1
|
Bureau HR, Quirk S, Hernandez R. The relative stability of trpzip1 and its mutants determined by computation and experiment. RSC Adv 2020; 10:6520-6535. [PMID: 35495997 PMCID: PMC9049704 DOI: 10.1039/d0ra00920b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/04/2020] [Indexed: 11/21/2022] Open
Abstract
The single-point mutations of tprzip1 are indicated at left, and their relative energetics are compared at right.
Collapse
|
2
|
Zerze GH, Stillinger FH, Debenedetti PG. Effect of heterochiral inversions on the structure of a β-hairpin peptide. Proteins 2019; 87:569-578. [PMID: 30811673 DOI: 10.1002/prot.25680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/24/2019] [Indexed: 01/25/2023]
Abstract
We study computationally a family of β-hairpin peptides with systematically introduced chiral inversions, in explicit water, and we investigate the extent to which the backbone structure is able to fold in the presence of heterochiral perturbations. In contrast to the recently investigated case of a helical peptide, we do not find a monotonic change in secondary structure content as a function of the number of L- to D-inversions. The effects of L- to D-inversions are instead found to be highly position-specific. Additionally, in contrast to the helical peptide, some inversions increase the stability of the folded peptide: in such cases, we compute an increase in β-sheet content in the aqueous solution equilibrium ensemble. However, the tertiary structures of the stable (folded) configurations for peptides for which inversions cause an increase in β-sheet content show differences from one another, as well as from the native fold of the nonchirally perturbed β-hairpin. Our results suggest that although some chiral perturbations can increase folding stability, chirally perturbed proteins may still underperform functionally, given the relationship between structure and function.
Collapse
Affiliation(s)
- Gül H Zerze
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | | | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| |
Collapse
|
3
|
McKiernan KA, Husic BE, Pande VS. Modeling the mechanism of CLN025 beta-hairpin formation. J Chem Phys 2017; 147:104107. [PMID: 28915754 PMCID: PMC5597441 DOI: 10.1063/1.4993207] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/24/2017] [Indexed: 01/26/2023] Open
Abstract
Beta-hairpins are substructures found in proteins that can lend insight into more complex systems. Furthermore, the folding of beta-hairpins is a valuable test case for benchmarking experimental and theoretical methods. Here, we simulate the folding of CLN025, a miniprotein with a beta-hairpin structure, at its experimental melting temperature using a range of state-of-the-art protein force fields. We construct Markov state models in order to examine the thermodynamics, kinetics, mechanism, and rate-determining step of folding. Mechanistically, we find the folding process is rate-limited by the formation of the turn region hydrogen bonds, which occurs following the downhill hydrophobic collapse of the extended denatured protein. These results are presented in the context of established and contradictory theories of the beta-hairpin folding process. Furthermore, our analysis suggests that the AMBER-FB15 force field, at this temperature, best describes the characteristics of the full experimental CLN025 conformational ensemble, while the AMBER ff99SB-ILDN and CHARMM22* force fields display a tendency to overstabilize the native state.
Collapse
Affiliation(s)
- Keri A McKiernan
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Brooke E Husic
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Vijay S Pande
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
4
|
Straus RN, Jockusch RA. Probing the Gaseous Structure of a β-Hairpin Peptide with H/D Exchange and Electron Capture Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:358-369. [PMID: 27943124 DOI: 10.1007/s13361-016-1528-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
An improved understanding of the extent to which native protein structure is retained upon transfer to the gas phase promises to enhance biological mass spectrometry, potentially streamlining workflows and providing fundamental insights into hydration effects. Here, we investigate the gaseous conformation of a model β-hairpin peptide using gas-phase hydrogen-deuterium (H/D) exchange with subsequent electron capture dissociation (ECD). Global gas-phase H/D exchange levels, and residue-specific exchange levels derived from ECD data, are compared among the wild type 16-residue peptide GB1p and several variants. High protection from H/D exchange observed for GB1p, but not for a truncated version, is consistent with the retention of secondary structure of GB1p in the gas phase or its refolding into some other compact structure. Four alanine mutants that destabilize the hairpin in solution show levels of protection similar to that of GB1p, suggesting collapse or (re)folding of these peptides upon transfer to the gas phase. These results offer a starting point from which to understand how a key secondary structural element, the β-hairpin, is affected by transfer to the gas phase. This work also demonstrates the utility of a much-needed addition to the tool set that is currently available for the investigation of the gaseous conformation of biomolecules, which can be employed in the future to better characterize gaseous proteins and protein complexes. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Rita N Straus
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Rebecca A Jockusch
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
5
|
Robinson MK, Monroe JI, Shell MS. Are AMBER Force Fields and Implicit Solvation Models Additive? A Folding Study with a Balanced Peptide Test Set. J Chem Theory Comput 2016; 12:5631-5642. [DOI: 10.1021/acs.jctc.6b00788] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Melina K. Robinson
- Department
of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Jacob I. Monroe
- Department
of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - M. Scott Shell
- Department
of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
6
|
Sumaryada T, Hati J, Wahyudi ST, Malau ND, Sawitri KN. Elucidation of GB1 Protein Unfolding Mechanism via a Long-timescale Molecular Dynamics Simulation. ACTA ACUST UNITED AC 2016. [DOI: 10.1088/1755-1315/31/1/012008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Zerze GH, Uz B, Mittal J. Folding thermodynamics ofβ-hairpins studied by replica-exchange molecular dynamics simulations. Proteins 2015; 83:1307-15. [DOI: 10.1002/prot.24827] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/24/2015] [Accepted: 04/29/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Gül H. Zerze
- Department of Chemical and Biomolecular Engineering; Lehigh University; Bethlehem Pennsylvania 18015
| | - Bilge Uz
- Department of Chemical and Biomolecular Engineering; Lehigh University; Bethlehem Pennsylvania 18015
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering; Lehigh University; Bethlehem Pennsylvania 18015
| |
Collapse
|
8
|
Podewin T, Rampp MS, Turkanovic I, Karaghiosoff KL, Zinth W, Hoffmann-Röder A. Photocontrolled chignolin-derived β-hairpin peptidomimetics. Chem Commun (Camb) 2015; 51:4001-4. [DOI: 10.1039/c4cc10304a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of novel, chignolin-derived peptides comprising the azobenzene photoswitch [3-(3-aminomethyl)phenylazo]phenylacetic acid (AMPP) is reported.
Collapse
Affiliation(s)
- T. Podewin
- Department of Organic Chemistry
- Faculty of Chemistry and Pharmacy
- Ludwig-Maximilians-University LMU
- 81377 Munich
- Germany
| | - M. S. Rampp
- Department for BioMolecular Optics
- Faculty of Physics
- Ludwig-Maximilians-University LMU
- 80538 Munich
- Germany
| | - I. Turkanovic
- Department for BioMolecular Optics
- Faculty of Physics
- Ludwig-Maximilians-University LMU
- 80538 Munich
- Germany
| | - K. L. Karaghiosoff
- Department of Organic Chemistry
- Faculty of Chemistry and Pharmacy
- Ludwig-Maximilians-University LMU
- 81377 Munich
- Germany
| | - W. Zinth
- Department for BioMolecular Optics
- Faculty of Physics
- Ludwig-Maximilians-University LMU
- 80538 Munich
- Germany
| | - A. Hoffmann-Röder
- Department of Organic Chemistry
- Faculty of Chemistry and Pharmacy
- Ludwig-Maximilians-University LMU
- 81377 Munich
- Germany
| |
Collapse
|
9
|
Affiliation(s)
- Zhaoqian Su
- Physics Department, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Cristiano L. Dias
- Physics Department, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
10
|
Li NK, Quiroz FG, Hall CK, Chilkoti A, Yingling YG. Molecular Description of the LCST Behavior of an Elastin-Like Polypeptide. Biomacromolecules 2014; 15:3522-30. [DOI: 10.1021/bm500658w] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Felipe García Quiroz
- Department
of Biomedical Engineering, Duke University, P.O. Box 90281, Durham, North Carolina 27708, United States
| | | | - Ashutosh Chilkoti
- Department
of Biomedical Engineering, Duke University, P.O. Box 90281, Durham, North Carolina 27708, United States
| | | |
Collapse
|
11
|
Humenik M, Magdeburg M, Scheibel T. Influence of repeat numbers on self-assembly rates of repetitive recombinant spider silk proteins. J Struct Biol 2014; 186:431-7. [DOI: 10.1016/j.jsb.2014.03.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 12/11/2022]
|
12
|
Narayanan C, Dias CL. Exploring the free energy landscape of a model β-hairpin peptide and its isoform. Proteins 2014; 82:2394-402. [PMID: 24825659 DOI: 10.1002/prot.24601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 03/21/2014] [Accepted: 04/29/2014] [Indexed: 12/16/2022]
Abstract
Secondary structural transitions from α-helix to β-sheet conformations are observed in several misfolding diseases including Alzheimer's and Parkinson's. Determining factors contributing favorably to the formation of each of these secondary structures is therefore essential to better understand these disease states. β-hairpin peptides form basic components of anti-parallel β-sheets and are suitable model systems for characterizing the fundamental forces stabilizing β-sheets in fibrillar structures. In this study, we explore the free energy landscape of the model β-hairpin peptide GB1 and its E2 isoform that preferentially adopts α-helical conformations at ambient conditions. Umbrella sampling simulations using all-atom models and explicit solvent are performed over a large range of end-to-end distances. Our results show the strong preference of GB1 and the E2 isoform for β-hairpin and α-helical conformations, respectively, consistent with previous studies. We show that the unfolded states of GB1 are largely populated by misfolded β-hairpin structures which differ from each other in the position of the β-turn. We discuss the energetic factors contributing favorably to the formation of α-helix and β-hairpin conformations in these peptides and highlight the energetic role of hydrogen bonds and non-bonded interactions.
Collapse
Affiliation(s)
- Chitra Narayanan
- Department of Physics, New Jersey Institute of Technology, University Heights, Newark, New Jersey, 07102-1982
| | | |
Collapse
|
13
|
Intermolecular β-strand networks avoid hub residues and favor low interconnectedness: a potential protection mechanism against chain dissociation upon mutation. PLoS One 2014; 9:e94745. [PMID: 24733378 PMCID: PMC3986249 DOI: 10.1371/journal.pone.0094745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 03/19/2014] [Indexed: 01/11/2023] Open
Abstract
Altogether few protein oligomers undergo a conformational transition to a state that impairs their function and leads to diseases. But when it happens, the consequences are not harmless and the so-called conformational diseases pose serious public health problems. Notorious examples are the Alzheimer's disease and some cancers associated with a conformational change of the amyloid precursor protein (APP) and of the p53 tumor suppressor, respectively. The transition is linked with the propensity of β-strands to aggregate into amyloid fibers. Nevertheless, a huge number of protein oligomers associate chains via β-strand interactions (intermolecular β-strand interface) without ever evolving into fibers. We analyzed the layout of 1048 intermolecular β-strand interfaces looking for features that could provide the β-strands resistance to conformational transitions. The interfaces were reconstructed as networks with the residues as the nodes and the interactions between residues as the links. The networks followed an exponential decay degree distribution, implying an absence of hubs and nodes with few links. Such layout provides robustness to changes. Few links per nodes do not restrict the choices of amino acids capable of making an interface and maintain high sequence plasticity. Few links reduce the “bonding” cost of making an interface. Finally, few links moderate the vulnerability to amino acid mutation because it entails limited communication between the nodes. This confines the effects of a mutation to few residues instead of propagating them to many residues via hubs. We propose that intermolecular β-strand interfaces are organized in networks that tolerate amino acid mutation to avoid chain dissociation, the first step towards fiber formation. This is tested by looking at the intermolecular β-strand network of the p53 tetramer.
Collapse
|
14
|
Narayanan C, Dias CL. Hydrophobic interactions and hydrogen bonds in β-sheet formation. J Chem Phys 2013; 139:115103. [DOI: 10.1063/1.4821596] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
De Sancho D, Mittal J, Best RB. Folding Kinetics and Unfolded State Dynamics of the GB1 Hairpin from Molecular Simulation. J Chem Theory Comput 2013; 9:1743-53. [PMID: 26587632 DOI: 10.1021/ct301033r] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The C-terminal β-hairpin of protein G is a 16-residue peptide that folds in a two-state fashion akin to many larger proteins. However, with an experimental folding time of ∼6 μs, it remains a challenging system for all-atom, explicitly solvated, molecular dynamics simulations. Here, we use a large simulation data set (0.7 ms total) of the hairpin at 300 and 350 K to interpret its folding via a master equation approach. We find a separation of over an order of magnitude between the longest and second longest relaxation times, with the slowest relaxation corresponding to folding. However, in spite of this apparent two-state dynamics, the folding rate determined based on a first-passage time analysis depends on the initial conditions chosen, with a nonexponential distribution of first passage times being obtained in some cases. Using the master equation model, we are now able to account quantitatively for the observed distribution of first passage times. The deviation from the expected exponential distribution for a two-state system arises from slow dynamics in the unfolded state, associated with formation and melting of helical structures. Our results help to reconcile recent findings of slow dynamics in unfolded proteins with observed two-state folding kinetics. At the same time, they indicate that care is required in estimating folding kinetics from many short folding simulations. Last, we are able to use the master equation model to obtain details of the folding mechanism and folding transition state, which appear consistent with the "zipper" mechanism inferred from the experiment.
Collapse
Affiliation(s)
- David De Sancho
- Cambridge University, Department of Chemistry, Lensfield Road Cambridge CB2 1EW, United Kingdom
| | - Jeetain Mittal
- Department of Chemical Engineering, 111 Research Drive, Iacocca Hall, Bethlehem, Pennsylvania 18015, United States
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
16
|
Wu X, Yang G, Zu Y, Zhou L. Molecular dynamics studies of β-hairpin folding with the presence of the sodium ion. Comput Biol Chem 2012; 38:1-9. [PMID: 22487489 DOI: 10.1016/j.compbiolchem.2012.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 01/20/2012] [Accepted: 02/14/2012] [Indexed: 11/19/2022]
Abstract
Metal ions are ubiquitous in protein systems and play a significant role during their folding processes. Nineteen independent structures were determined for the Na(+)/β-hairpin interacting systems, and their folding pathways are different. (i) For Na(S47), the turn is rapidly shaped with the help of Na(+) and acts as the folding nucleus for the rest regions. Two intermediate states are observed and the resulted structure is the most folded. (ii) For Na(B41), Na(B52), Na(B54), Na(S55) and Na(B56), the inclusive Na(+) ions are anchored by β-strands. The local structures around the Na(+) ions and the turn regions fold simultaneously and serve as two independent folding nuclei. (iii) The other systems have no folding nuclei and correspond to low-folded structures. Long-range electrostatic interactions contribute a lot to the folding, especially from the four negatively charged residues (Glu42, Asp46, Asp47 and Glu56). The initial positions of the Na(+) ions are largely responsible for the different folding behaviors. The interactions with sidechain- rather than backbone-O atoms generally lead to more compact structures. Another factor affecting the folding is whether the O atoms are associated with native H-bonds, and those involved show decreased affinities to metal ions. The addition of water solvent does not induce obvious folding and conformational transitions to the Na(+)/β-hairpin interacting systems.
Collapse
Affiliation(s)
- Xiaomin Wu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | | | | | | |
Collapse
|
17
|
Feverati G, Achoch M, Zrimi J, Vuillon L, Lesieur C. Beta-strand interfaces of non-dimeric protein oligomers are characterized by scattered charged residue patterns. PLoS One 2012; 7:e32558. [PMID: 22496732 PMCID: PMC3322119 DOI: 10.1371/journal.pone.0032558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/29/2012] [Indexed: 11/19/2022] Open
Abstract
Protein oligomers are formed either permanently, transiently or even by default. The protein chains are associated through intermolecular interactions constituting the protein interface. The protein interfaces of 40 soluble protein oligomers of stœchiometries above two are investigated using a quantitative and qualitative methodology, which analyzes the x-ray structures of the protein oligomers and considers their interfaces as interaction networks. The protein oligomers of the dataset share the same geometry of interface, made by the association of two individual β-strands (β-interfaces), but are otherwise unrelated. The results show that the β-interfaces are made of two interdigitated interaction networks. One of them involves interactions between main chain atoms (backbone network) while the other involves interactions between side chain and backbone atoms or between only side chain atoms (side chain network). Each one has its own characteristics which can be associated to a distinct role. The secondary structure of the β-interfaces is implemented through the backbone networks which are enriched with the hydrophobic amino acids favored in intramolecular β-sheets (MCWIV). The intermolecular specificity is provided by the side chain networks via positioning different types of charged residues at the extremities (arginine) and in the middle (glutamic acid and histidine) of the interface. Such charge distribution helps discriminating between sequences of intermolecular β-strands, of intramolecular β-strands and of β-strands forming β-amyloid fibers. This might open new venues for drug designs and predictive tool developments. Moreover, the β-strands of the cholera toxin B subunit interface, when produced individually as synthetic peptides, are capable of inhibiting the assembly of the toxin into pentamers. Thus, their sequences contain the features necessary for a β-interface formation. Such β-strands could be considered as ‘assemblons’, independent associating units, by homology to the foldons (independent folding unit). Such property would be extremely valuable in term of assembly inhibitory drug development.
Collapse
Affiliation(s)
| | - Mounia Achoch
- Université de Savoie, Annecy le Vieux Cedex, France
- Laboratoire de Chimie Bioorganique et Macromoléculaire (LCBM), Faculté des Sciences et Techniques-Guéliz, Université Cadi Ayyad, Marrakech, Maroc
| | - Jihad Zrimi
- Université de Savoie, Annecy le Vieux Cedex, France
- Laboratoire de Chimie Bioorganique et Macromoléculaire (LCBM), Faculté des Sciences et Techniques-Guéliz, Université Cadi Ayyad, Marrakech, Maroc
| | | | - Claire Lesieur
- Université de Savoie, Annecy le Vieux Cedex, France
- AGIM, Université Joseph Fourier, Archamps, France
- * E-mail:
| |
Collapse
|
18
|
Ranganathan S, Singh PK, Singh U, Singru PS, Padinhateeri R, Maji SK. Molecular interpretation of ACTH-β-endorphin coaggregation: relevance to secretory granule biogenesis. PLoS One 2012; 7:e31924. [PMID: 22403619 PMCID: PMC3293876 DOI: 10.1371/journal.pone.0031924] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/20/2012] [Indexed: 01/07/2023] Open
Abstract
Peptide/protein hormones could be stored as non-toxic amyloid-like structures in pituitary secretory granules. ACTH and β-endorphin are two of the important peptide hormones that get co-stored in the pituitary secretory granules. Here, we study molecular interactions between ACTH and β-endorphin and their colocalization in the form of amyloid aggregates. Although ACTH is known to be a part of ACTH-β-endorphin aggregate, ACTH alone cannot aggregate into amyloid under various plausible conditions. Using all atom molecular dynamics simulation we investigate the early molecular interaction events in the ACTH-β-endorphin system, β-endorphin-only system and ACTH-only system. We find that β-endorphin and ACTH formed an interacting unit, whereas negligible interactions were observed between ACTH molecules in ACTH-only system. Our data suggest that ACTH is not only involved in interaction with β-endorphin but also enhances the stability of mixed oligomers of the entire system.
Collapse
Affiliation(s)
- Srivastav Ranganathan
- Department of Biosciences and Bioengineering, Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pradeep K. Singh
- Department of Biosciences and Bioengineering, Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Uday Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India
| | - Praful S. Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- * E-mail: (SKM); (RP)
| | - Samir K. Maji
- Department of Biosciences and Bioengineering, Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- * E-mail: (SKM); (RP)
| |
Collapse
|
19
|
|
20
|
Engin O, Sayar M. Adsorption, Folding, and Packing of an Amphiphilic Peptide at the Air/Water Interface. J Phys Chem B 2012; 116:2198-207. [DOI: 10.1021/jp206327y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ozge Engin
- College of Engineering, Koç University, 34450, Istanbul,
Turkey
| | - Mehmet Sayar
- College of Engineering, Koç University, 34450, Istanbul,
Turkey
| |
Collapse
|
21
|
Wu L, McElheny D, Setnicka V, Hilario J, Keiderling TA. Role of different β-turns in β-hairpin conformation and stability studied by optical spectroscopy. Proteins 2011; 80:44-60. [DOI: 10.1002/prot.23140] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/28/2011] [Accepted: 07/21/2011] [Indexed: 12/28/2022]
|
22
|
Thorpe IF, Goldenberg DP, Voth GA. Exploration of Transferability in Multiscale Coarse-Grained Peptide Models. J Phys Chem B 2011; 115:11911-26. [DOI: 10.1021/jp204455g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | | | - Gregory A. Voth
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, University of Chicago, Chicago, Illinois, 60637, United States
| |
Collapse
|
23
|
Microscopic events in β-hairpin folding from alternative unfolded ensembles. Proc Natl Acad Sci U S A 2011; 108:11087-92. [PMID: 21690352 DOI: 10.1073/pnas.1016685108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We have performed the first unbiased folding simulations of the GB1 hairpin in explicit solvent, using hundreds of microsecond-long molecular dynamics simulations (total time: 0.7 ms). Our simulations are initiated from two sets of structures. Starting from an equilibrium unfolded state, we obtain single-exponential folding kinetics with rate coefficients in good agreement (T=350 K) or within an order of magnitude (T=300 K) of the experimental values. However, simulations initiated from unfolded configurations lacking secondary structure result in biexponential kinetics with an additional fast nanosecond kinetic mode. This mode can strongly bias the folding rate estimated from the mean first passage time, when the trials are much shorter than the folding time. We find that the mechanism of the hairpin folding is insensitive to the details of the initial unfolded ensemble and is initiated by correct formation of the turn of the hairpin, followed by the formation of the native hydrogen bonds and hydrophobic contacts, consistent with experimental -value analysis. Subsequent native interactions can be formed either from the turn or from the hairpin termini, helping to explain an apparent discrepancy in experimental results. From our simulations, we also obtain the transition path durations, a critical parameter for single molecule experiments aiming to resolve events along folding pathways. The lengths of transition paths span a wide range, from 50 ps to 140 ns, at 300 K.
Collapse
|
24
|
Pietropaolo A, Branduardi D, Bonomi M, Parrinello M. A chirality-based metrics for free-energy calculations in biomolecular systems. J Comput Chem 2011; 32:2627-37. [PMID: 21656787 DOI: 10.1002/jcc.21842] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/28/2011] [Accepted: 04/23/2011] [Indexed: 12/21/2022]
Abstract
In this work, we exploit the chirality index introduced in (Pietropaolo et al., Proteins 2008, 70, 667) as an effective descriptor of the secondary structure of proteins to explore their complex free-energy landscape. We use the chirality index as an alternative metrics in the path collective variables (PCVs) framework and we show in the prototypical case of the C-terminal domain of immunoglobulin binding protein GB1 that relevant configurations can be efficiently sampled in combination with well-tempered metadynamics. While the projections of the configurations found onto a variety of different descriptors are fully consistent with previously reported calculations, this approach provides a unifying perspective of the folding mechanism which was not possible using metadynamics with the previous formulation of PCVs.
Collapse
|
25
|
Barducci A, Bonomi M, Derreumaux P. Assessing the Quality of the OPEP Coarse-Grained Force Field. J Chem Theory Comput 2011; 7:1928-34. [DOI: 10.1021/ct100646f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Alessandro Barducci
- Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, c/o USI Campus, via Buffi 13, CH-6900 Lugano, Switzerland
| | - Massimiliano Bonomi
- Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, c/o USI Campus, via Buffi 13, CH-6900 Lugano, Switzerland
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique and Université Paris Diderot, Paris 7, Institut Universitaire de France, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
26
|
Zheng W, Gallicchio E, Deng N, Andrec M, Levy RM. Kinetic network study of the diversity and temperature dependence of Trp-Cage folding pathways: combining transition path theory with stochastic simulations. J Phys Chem B 2011; 115:1512-23. [PMID: 21254767 PMCID: PMC3059588 DOI: 10.1021/jp1089596] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a new approach to study a multitude of folding pathways and different folding mechanisms for the 20-residue mini-protein Trp-Cage using the combined power of replica exchange molecular dynamics (REMD) simulations for conformational sampling, transition path theory (TPT) for constructing folding pathways, and stochastic simulations for sampling the pathways in a high dimensional structure space. REMD simulations of Trp-Cage with 16 replicas at temperatures between 270 and 566 K are carried out with an all-atom force field (OPLSAA) and an implicit solvent model (AGBNP). The conformations sampled from all temperatures are collected. They form a discretized state space that can be used to model the folding process. The equilibrium population for each state at a target temperature can be calculated using the weighted-histogram-analysis method (WHAM). By connecting states with similar structures and creating edges satisfying detailed balance conditions, we construct a kinetic network that preserves the equilibrium population distribution of the state space. After defining the folded and unfolded macrostates, committor probabilities (P(fold)) are calculated by solving a set of linear equations for each node in the network and pathways are extracted together with their fluxes using the TPT algorithm. By clustering the pathways into folding "tubes", a more physically meaningful picture of the diversity of folding routes emerges. Stochastic simulations are carried out on the network, and a procedure is developed to project sampled trajectories onto the folding tubes. The fluxes through the folding tubes calculated from the stochastic trajectories are in good agreement with the corresponding values obtained from the TPT analysis. The temperature dependence of the ensemble of Trp-Cage folding pathways is investigated. Above the folding temperature, a large number of diverse folding pathways with comparable fluxes flood the energy landscape. At low temperature, however, the folding transition is dominated by only a few localized pathways.
Collapse
Affiliation(s)
- Weihua Zheng
- Department of Chemistry and Chemical Biology and BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey Piscataway, NJ 08854
| | - Emilio Gallicchio
- Department of Chemistry and Chemical Biology and BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey Piscataway, NJ 08854
| | - Nanjie Deng
- Department of Chemistry and Chemical Biology and BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey Piscataway, NJ 08854
| | - Michael Andrec
- Department of Chemistry and Chemical Biology and BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey Piscataway, NJ 08854
| | - Ronald M. Levy
- Department of Chemistry and Chemical Biology and BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey Piscataway, NJ 08854
| |
Collapse
|
27
|
Best RB, Mittal J. Free-energy landscape of the GB1 hairpin in all-atom explicit solvent simulations with different force fields: Similarities and differences. Proteins 2011; 79:1318-28. [PMID: 21322056 DOI: 10.1002/prot.22972] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/29/2010] [Accepted: 12/07/2010] [Indexed: 11/09/2022]
Abstract
Although it is now possible to fold peptides and miniproteins in molecular dynamics simulations, it is well appreciated that force fields are not all transferable to different proteins. Here, we investigate the influence of the protein force field and the solvent model on the folding energy landscape of a prototypical two-state folder, the GB1 hairpin. We use extensive replica-exchange molecular dynamics simulations to characterize the free-energy surface as a function of temperature. Most of these force fields appear similar at a global level, giving a fraction folded at 300 K between 0.2 and 0.8 in all cases, which is a difference in stability of 2.8 kT, and are generally consistent with experimental data at this temperature. The most significant differences appear in the unfolded state, where there are different residual secondary structures which are populated, and the overall dimensions of the unfolded states, which in most of the force fields are too collapsed relative to experimental Förster Resonance Energy Transfer (FRET) data.
Collapse
Affiliation(s)
- Robert B Best
- Department of Chemistry, University of Cambridge, Cambridge UK.
| | | |
Collapse
|
28
|
Chen S, Yang Z. Molecular Dynamics Simulations of a β-Hairpin Fragment of Protein G by Means of Atom-Bond Electronegativity Equalization Method Fused into Molecular Mechanics (ABEEMδπ/MM). CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.201090350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Li X, Latour RA. The temperature intervals with global exchange of replicas empirical accelerated sampling method: parameter sensitivity and extension to a complex molecular system. J Comput Chem 2010; 32:1091-100. [PMID: 20949510 DOI: 10.1002/jcc.21689] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 08/26/2010] [Accepted: 09/05/2010] [Indexed: 11/12/2022]
Abstract
The recently developed "temperature intervals with global exchange of replicas" (TIGER2) algorithm is an efficient replica-exchange sampling algorithm that provides the freedom to specify the number of replicas and temperature levels independently of the size of the system and temperature range to be spanned, thus making it particularly well suited for sampling molecular systems that are considered to be too large to be sampled using conventional replica exchange methods. Although the TIGER2 method is empirical in nature, when appropriately applied it is able to provide sampling that satisfies the balance condition and closely approximates a Boltzmann-weighted ensemble of states. In this work, we evaluated the influence of factors such as temperature range, temperature spacing, replica number, and sampling cycle design on the accuracy of a TIGER2 simulation based on molecular dynamics simulations of alanine dipeptide in implicit solvent. The influence of these factors is further examined by calculating the properties of a complex system composed of the B1 immunoglobulin-binding domain of streptococcal protein G (protein G) in aqueous solution. The accuracy of a TIGER2 simulation is particularly sensitive to the maximum temperature level selected for the simulation. A method to determine the appropriate maximum temperature level to be used in a TIGER2 simulation is presented.
Collapse
Affiliation(s)
- Xianfeng Li
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, USA
| | | |
Collapse
|
30
|
Best RB, Mittal J. Balance between alpha and beta structures in ab initio protein folding. J Phys Chem B 2010; 114:8790-8. [PMID: 20536262 DOI: 10.1021/jp102575b] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite initial successes in folding of proteins by molecular simulation, it is becoming increasingly evident that current energy functions (force fields) tend to favor either alpha or beta secondary structure, such that the choice of force field is governed by the structural class of the protein. Here, we study the folding of peptides with either predominantly alpha (Trp cage) or beta (GB1 hairpin) structure with a modified version of the Amber ff03 force field, optimized to reproduce structural propensity in a helix-forming peptide. Using extensive replica exchange molecular dynamics simulations starting from completely unfolded configurations, we obtain the correct folded structure for each peptide, in close agreement with the experimental native structure (<1.5 A all-atom root-mean-square deviation). We obtain converged equilibrium distributions, with folded populations at standard conditions (approximately 300 K), in remarkable accord with experiment. Further comparison to experimental data from NMR spectroscopy and FRET suggests that although the folded structures are accurately reproduced, the unfolded state remains too structured and compact. Our results suggest that the backbone correction results in a force field that is transferable to the folding of proteins from different structural classes.
Collapse
Affiliation(s)
- Robert B Best
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, UK.
| | | |
Collapse
|
31
|
Thukral L, Smith JC, Daidone I. Common folding mechanism of a beta-hairpin peptide via non-native turn formation revealed by unbiased molecular dynamics simulations. J Am Chem Soc 2010; 131:18147-52. [PMID: 19919102 DOI: 10.1021/ja9064365] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The folding of a 15-residue beta-hairpin peptide (Peptide 1) is characterized using multiple unbiased, atomistic molecular dynamics (MD) simulations. Fifteen independent MD trajectories, each 2.5 micros-long for a total of 37.5 micros, are performed of the peptide in explicit solvent, at room temperature, and without the use of enhanced sampling techniques. The computed folding time of 1-1.5 micros obtained from the simulations is in good agreement with experiment [Xu, Y.; et al. J. Am. Chem. Soc. 2003, 125, 15388-15394]. A common folding mechanism is observed, in which the turn is always found to be the major determinant in initiating the folding process, followed by cooperative formation of the interstrand hydrogen bonds and the side-chain packing. Furthermore, direct transition to the folded state from fully unstructured conformations does not take place. Instead, the peptide is always observed to form partially structured conformations involving a non-native (ESYI) turn from which the native (NPDG) turn forms, triggering the folding to the beta-hairpin.
Collapse
Affiliation(s)
- Lipi Thukral
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
32
|
Lewandowska A, Ołdziej S, Liwo A, Scheraga HA. beta-hairpin-forming peptides; models of early stages of protein folding. Biophys Chem 2010; 151:1-9. [PMID: 20494507 DOI: 10.1016/j.bpc.2010.05.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/01/2010] [Accepted: 05/01/2010] [Indexed: 11/19/2022]
Abstract
Formation of beta-hairpins is considered the initial step of folding of many proteins and, consequently, peptides constituting the beta-hairpin sequence of proteins (the beta-hairpin-forming peptides) are considered as models of early stages of protein folding. In this article, we discuss the results of experimental studies (circular-dichroism, infrared and nuclear magnetic resonance spectroscopy, and differential scanning calorimetry) of the structure of beta-hairpin-forming peptides excised from the B1 domain of protein G, which are known to fold on their own. We demonstrate that local interactions at the turn sequence and hydrophobic interactions between nonpolar residues are the dominant structure-determining factors, while there is no convincing evidence that stable backbone hydrogen bonds are formed in these peptides in aqueous solution. Consequently, the most plausible mechanism for folding of the beta-hairpin sequence appears to be the broken-zipper mechanism consisting of the following three steps: (i) bending the chain at the turn sequence owing to favorable local interactions, (ii) formation of loose hydrophobic contacts between nonpolar residues, which occur close to the contacts in the native structure of the protein but not exactly in the same position and, finally, (iii) formation of backbone hydrogen bonds and locking the hydrophobic contacts in the native positions as a hydrophobic core develops, sufficient to dehydrate the backbone peptide groups. This mechanism provides sufficient uniqueness (contacts form between residues that become close together because the chain is bent at the turn position) and robustness (contacts need not occur at once in the native positions) for folding a beta-hairpin sequence.
Collapse
|
33
|
Samsonov SA, Salwiczek M, Anders G, Koksch B, Pisabarro MT. Fluorine in protein environments: a QM and MD study. J Phys Chem B 2010; 113:16400-8. [PMID: 19947631 DOI: 10.1021/jp906402b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Noncanonical amino acids with newly designed side-chain functionalities represent powerful tools to improve structural, biological, and pharmacological properties of peptides and proteins. In this context, fluorinated amino acids have increasingly gained importance. Despite the current wide use of fluorination in protein engineering, the basic properties of fluorine in protein environments are still not completely understood. Our aim has been to characterize the physicochemical properties of fluorinated amino acids by using quantum mechanics (QM) and molecular dynamics (MD) approaches. We have analyzed geometry, charges, and hydrogen bonding abilities of several ethane fluorinated derivatives at different QM theory levels and have used them as simplified models for fluorinated amino acid side chains. We have parametrized four fluorinated L-amino acids for the AMBER ff94/99 force field: 4-monofluoroethylglycine (MfeGly), 4,4-difluoroethylglycine (DfeGly), 4,4,4-trifluoroethylglycine (TfeGly), and 4,4-difluoropropylglycine (DfpGly). We have characterized them in terms of molecular volumes, conformational preferences, and hydration properties. The obtained results illustrate that fluorine and hydrogen atoms of fluoromethyl groups could be potential acceptors or donors of weak hydrogen bonds in protein environments. Hydration of the studied fluorinated amino acids was found to be more favorable than for their nonfluorinated analogues, and hydrophobicity was observed to increase with the number of fluorine atoms, which is in accordance with the experimental retention times we obtain for these amino acids. This study broadens our understanding of the properties of fluorine within protein environments, which is important to exploit the full potential of fluorine's unique properties for applications in the field of protein engineering.
Collapse
Affiliation(s)
- Sergey A Samsonov
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
34
|
Juraszek J, Bolhuis PG. Effects of a Mutation on the Folding Mechanism of a β-Hairpin. J Phys Chem B 2009; 113:16184-96. [DOI: 10.1021/jp904468q] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jarek Juraszek
- van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter G. Bolhuis
- van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Wu L, McElheny D, Huang R, Keiderling TA. Role of Tryptophan−Tryptophan Interactions in Trpzip β-Hairpin Formation, Structure, and Stability. Biochemistry 2009; 48:10362-71. [PMID: 19788311 DOI: 10.1021/bi901249d] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ling Wu
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061
| | - Dan McElheny
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061
| | - Rong Huang
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061
| | - Timothy A. Keiderling
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061
| |
Collapse
|
36
|
Wu C, Murray MM, Bernstein SL, Condron MM, Bitan G, Shea JE, Bowers MT. The structure of Abeta42 C-terminal fragments probed by a combined experimental and theoretical study. J Mol Biol 2009; 387:492-501. [PMID: 19356595 PMCID: PMC2712569 DOI: 10.1016/j.jmb.2009.01.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 01/13/2009] [Accepted: 01/17/2009] [Indexed: 11/18/2022]
Abstract
The C-terminus of amyloid beta-protein (Abeta) 42 plays an important role in this protein's oligomerization and may therefore be a good therapeutic target for the treatment of Alzheimer's disease. Certain C-terminal fragments (CTFs) of Abeta42 have been shown to disrupt oligomerization and to strongly inhibit Abeta42-induced neurotoxicity. Here we study the structures of selected CTFs [Abeta(x-42); x=29-31, 39] using replica exchange molecular dynamics simulations and ion mobility mass spectrometry. Our simulations in explicit solvent reveal that the CTFs adopt a metastable beta-structure: beta-hairpin for Abeta(x-42) (x=29-31) and extended beta-strand for Abeta(39-42). The beta-hairpin of Abeta(30-42) is converted into a turn-coil conformation when the last two hydrophobic residues are removed, suggesting that I41 and A42 are critical in stabilizing the beta-hairpin in Abeta42-derived CTFs. The importance of solvent in determining the structure of the CTFs is further highlighted in ion mobility mass spectrometry experiments and solvent-free replica exchange molecular dynamics simulations. A comparison between structures with solvent and structures without solvent reveals that hydrophobic interactions are critical for the formation of beta-hairpin. The possible role played by the CTFs in disrupting oligomerization is discussed.
Collapse
Affiliation(s)
- Chun Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-950
| | - Megan M. Murray
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-950
| | - Summer L. Bernstein
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-950
| | - Margaret M. Condron
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Gal Bitan
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Brain Research Institute and Molecular Biology Institute, University of California, Los Angeles, CA 90095
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-950
- Department of Physics, University of California, Santa Barbara, California 93106-950
| | - Michael T. Bowers
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-950
| |
Collapse
|
37
|
Carr JM, Wales DJ. Refined kinetic transition networks for the GB1 hairpin peptide. Phys Chem Chem Phys 2009; 11:3341-54. [DOI: 10.1039/b820649j] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Barzegar A, Moosavi-Movahedi AA, Mahnam K, Bahrami H, Sheibani N. Molecular dynamic simulations of nanomechanic chaperone peptide and effects ofin silicoHis mutations on nanostructured function. J Pept Sci 2008; 14:1173-82. [DOI: 10.1002/psc.1055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Faccioli P. Characterization of protein folding by dominant reaction pathways. J Phys Chem B 2008; 112:13756-64. [PMID: 18855433 DOI: 10.1021/jp805762d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We assess the reliability of the recently developed approach denominated dominant reaction pathways (DRP) by studying the folding of a 16 residue beta-hairpin, within a coarse-grained Go-type model. We show that the DRP predictions are in quantitative agreement with the results of molecular dynamics simulations performed in the same model. On the other hand, in the DRP approach, the computational difficulties associated with the decoupling of time scales are rigorously bypassed. The analysis of the important transition pathways supports a picture of the beta-hairpin folding, in which the reaction is initiated by the collapse of the hydrophobic cluster.
Collapse
Affiliation(s)
- Pietro Faccioli
- Dipartimento di Fisica Università degli Studi di Trento, Trento, Italy.
| |
Collapse
|
40
|
Sonavane UB, Ramadugu SK, Joshi RR. Study of Early Events in the Protein Folding of Villin Headpiece using Molecular Dynamics Simulation. J Biomol Struct Dyn 2008; 26:203-14. [DOI: 10.1080/07391102.2008.10507236] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Bonomi M, Branduardi D, Gervasio FL, Parrinello M. The unfolded ensemble and folding mechanism of the C-terminal GB1 beta-hairpin. J Am Chem Soc 2008; 130:13938-44. [PMID: 18811160 DOI: 10.1021/ja803652f] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we shed new light on a much-studied case of beta-hairpin folding by means of advanced molecular dynamics simulations. A fully atomistic description of the protein and the solvent molecule is used, together with metadynamics, to accelerate the sampling and estimate free-energy landscapes. This is achieved using the path collective variables approach, which provides an adaptive description of the mechanism under study. We discover that the folding mechanism is a multiscale process where the turn region conformation leads to two different energy pathways that are connected by elongated structures. The former displays a stable 2:4 native-like structure in which an optimal hydrophobic packing and hydrogen bond pattern leads to 8 kcal/mol of stabilization. The latter shows a less-structured 3:5 beta-sheet, where hydrogen bonds and hydrophobic packing provide only 2.5 kcal/mol of stability. This perspective is fully consistent with experimental evidence that shows this to be a prototypical two-state folder, while it redefines the nature of the unfolded state.
Collapse
Affiliation(s)
- Massimiliano Bonomi
- Computational Science, Department of Chemistry and Applied Biosciences, ETH Zürich, USI Campus, Via Giuseppe Buffi 13, CH-6900 Lugano, Switzerland
| | | | | | | |
Collapse
|
42
|
Cuny V, Antoni M, Arbelot M, Liggieri L. Structural properties and dynamics of C12E5 molecules adsorbed at water/air interfaces: A molecular dynamic study. Colloids Surf A Physicochem Eng Asp 2008. [DOI: 10.1016/j.colsurfa.2008.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
|
44
|
Wei Y, Huyghues-Despointes BMP, Tsai J, Scholtz JM. NMR study and molecular dynamics simulations of optimized β-hairpin fragments of protein G. Proteins 2007; 69:285-96. [PMID: 17600831 DOI: 10.1002/prot.21494] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The stability and structure of several beta-hairpin peptide variants derived from the C-terminus of the B1 domain of protein G were investigated by a number of experimental and computational techniques. Our analysis shows that the structure and stability of this hairpin can be greatly affected by one or a few simple mutations. For example, removing an unfavorable charge near the N-terminus of the peptide (Glu42 to Gln or Thr) or optimization of the N-terminal charge-charge interactions (Gly41 to Lys) both stabilize the peptide, even in water. Furthermore, a simple replacement of a charged residue in the turn (Asp47 to Ala) changes the beta-turn conformation. Finally, we show that the effects of combining these single mutations are additive, suggesting that independent stabilizing interactions can be isolated and evaluated in a simple model system. Our results indicate that the structure and stability of this beta-hairpin peptide can be modulated in numerous ways and thus contributes toward a more complete understanding of this important model beta-hairpin as well as to the folding and stability of larger peptides and proteins.
Collapse
Affiliation(s)
- Yun Wei
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | | | | | | |
Collapse
|
45
|
Bussi G, Gervasio FL, Laio A, Parrinello M. Free-energy landscape for beta hairpin folding from combined parallel tempering and metadynamics. J Am Chem Soc 2007; 128:13435-41. [PMID: 17031956 DOI: 10.1021/ja062463w] [Citation(s) in RCA: 380] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We develop a new free-energy method, based on the combination of parallel tempering and metadynamics, and apply this method to the calculation of the free-energy landscape of the folding beta hairpin in explicit water. We show that the combined method greatly improves the performance of both parallel tempering and metadynamics. In particular, we are able to sample the high free-energy regions, which are not accessible with conventional parallel tempering. We use our results to calculate the difference in entropy and enthalpy between the folded and the unfolded state and to characterize the most populated configurations in the relevant free-energy basins.
Collapse
Affiliation(s)
- Giovanni Bussi
- Computational Science, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich, c/o USI Campus, Via Buffi 13, CH-6900 Lugano, Switzerland.
| | | | | | | |
Collapse
|
46
|
Yang S, Onuchic JN, García AE, Levine H. Folding time predictions from all-atom replica exchange simulations. J Mol Biol 2007; 372:756-63. [PMID: 17681536 DOI: 10.1016/j.jmb.2007.07.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 07/06/2007] [Accepted: 07/08/2007] [Indexed: 10/23/2022]
Abstract
We present an approach to predicting the folding time distribution from all-atom replica exchange simulations. This is accomplished by approximating the multidimensional folding process as stochastic reaction-coordinate dynamics for which effective drift velocities and diffusion coefficients are determined from the short-time replica exchange simulations. Our approach is applied to the folding of the second beta-hairpin of the B domain of protein G. The folding time prediction agrees quite well with experimental measurements. Therefore, we have in hand a fast numerical tool for calculating the folding kinetic properties from all-atom "first-principles" models.
Collapse
Affiliation(s)
- Sichun Yang
- Institute for Molecular Pediatric Sciences and Department of Pediatrics, Gordon Center for Integrative Science, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
47
|
Suenaga A, Narumi T, Futatsugi N, Yanai R, Ohno Y, Okimoto N, Taiji M. Folding Dynamics of 10-Residue β-Hairpin Peptide Chignolin. Chem Asian J 2007; 2:591-8. [PMID: 17465405 DOI: 10.1002/asia.200600385] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Short peptides that fold into beta-hairpins are ideal model systems for investigating the mechanism of protein folding because their folding process shows dynamics typical of proteins. We performed folding, unfolding, and refolding molecular dynamics simulations (total of 2.7 micros) of the 10-residue beta-hairpin peptide chignolin, which is the smallest beta-hairpin structure known to be stable in solution. Our results revealed the folding mechanism of chignolin, which comprises three steps. First, the folding begins with hydrophobic assembly. It brings the main chain together; subsequently, a nascent turn structure is formed. The second step is the conversion of the nascent turn into a tight turn structure along with interconversion of the hydrophobic packing and interstrand hydrogen bonds. Finally, the formation of the hydrogen-bond network and the complete hydrophobic core as well as the arrangement of side-chain-side-chain interactions occur at approximately the same time. This three-step mechanism appropriately interprets the folding process as involving a combination of previous inconsistent explanations of the folding mechanism of the beta-hairpin, that the first event of the folding is formation of hydrogen bonds and the second is that of the hydrophobic core, or vice versa.
Collapse
Affiliation(s)
- Atsushi Suenaga
- High-Performance Molecular Simulation Team, Computational and Experimental System Biology Group, RIKEN Genomic Sciences Center, 61-1 Ono-cho, Tsurumi, Yokohama, Kanagawa 230-0046, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Missimer JH, Steinmetz MO, Jahnke W, Winkler FK, van Gunsteren WF, Daura X. Molecular-dynamics simulations of C- and N-terminal peptide derivatives of GCN4-p1 in aqueous solution. Chem Biodivers 2007; 2:1086-104. [PMID: 17193192 DOI: 10.1002/cbdv.200590078] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We report the investigation of two 16-residue peptides in aqueous solution by means of molecular-dynamics simulations. The peptides constitute the C- and N-terminal halves of the 33-residue monomer whose dimer constitutes the leucine zipper of the yeast transcriptional activator, denoted GCN4-p1. To examine a hypothesis about coiled-coil formation, in which the C-terminal half contains a helix-formation trigger site absent in the N-terminal half, experimental studies of the two peptides have determined their helix propensities under several conditions of temperature, pH, and salt concentration with circular dichroism. An NMR experiment provides additional evidence. At temperatures of 278 and 325 K and pH 7.5, mixtures of alpha- and pi-helical secondary structure constitute the most probable conformations in both C- and N-terminal halves. A bifurcated salt bridge between Arg25 and Glu22/20 correlates with the structural fluctuations of the C-terminal half. It also exhibits a persistent loop at the N-terminal end involving the side chains of His18 and Glu22, which is reminiscent of helix-capping boxes. Nonreversible unfolding appears to occur abruptly in the Arg25 mutant, suggesting a cooperative event. Analysis does not indicate that the N-terminal half is less stable than the C-terminal half, indicating that 100 ns is too short a period to observe complete unfolding.
Collapse
Affiliation(s)
- John H Missimer
- Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen.
| | | | | | | | | | | |
Collapse
|
49
|
Bruston F, Lacombe C, Zimmermann K, Piesse C, Nicolas P, El Amri C. Structural malleability of plasticins: Preorganized conformations in solution and relevance for antimicrobial activity. Biopolymers 2007; 86:42-56. [PMID: 17309077 DOI: 10.1002/bip.20703] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasticins (23 long-residue glycine-leucine-rich dermaseptin-related peptides produced by the skin of South American hylids) have very similar amino acid sequences, hydrophobicities, and amphipathicities, but differ in their membrane-damaging properties and structurations (i.e. destabilized helix states, beta-hairpin, beta-sheet, and disordered states) at anionic and zwitterionic membrane interfaces. Structural malleability of plasticins in aqueous solutions together with parameters that may govern their ability to fold within beta-hairpin like structures were analyzed through circular dichroism and FTIR spectroscopic studies completed by molecular dynamics simulations in polar mimetic media. The goal of this study was to probe to which extent pre-existent peptide conformations, i.e. intrinsic "conformational landscape", may be responsible for variability in bioactive conformation and antimicrobial/hemolytic mechanisms of action of these peptides in relation with their various membrane disturbing properties. All plasticins present a turn region that does not always result in folding into a beta-hairpin shaped conformation. Residue at position 8 plays a major role in initiating the folding, while position 12 is not critical. Conformational stability has no major impact on antimicrobial efficacy. However, preformed beta-hairpin in solution may act as a conformational lock that prevents switch to alpha-helical structure. This lock lowers the antimicrobial efficiency and explains subtle differences in potencies of the most active antimicrobial plasticins.
Collapse
Affiliation(s)
- F Bruston
- FRE 2852 Protéines: Biochimie Structurale et Fonctionnelle, Université Paris 6-CNRS, Peptidome de la peau d'amphibiens, tour 43, 4, Place Jussieu 75252 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
50
|
Yoda T, Sugita Y, Okamoto Y. Cooperative folding mechanism of a β-hairpin peptide studied by a multicanonical replica-exchange molecular dynamics simulation. Proteins 2006; 66:846-59. [PMID: 17173285 DOI: 10.1002/prot.21264] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
G-peptide is a 16-residue peptide of the C-terminal end of streptococcal protein G B1 domain, which is known to fold into a specific beta-hairpin within 6 micros. Here, we study molecular mechanism on the stability and folding of G-peptide by performing a multicanonical replica-exchange (MUCAREM) molecular dynamics simulation with explicit solvent. Unlike the preceding simulations of the same peptide, the simulation was started from an unfolded conformation without any experimental information on the native conformation. In the 278-ns trajectory, we observed three independent folding events. Thus MUCAREM can be estimated to accelerate the folding reaction more than 60 times than the conventional molecular dynamics simulations. The free-energy landscape of the peptide at room temperature shows that there are three essential subevents in the folding pathway to construct the native-like beta-hairpin conformation: (i) a hydrophobic collapse of the peptide occurs with the side-chain contacts between Tyr45 and Phe52, (ii) then, the native-like turn is formed accompanying with the hydrogen-bonded network around the turn region, and (iii) finally, the rest of the backbone hydrogen bonds are formed. A number of stable native hydrogen bonds are formed cooperatively during the second stage, suggesting the importance of the formation of the specific turn structure. This is also supported by the accumulation of the nonnative conformations only with the hydrophobic cluster around Tyr45 and Phe52. These simulation results are consistent with high phi-values of the turn region observed by experiment.
Collapse
Affiliation(s)
- Takao Yoda
- Nagahama Institute of Bio-Science and Technology, Tamura, Nagahama, Shiga, 526-0829, Japan.
| | | | | |
Collapse
|