highly native transition state. To test whether the number of hydrophobic contacts across the mechanical interface does affect the mechanical strength of protein L, we measured the mechanical properties of two further variants. protein L L10F, which increases core packing but does not enhance interfacial contacts, increased mechanical strength by 13 ± 11 pN at 447 nm s− 1. By contrast, protein L I60F, which increases both core and cross-interface contacts, increased mechanical strength by 72 ± 13 pN at 447 nm s− 1. These data suggest a method by which nature can evolve a varied mechanical response from a limited number of topologies and demonstrate a generic but facile method by which the mechanical strength of proteins can be rationally modified.
Collapse
Affiliation(s)
- David P Sadler
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | |
Collapse
|
10
|
Protein Structure Prediction Using an Associated Memory Hamiltonian and All-Atom Molecular Dynamics Simulations. B KOREAN CHEM SOC 2008. [DOI: 10.5012/bkcs.2008.29.11.2172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Baxa MC, Freed KF, Sosnick TR. Quantifying the structural requirements of the folding transition state of protein A and other systems. J Mol Biol 2008; 381:1362-81. [PMID: 18625237 PMCID: PMC2742318 DOI: 10.1016/j.jmb.2008.06.067] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 06/18/2008] [Accepted: 06/23/2008] [Indexed: 11/22/2022]
Abstract
The B-domain of protein A is a small three-helix bundle that has been the subject of considerable experimental and theoretical investigation. Nevertheless, a unified view of the structure of the transition-state ensemble (TSE) is still lacking. To characterize the TSE of this surprisingly challenging protein, we apply a combination of psi analysis (which probes the role of specific side-chain to side-chain contacts) and kinetic H/D amide isotope effects (which measures hydrogen-bond content), building upon previous studies using mutational phi analysis (which probes the energetic influence of side-chain substitutions). The second helix is folded in the TSE, while helix formation appears just at the carboxy and amino termini of the first and third helices, respectively. The experimental data suggest a homogenous yet plastic TS with a native-like topology. This study generalizes our earlier conclusion, based on two larger alpha/beta proteins, that the TSEs of most small proteins achieve approximately 70% of their native state's relative contact order. This high percentage limits the degree of possible TS heterogeneity and requires a reevaluation of the structural content of the TSE of other proteins, especially when they are characterized as small or polarized.
Collapse
Affiliation(s)
- Michael C. Baxa
- Department of Physics, University of Chicago, 929 E. 57th St., Chicago, IL 60637
- Institute for Biophysical Dynamics, University of Chicago, 929 E. 57th St., Chicago, IL 60637
| | - Karl F. Freed
- James Franck Institute and Department of Chemistry, University of Chicago, 929 E. 57th St., Chicago, IL 60637
| | - Tobin R. Sosnick
- Institute for Biophysical Dynamics, University of Chicago, 929 E. 57th St., Chicago, IL 60637
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 E. 57th St., Chicago, IL 60637
| |
Collapse
|
12
|
Camilloni C, Sutto L, Provasi D, Tiana G, Broglia RA. Early events in protein folding: Is there something more than hydrophobic burst? Protein Sci 2008; 17:1424-33. [PMID: 18511538 DOI: 10.1110/ps.035105.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The presence of native contacts in the denatured state of many proteins suggests that elements of the biologically active structure of these molecules are formed during the initial stage of the folding process. The rapidity with which these events take place makes it difficult to study them in vitro, but, by the same token, suitable for studies in silico. With the help of all-atom, explicit solvent, molecular dynamics simulations we have followed in time, starting from elongated structureless conformations, the early events in the folding of src-SH3 domain and of proteins G, L, and CI2. It is observed that within the first 50 ns two important events take place, essentially independent of each other: hydrophobic collapse and formation of a few selected native contacts. The same contacts are also found in simulations carried out in the presence of guanidinium chloride in order to reproduce the conditions used to characterize experimentally the denatured state and testify to the fact that these contacts are to be considered a resilient characterizing property of the denaturated state.
Collapse
Affiliation(s)
- Carlo Camilloni
- Department of Physics, University of Milano, 20133 Milan, Italy
| | | | | | | | | |
Collapse
|
13
|
Urea and guanidinium chloride denature protein L in different ways in molecular dynamics simulations. Biophys J 2008; 94:4654-61. [PMID: 18339753 DOI: 10.1529/biophysj.107.125799] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In performing protein-denaturation experiments, it is common to employ different kinds of denaturants interchangeably. We make use of molecular dynamics simulations of Protein L in water, in urea, and in guanidinium chloride (GdmCl) to ascertain if there are any structural differences in the associated unfolding processes. The simulation of proteins in solutions of GdmCl is complicated by the large number of charges involved, making it difficult to set up a realistic force field. Furthermore, at high concentrations of this denaturant, the motion of the solvent slows considerably. The simulations show that the unfolding mechanism depends on the denaturing agent: in urea the beta-sheet is destabilized first, whereas in GdmCl, it is the alpha-helix. Moreover, whereas urea interacts with the protein accumulating in the first solvation shell, GdmCl displays a longer-range electrostatic effect that does not perturb the structure of the solvent close to the protein.
Collapse
|
14
|
Mallam AL, Jackson SE. Use of protein engineering techniques to elucidate protein folding pathways. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2008; 84:57-113. [PMID: 19121700 DOI: 10.1016/s0079-6603(08)00403-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Anna L Mallam
- Department of Chemistry, Cambridge, CB2 1EW, United Kingdom
| | | |
Collapse
|
15
|
Campbell-Valois FX, Michnick SW. The transition state of the ras binding domain of Raf is structurally polarized based on Phi-values but is energetically diffuse. J Mol Biol 2006; 365:1559-77. [PMID: 17137592 DOI: 10.1016/j.jmb.2006.10.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 09/05/2006] [Accepted: 10/24/2006] [Indexed: 11/24/2022]
Abstract
The ras binding domain (RBD) of the Ser/Thr kinase c-Raf/Raf-1 spans 78 residues and adopts a structure characteristic of the beta-grasp ubiquitin-like topology. Recently, the primary sequence of Raf RBD has been nearly exhaustively mutated experimentally by insertion of stretches of degenerate codons, which revealed sequence conservation and hydrophobic core organization similar to that found in an alignment of beta-grasp ubiquitin-like proteins. These results now allow us to examine the relationship between sequence conservation and the folding process, particularly viewed through the analysis of transition state (TS) structure. Specifically, we present herein a protein engineering study combining classic truncation (Ala/Gly) and atypical mutants to predict folding TS ensemble properties. Based on classical Phi-value analysis, Raf RBD TS structure is particularly polarized around the N-terminal beta-hairpin. However, all residues constituting the inner layer of the hydrophobic core are involved in TS stabilization, although they are clearly found in a less native-like environment. The TS structure can also be probed by a direct measure of its destabilization upon mutation, DeltaDeltaG(U-++). Viewed through this analysis, Raf RBD TS is a more diffuse structure, in which all residues of the hydrophobic core including beta-strands 1, 2, 3 and 5 and the major alpha-helix play similar roles in TS stabilization. In addition, Phi-values and DeltaDeltaG(U-++) reveal striking similarities in the TS of Raf RBD and ubiquitin, a structural analogue displaying insignificant sequence identity (<12%). However, ubiquitin TS appears more denatured-like and polarized around the N-terminal beta-hairpin. We suggest that analysis of Phi-values should also consider the direct impact of mutations on differences in free energy between the unfolded and TS (DeltaDeltaG(U-++)) to ensure that the description of TS properties is accurate. Finally, the impact of these findings on the modeling of protein folding is discussed.
Collapse
Affiliation(s)
- F-X Campbell-Valois
- Département de Biochimie, Université de Montréal, C.P. 6128, Succ. centre-ville, Montréal, Québec, Canada H3C 3J7
| | | |
Collapse
|
16
|
Pandit AD, Jha A, Freed KF, Sosnick TR. Small Proteins Fold Through Transition States With Native-like Topologies. J Mol Biol 2006; 361:755-70. [PMID: 16876194 DOI: 10.1016/j.jmb.2006.06.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 06/12/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
The folding pathway of common-type acyl phosphatase (ctAcP) is characterized using psi-analysis, which identifies specific chain-chain contacts using bi-histidine (biHis) metal-ion binding sites. In the transition state ensemble (TSE), the majority of the protein is structured with a near-native topology, only lacking one beta-strand and an alpha-helix. psi-Values are zero or unity for all sites except one at the amino terminus of helix H2. This fractional psi-value remains unchanged when three metal ions of differing coordination geometries are used, indicating this end of the helix experiences microscopic heterogeneity through fraying in the TSE. Ubiquitin, the other globular protein characterized using psi-analysis, also exhibits a single consensus TSE structure. Hence, the TSE of both proteins have converged to a single configuration, albeit one that contains some fraying at the periphery. Models of the TSE of both proteins are created using all-atom Langevin dynamics simulations using distance constraints derived from the experimental psi-values. For both proteins, the relative contact order of the TS models is approximately 80% of the native value. This shared value viewed in the context of the known correlation between contact order and folding rates, suggests that other proteins will have a similarly high fraction of the native contact order. This constraint greatly limits the range of possible configurations at the rate-limiting step.
Collapse
Affiliation(s)
- Adarsh D Pandit
- Department of Biochemistry and Molecular Biology, and the Institute for Biophysical Dynamics, University of Chicago, 929 E. 57th St., Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
17
|
Yang X, Wang M, Fitzgerald MC. Direct analysis of backbone-backbone hydrogen bond formation in protein folding transition states. J Mol Biol 2006; 363:506-19. [PMID: 16963082 DOI: 10.1016/j.jmb.2006.07.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 07/24/2006] [Accepted: 07/25/2006] [Indexed: 11/29/2022]
Abstract
Here we investigate the role of backbone-backbone hydrogen bonding interactions in stabilizing the protein folding transition states of two model protein systems, the B1 domain of protein L (ProtL) and the P22 Arc repressor. A backbone modified analogue of ProtL containing an amide-to-ester bond substitution between residues 105 and 106 was prepared by total chemical synthesis, and the thermodynamic and kinetic parameters associated with its folding reaction were evaluated. Ultimately, these parameters were used in a Phi-value analysis to determine if the native backbone-backbone hydrogen bonding interaction perturbed in this analogue (i.e. a hydrogen bond in the first beta-turn of ProtL's beta-beta-alpha-beta-beta fold) was formed in the transition state of ProtL's folding reaction. Also determined were the kinetic parameters associated with the folding reactions of two Arc repressor analogues, each containing an amide-to-ester bond substitution in the backbone of their polypeptide chains. These parameters were used together with previously established thermodynamic parameters for the folding of these analogues in Phi-value analyses to determine if the native backbone-backbone hydrogen bonding interactions perturbed in these analogues (i.e. a hydrogen bond at the end of the intersubunit beta-sheet interface and hydrogen bonds at the beginning of the second alpha-helix in Arc repressor's beta-alpha-alpha structure) were formed in the transition state of Arc repressor's folding reaction. Our results reveal that backbone-backbone hydrogen bonding interactions are formed in the beta-turn and alpha-helical transition state structures of ProtL and Arc repressor, respectively; and they were not formed in the intersubunit beta-sheet interface of Arc repressor, a region of Arc repressor's polypeptide chain previously shown to have other non-native-like conformations in Arc's protein folding transition state.
Collapse
Affiliation(s)
- Xiaoye Yang
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
18
|
Sato S, Religa TL, Fersht AR. Phi-analysis of the folding of the B domain of protein A using multiple optical probes. J Mol Biol 2006; 360:850-64. [PMID: 16782128 DOI: 10.1016/j.jmb.2006.05.051] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/23/2006] [Accepted: 05/19/2006] [Indexed: 10/24/2022]
Abstract
We examined the co-operativity of ultra-fast folding of a protein and whether the Phi-value analysis of its transition state depended on the location of the optical probe. We incorporated in turn a tryptophan residue into each of the three helices of the B domain of Protein A. Each Trp mutant of the three-helix bundle protein was used as a pseudo-wild-type parent for Phi-analysis in which the intrinsic Trp fluorescence probed the formation of each helix during the transition state. Apart from local effects in the immediate vicinity of the probe, the three separate sets of Phi-values were in excellent agreement, demonstrating the overall co-operativity of folding and the robustness of the Phi-analysis. The transition state of folding of Protein A contains the second helix being well formed with many stabilizing tertiary hydrophobic interactions. In contrast, the first and the third helices are more poorly structured in the transition state. The mechanism of folding thus involves the concurrent formation of secondary and tertiary interactions, and is towards the nucleation-condensation extreme in the nucleation-condensation-framework continuum of mechanism, with helix 2 being the nucleus. We provide an error analysis of Phi-values derived purely from the kinetics of two-state chevron plots.
Collapse
Affiliation(s)
- Satoshi Sato
- MRC Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, UK
| | | | | |
Collapse
|
19
|
Yang X, Fitzgerald MC. Total chemical synthesis of the B1 domain of protein L from Peptostreptococcus magnus. Bioorg Chem 2006; 34:131-41. [PMID: 16690101 DOI: 10.1016/j.bioorg.2006.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2006] [Accepted: 02/13/2006] [Indexed: 10/24/2022]
Abstract
Reported here is a native chemical ligation strategy for the total chemical synthesis of the B1 domain of protein L. A synthetic construct of this 76 amino acid protein domain was prepared by the chemoselective ligation of two unprotected polypeptide fragments, one containing an N-terminal cysteine residue and one containing a C-terminal thioester moiety. The polypeptide fragments utilized in the ligation reaction were readily prepared by stepwise solid phase peptide synthesis (SPPS) methods for Boc-chemistry. The milligram quantities of protein required for conventional biophysical studies were readily accessible using the synthetic protocol described here. The folding properties of the synthetic protein L construct were also determined and found to be very similar to those of a similar wild-type protein L constructs prepared by recombinant-DNA methods. This work facilitates future unnatural amino acid mutagenesis experiments on this model protein system to further dissect the molecular basis of its folding and stability.
Collapse
Affiliation(s)
- Xiaoye Yang
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
20
|
Sosnick TR, Krantz BA, Dothager RS, Baxa M. Characterizing the Protein Folding Transition State Using ψ Analysis. Chem Rev 2006; 106:1862-76. [PMID: 16683758 DOI: 10.1021/cr040431q] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tobin R Sosnick
- Department of Biochemistry, Institute for Biophysical Dynamics, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Catherine A Royer
- Centre de Biochimie Structurale, 29, rue de Navacelles 34090 Montpellier Cedex France
| |
Collapse
|
22
|
Sosnick TR, Dothager RS, Krantz BA. Differences in the folding transition state of ubiquitin indicated by phi and psi analyses. Proc Natl Acad Sci U S A 2004; 101:17377-82. [PMID: 15576508 PMCID: PMC536030 DOI: 10.1073/pnas.0407683101] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We compare the folding transition state (TS) of ubiquitin previously identified by using psi analysis to that determined by using analysis. Both methods attempt to identify interactions and their relative populations at the rate-limiting step for folding. The TS ensemble derived from psi analysis has an extensive native-like chain topology, with a four-stranded beta-sheet network and a portion of the major helix. According to analysis, however, the TS is much smaller and more polarized, with only a local helix/hairpin motif. We find that structured regions can have values far from unity, the canonical value for such sites, because of structural relaxation of the TS. Consequently, these sites may be incorrectly interpreted as contributing little to the structure of the TS. These results stress the need for caution when interpreting and drawing conclusions from analysis alone and highlight the need for more specific tools for examining the structure and energetics of the TS ensemble.
Collapse
Affiliation(s)
- Tobin R Sosnick
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
23
|
Yan S, Gawlak G, Smith J, Silver L, Koide A, Koide S. Conformational Heterogeneity of an Equilibrium Folding Intermediate Quantified and Mapped by Scanning Mutagenesis. J Mol Biol 2004; 338:811-25. [PMID: 15099747 DOI: 10.1016/j.jmb.2004.02.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2003] [Revised: 02/23/2004] [Accepted: 02/24/2004] [Indexed: 11/18/2022]
Abstract
It is challenging to experimentally define an energy landscape for protein folding that comprises multiple partially unfolded states. Experimental results are often ambiguous as to whether a non-native state is conformationally homogeneous. Here, we tested an approach combining systematic mutagenesis and a Brønsted-like analysis to reveal and quantify conformational heterogeneity of folding intermediate states. Using this method, we resolved an otherwise apparently homogeneous equilibrium folding intermediate of Borrelia burgdorferi OspA into two conformationally distinct species and determined their relative populations. Furthermore, we mapped the structural differences between these intermediate species, which are consistent with the non-native species that we previously proposed based on native-state hydrogen exchange studies. When treated as a single state, the intermediate ensemble exhibited fractional Phi-values for mutations and Hammond-type behaviors that are often observed for folding transition states. We found that a change in relative population of the two species within the intermediate ensemble explains these properties well, suggesting that fractional Phi-values and Hammond-type behaviors exhibited by folding intermediates and transition states may arise more often from conformational heterogeneity than from a single partial structure. Our results are consistent with the presence of multiple minima in a rugged energy landscape predicted from theoretical studies. The method described here provides a promising means to probe a complex folding energy landscape.
Collapse
Affiliation(s)
- Shude Yan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
24
|
Krantz BA, Dothager RS, Sosnick TR. Discerning the Structure and Energy of Multiple Transition States in Protein Folding using ψ-Analysis. J Mol Biol 2004; 337:463-75. [PMID: 15003460 DOI: 10.1016/j.jmb.2004.01.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 01/05/2004] [Accepted: 01/06/2004] [Indexed: 11/24/2022]
Abstract
We quantify the degree to which folding occurs along a complex landscape with structurally distinct pathways using psi-analysis in combination with a protein engineering method that identifies native, non-covalent polypeptide interactions and their relative populations at the rate-limiting step. By probing the proximity of two specific partners, this method is extremely well-suited for comparison to theoretical simulations. Using ubiquitin as a model system, we detect individual pathways with site-resolved resolution, demonstrating that the protein folds through a native-like transition state ensemble with a common nucleus that contains heterogeneous features on its periphery. The consensus transition state topology has part of the major helix docked against four properly aligned beta-strands. However, structural heterogeneity exists in the transition state ensemble, wherein peripheral regions are differentially populated according to their relative stability. Pathway diversity reflects the variable order of formation of these peripheral elements, which radiate outward from the common nucleus. These results, which show only moderate agreement with traditional mutational phi-analysis, provide an extraordinarily detailed and quantitative description of protein folding.
Collapse
Affiliation(s)
- Bryan A Krantz
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 E. 58th St., Chicago, IL 60637, USA
| | | | | |
Collapse
|
25
|
Abstract
An explosion of in vitro experimental data on the folding of proteins has revealed many examples of folding in the millisecond or faster timescale, often occurring in the absence of stable intermediate states. We review experimental methods for measuring fast protein folding kinetics, and then discuss various analytical models used to interpret these data. Finally, we classify general mechanisms that have been proposed to explain fast protein folding into two catagories, heterogeneous and homogeneous, reflecting the nature of the transition state. One heterogeneous mechanism, the diffusion-collision mechanism, can be used to interpret experimental data for a number of proteins.
Collapse
Affiliation(s)
- Jeffrey K Myers
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
26
|
Karanicolas J, Brooks CL. The origins of asymmetry in the folding transition states of protein L and protein G. Protein Sci 2002; 11:2351-61. [PMID: 12237457 PMCID: PMC2373711 DOI: 10.1110/ps.0205402] [Citation(s) in RCA: 319] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Topology has been shown to be an important determinant of many features of protein folding; however, the delineation of sequence effects on folding remains obscure. Furthermore, differentiation between the two influences proves difficult due to their intimate relationship. To investigate the effect of sequence in the absence of significant topological differences, we examined the folding mechanisms of segment B1 peptostreptococcal protein L and segment B1 of streptococcal protein G. These proteins share the same highly symmetrical topology. Despite this symmetry, neither protein folds through a symmetrical transition state. We analyzed the origins of this difference using theoretical models. We found that the strength of the interactions present in the N-terminal hairpin of protein L causes this hairpin to form ahead of the C-terminal hairpin. The difference in chain entropy associated with the formation of the hairpins of protein G proves sufficient to beget initiation of folding at the shorter C-terminal hairpin. Our findings suggest that the mechanism of folding may be understood by examination of the free energy associated with the formation of partially folded microstates.
Collapse
Affiliation(s)
- John Karanicolas
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
27
|
Abstract
We examine the ability of our recently introduced minimalist protein model to reproduce experimentally measured thermodynamic and kinetic changes upon sequence mutation in the well-studied immunoglobulin-binding protein L. We have examined five different sequence mutations of protein L that are meant to mimic the same mutation type studied experimentally: two different mutations which disrupt the natural preference in the beta-hairpin #1 and beta-hairpin #2 turn regions, two different helix mutants where a surface polar residue in the alpha-helix has been mutated to a hydrophobic residue, and a final mutant to further probe the role of nonnative hydrophobic interactions in the folding process. These simulated mutations are analyzed in terms of various kinetic and thermodynamic changes with respect to wild type, but in addition we evaluate the structure-activity relationship of our model protein based on the phi-value calculated from both the kinetic and thermodynamic perspectives. We find that the simulated thermodynamic phi-values reproduce the experimental trends in the mutations studied and allow us to circumvent the difficult interpretation of the complicated kinetics of our model. Furthermore, the level of resolution of the model allows us to directly predict what experiments seek in regard to protein engineering studies of protein folding--namely the residues or portions of the polypeptide chain that contribute to the crucial step in the folding of the wild-type protein.
Collapse
Affiliation(s)
- Jon M Sorenson
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
28
|
Perl D, Jacob M, Bánó M, Stupák M, Antalík M, Schmid FX. Thermodynamics of a diffusional protein folding reaction. Biophys Chem 2002; 96:173-90. [PMID: 12034439 DOI: 10.1016/s0301-4622(02)00024-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The folding reactions of several proteins are well described as diffusional barrier crossing processes, which suggests that they should be analyzed by Kramers' rate theory rather than by transition state theory. For the cold shock protein Bc-Csp from Bacillus caldolyticus, we measured stability and folding kinetics, as well as solvent viscosity as a function of temperature and denaturant concentration. Our analysis indicates that diffusional folding reactions can be treated by transition state theory, provided that the temperature and denaturant dependence of the solvent viscosity is properly accounted for, either at the level of the measured rate constants or of the calculated activation parameters. After viscosity correction the activation barriers for folding become less enthalpic and more entropic. The transition from an enthalpic to an entropic folding barrier with increasing temperature is, however, apparent in the data before and after this correction. It is a consequence of the negative activation heat capacity of refolding, which is independent of solvent viscosity. Bc-Csp and its mesophilic homolog Bs-CspB from Bacillus subtilis differ strongly in stability but show identical enthalpic and entropic barriers to refolding. The increased stability of Bc-Csp originates from additional enthalpic interactions that are established after passage through the activated state. As a consequence, the activation enthalpy of unfolding is increased relative to Bs-CspB.
Collapse
Affiliation(s)
- Dieter Perl
- Laboratorium für Biochemie and Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Sorenson JM, Head-Gordon T. Toward minimalist models of larger proteins: A ubiquitin-like protein. Proteins 2002. [DOI: 10.1002/prot.1174] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Roumestand C, Boyer M, Guignard L, Barthe P, Royer CA. Characterization of the folding and unfolding reactions of a small beta-barrel protein of novel topology, the MTCP1 oncogene product P13. J Mol Biol 2001; 312:247-59. [PMID: 11545600 DOI: 10.1006/jmbi.2001.4928] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The equilibrium and kinetic folding properties of a small oncogene product, P13(MTCP1), of novel topology have been investigated using perturbation by guanidine hydrochloride and observation by fluorescence, circular dichroism and two-dimensional heteronuclear NMR spectroscopy. The structure of P13(MTCP1) is comprised of a canonical filled beta-barrel, although the topology of the structure is absolutely unique, rendering the folding properties of this protein of great interest. Equilibrium measurements of the intrinsic fluorescence emission spectrum, the fluorescence decay, the circular dichroism spectrum and the (15)N-(1)H heteronuclear single quantum coherence (HSQC) correlation spectrum as a function of increasing concentrations of denaturant showed no evidence for the population of any equilibrium intermediates, although negative amplitudes on the blue edge of the tryptophan emission and loss of intensity of the native HSQC correlation peaks were indicative of increased conformational dynamics at low denaturant concentrations. The free energy and cooperativity of unfolding as observed by fluorescence and circular dichroism were in relatively good agreement, also consistent with a two-state transition. Kinetics measurements of the fluorescence emission as a function of denaturant concentration revealed that P13(MTCP1) is the slowest folding beta-structure protein reported to date. Comparison of the activation cooperativity values (m(f) and m(u)) indicates that the structure of the transition state is quite close to the folded state in terms of exposed surface area. The calculated contact order of P13(MTCP1) is relatively low and does not appear to explain its slow rate of folding. We suggest that the complex topology of this protein, which would require the ordering of the beta-barrel through a long loop joining the two L-shaped components of the barrel, could provide an explanation for this slow folding.
Collapse
Affiliation(s)
- C Roumestand
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U414, 29, rue de Navacelles, 34090 Montpellier Cedex, France.
| | | | | | | | | |
Collapse
|
31
|
Mirny L, Shakhnovich E. Protein folding theory: from lattice to all-atom models. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:361-96. [PMID: 11340064 DOI: 10.1146/annurev.biophys.30.1.361] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review focuses on recent advances in understanding protein folding kinetics in the context of nucleation theory. We present basic concepts such as nucleation, folding nucleus, and transition state ensemble and then discuss recent advances and challenges in theoretical understanding of several key aspects of protein folding kinetics. We cover recent topology-based approaches as well as evolutionary studies and molecular dynamics approaches to determine protein folding nucleus and analyze other aspects of folding kinetics. Finally, we briefly discuss successful all-atom Monte-Carlo simulations of protein folding and conclude with a brief outlook for the future.
Collapse
Affiliation(s)
- L Mirny
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
32
|
Sorenson JM, Head-Gordon T. Matching simulation and experiment: a new simplified model for simulating protein folding. J Comput Biol 2001; 7:469-81. [PMID: 11108474 DOI: 10.1089/106652700750050899] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Simulations of simplified protein folding models have provided much insight into solving the protein folding problem. We propose here a new off-lattice bead model, capable of simulating several different fold classes of small proteins. We present the sequence for an alpha/beta protein resembling the IgG-binding proteins L and G. The thermodynamics of the folding process for this model are characterized using the multiple multihistogram method combined with constant-temperature Langevin simulations. The folding is shown to be highly cooperative, with chain collapse nearly accompanying folding. Two parallel folding pathways are shown to exist on the folding free energy landscape. One pathway contains an intermediate--similar to experiments on protein G, and one pathway contains no intermediates-similar to experiments on protein L. The folding kinetics are characterized by tabulating mean-first passage times, and we show that the onset of glasslike kinetics occurs at much lower temperatures than the folding temperature. This model is expected to be useful in many future contexts: investigating questions of the role of local versus nonlocal interactions in various fold classes, addressing the effect of sequence mutations affecting secondary structure propensities, and providing a computationally feasible model for studying the role of solvation forces in protein folding.
Collapse
Affiliation(s)
- J M Sorenson
- Department of Chemistry, University of California, Berkeley 94720, USA
| | | |
Collapse
|
33
|
Kenig M, Jerala R, Kroon-Žitko L, Turk V, Žerovnik E. Major differences in stability and dimerization properties of two chimeric mutants of human stefins. Proteins 2001. [DOI: 10.1002/1097-0134(20010301)42:4<512::aid-prot90>3.0.co;2-m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Onuchic JN, Nymeyer H, García AE, Chahine J, Socci ND. The energy landscape theory of protein folding: insights into folding mechanisms and scenarios. ADVANCES IN PROTEIN CHEMISTRY 2000; 53:87-152. [PMID: 10751944 DOI: 10.1016/s0065-3233(00)53003-4] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- J N Onuchic
- Department of Physics, University of California at San Diego, La Jolla 92093-0319, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
The 62 residue IgG binding domain of protein L consists of a central alpha-helix packed on a four-stranded beta-sheet formed by N and C-terminal beta-hairpins. The overall topology of the protein is quite symmetric: the beta-hairpins have similar lengths and make very similar interactions with the central helix. Characterization of the effects of 70 point mutations distributed throughout the protein on the kinetics of folding and unfolding reveals that this symmetry is completely broken during folding; the first beta-hairpin is largely structured while the second beta-hairpin and helix are largely disrupted in the folding transition state ensemble. The results are not consistent with a "hydrophobic core first" picture of protein folding; the first beta-hairpin appears to be at least as ordered at the rate limiting step in folding as the hydrophobic core.
Collapse
Affiliation(s)
- D E Kim
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
36
|
Clementi C, Nymeyer H, Onuchic JN. Topological and energetic factors: what determines the structural details of the transition state ensemble and "en-route" intermediates for protein folding? An investigation for small globular proteins. J Mol Biol 2000; 298:937-53. [PMID: 10801360 DOI: 10.1006/jmbi.2000.3693] [Citation(s) in RCA: 977] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent experimental results suggest that the native fold, or topology, plays a primary role in determining the structure of the transition state ensemble, at least for small, fast-folding proteins. To investigate the extent of the topological control of the folding process, we studied the folding of simplified models of five small globular proteins constructed using a Go-like potential to retain the information about the native structures but drastically reduce the energetic frustration and energetic heterogeneity among residue-residue native interactions. By comparing the structure of the transition state ensemble (experimentally determined by Phi-values) and of the intermediates with those obtained using our models, we show that these energetically unfrustrated models can reproduce the global experimentally known features of the transition state ensembles and "en-route" intermediates, at least for the analyzed proteins. This result clearly indicates that, as long as the protein sequence is sufficiently minimally frustrated, topology plays a central role in determining the folding mechanism.
Collapse
Affiliation(s)
- C Clementi
- Department of Physics, University of California at San Diego, La Jolla, CA 92093-0319, USA.
| | | | | |
Collapse
|
37
|
Brockwell DJ, Smith DA, Radford SE. Protein folding mechanisms: new methods and emerging ideas. Curr Opin Struct Biol 2000; 10:16-25. [PMID: 10679463 DOI: 10.1016/s0959-440x(99)00043-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
During the past year, advances in our understanding of folding mechanisms have been made through detailed experimental and theoretical studies of a number of proteins. The development of new methods has allowed the earliest events in folding to be probed and the measurement of folding at the level of individual molecules is now possible, opening the door to exciting new experiments.
Collapse
Affiliation(s)
- D J Brockwell
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | | |
Collapse
|
38
|
Gu H, Doshi N, Kim DE, Simons KT, Santiago JV, Nauli S, Baker D. Robustness of protein folding kinetics to surface hydrophobic substitutions. Protein Sci 1999; 8:2734-41. [PMID: 10631990 PMCID: PMC2144221 DOI: 10.1110/ps.8.12.2734] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We use both combinatorial and site-directed mutagenesis to explore the consequences of surface hydrophobic substitutions for the folding of two small single domain proteins, the src SH3 domain, and the IgG binding domain of Peptostreptococcal protein L. We find that in almost every case, destabilizing surface hydrophobic substitutions have much larger effects on the rate of unfolding than on the rate of folding, suggesting that nonnative hydrophobic interactions do not significantly interfere with the rate of core assembly.
Collapse
Affiliation(s)
- H Gu
- Department of Biochemistry, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Cregut D, Civera C, Macias MJ, Wallon G, Serrano L. A tale of two secondary structure elements: when a beta-hairpin becomes an alpha-helix. J Mol Biol 1999; 292:389-401. [PMID: 10493883 DOI: 10.1006/jmbi.1999.2966] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this work, we have analyzed the relative importance of secondary versus tertiary interactions in stabilizing and guiding protein folding. For this purpose, we have designed four different mutants to replace the alpha-helix of the GB1 domain by a sequence with strong beta-hairpin propensity in isolation. In particular, we have chosen the sequence of the second beta-hairpin of the GB1 domain, which populates the native conformation in aqueous solution to a significant extent. The resulting protein has roughly 30 % of its sequence duplicated and maintains the 3D-structure of the wild-type protein, but with lower stability (up to -5 kcal/mol). The loss of intrinsic helix stability accounts for about 80 % of the decrease in free energy, illustrating the importance of local interactions in protein stability. Interestingly enough, all the mutant proteins, included the one with the duplicated beta-hairpin sequence, fold with similar rates as the GB1 domain. Essentially, it is the nature of the rate-limiting step in the folding reaction that determines whether a particular interaction will speed up, or not, the folding rates. While local contacts are important in determining protein stability, residues involved in tertiary contacts in combination with the topology of the native fold, seem to be responsible for the specificity of protein structures. Proteins with non-native secondary structure tendencies can adopt stable folds and be as efficient in folding as those proteins with native-like propensities.
Collapse
Affiliation(s)
- D Cregut
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, Heidelberg, D-69117, Germany.
| | | | | | | | | |
Collapse
|
40
|
Moran LB, Schneider JP, Kentsis A, Reddy GA, Sosnick TR. Transition state heterogeneity in GCN4 coiled coil folding studied by using multisite mutations and crosslinking. Proc Natl Acad Sci U S A 1999; 96:10699-704. [PMID: 10485889 PMCID: PMC17946 DOI: 10.1073/pnas.96.19.10699] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have investigated the folding behavior of dimeric and covalently crosslinked versions of the 33-residue alpha-helical GCN4-p1 coiled coil derived from the leucine zipper region of the transcriptional activator GCN4. The effects of multisite substitutions indicate that folding occurs along multiple routes with nucleation sites located throughout the protein. The similarity in activation energies of the different routes together with an analysis of intrinsic helical propensities indicate that minimal helix is present before a productive collision of the two chains. However, approximately one-third to one-half of the total helical structure is formed in the postcollision transition state ensemble. For the crosslinked, monomeric version, folding occurs along a single robust pathway. Here, the region nearest the crosslink, with the least helical propensity, is structured in the transition state whereas the region farthest from the tether, with the most propensity, is completely unstructured. Hence, the existence of transition state heterogeneity and the selection of folding routes critically depend on chain topology.
Collapse
Affiliation(s)
- L B Moran
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
41
|
Fulton KF, Main ER, Daggett V, Jackson SE. Mapping the interactions present in the transition state for unfolding/folding of FKBP12. J Mol Biol 1999; 291:445-61. [PMID: 10438631 DOI: 10.1006/jmbi.1999.2942] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure of the transition state for folding/unfolding of the immunophilin FKBP12 has been characterised using a combination of protein engineering techniques, unfolding kinetics, and molecular dynamics simulations. A total of 34 mutations were made at sites throughout the protein to probe the extent of secondary and tertiary structure in the transition state. The transition state for folding is compact compared with the unfolded state, with an approximately 30 % increase in the native solvent-accessible surface area. All of the interactions are substantially weaker in the transition state, as probed by both experiment and molecular dynamics simulations. In contrast to some other proteins of this size, no element of structure is fully formed in the transition state; instead, the transition state is similar to that found for smaller, single-domain proteins, such as chymotrypsin inhibitor 2 and the SH3 domain from alpha-spectrin. For FKBP12, the central three strands of the beta-sheet, beta-strand 2, beta-strand 4 and beta-strand 5, comprise the most structured region of the transition state. In particular Val101, which is one of the most highly buried residues and located in the middle of the central beta-strand, makes approximately 60 % of its native interactions. The outer beta-strands and the ends of the central beta-strands are formed to a lesser degree. The short alpha-helix is largely unstructured in the transition state, as are the loops. The data are consistent with a nucleation-condensation model of folding, the nucleus of which is formed by side-chains within beta-strands 2, 4 and 5, and the C terminus of the alpha-helix. The precise residues involved in the nucleus differ in the two simulated transition state ensembles, but the interacting regions of the protein are conserved. These residues are distant in the primary sequence, demonstrating the importance of tertiary interactions in the transition state. The two independently derived transition state ensembles are structurally similar, which is consistent with a Bronsted analysis confirming that the transition state is an ensemble of states close in structure.
Collapse
Affiliation(s)
- K F Fulton
- Cambridge University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | | |
Collapse
|
42
|
Goldberg JM, Baldwin RL. A specific transition state for S-peptide combining with folded S-protein and then refolding. Proc Natl Acad Sci U S A 1999; 96:2019-24. [PMID: 10051587 PMCID: PMC26729 DOI: 10.1073/pnas.96.5.2019] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We measured the folding and unfolding kinetics of mutants for a simple protein folding reaction to characterize the structure of the transition state. Fluorescently labeled S-peptide analogues combine with S-protein to form ribonuclease S analogues: initially, S-peptide is disordered whereas S-protein is folded. The fluorescent probe provides a convenient spectroscopic probe for the reaction. The association rate constant, kon, and the dissociation rate constant, koff, were both determined for two sets of mutants. The dissociation rate constant is measured by adding an excess of unlabeled S-peptide analogue to a labeled complex (RNaseS*). This strategy allows kon and koff to be measured under identical conditions so that microscopic reversibility applies and the transition state is the same for unfolding and refolding. The first set of mutants tests the role of the alpha-helix in the transition state. Solvent-exposed residues Ala-6 and Gln-11 in the alpha-helix of native RNaseS were replaced by the helix destabilizing residues glycine or proline. A plot of log kon vs. log Kd for this series of mutants is linear over a very wide range, with a slope of -0.3, indicating that almost all of the molecules fold via a transition state involving the helix. A second set of mutants tests the role of side chains in the transition state. Three side chains were investigated: Phe-8, His-12, and Met-13, which are known to be important for binding S-peptide to S-protein and which also contribute strongly to the stability of RNaseS*. Only the side chain of Phe-8 contributes significantly, however, to the stability of the transition state. The results provide a remarkably clear description of a folding transition state.
Collapse
Affiliation(s)
- J M Goldberg
- Department of Biochemistry, Beckman Center, Stanford University Medical Center, Stanford, CA 94305-5307, USA.
| | | |
Collapse
|