1
|
Arai M. Unified understanding of folding and binding mechanisms of globular and intrinsically disordered proteins. Biophys Rev 2018; 10:163-181. [PMID: 29307002 PMCID: PMC5899706 DOI: 10.1007/s12551-017-0346-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
Extensive experimental and theoretical studies have advanced our understanding of the mechanisms of folding and binding of globular proteins, and coupled folding and binding of intrinsically disordered proteins (IDPs). The forces responsible for conformational changes and binding are common in both proteins; however, these mechanisms have been separately discussed. Here, we attempt to integrate the mechanisms of coupled folding and binding of IDPs, folding of small and multi-subdomain proteins, folding of multimeric proteins, and ligand binding of globular proteins in terms of conformational selection and induced-fit mechanisms as well as the nucleation–condensation mechanism that is intermediate between them. Accumulating evidence has shown that both the rate of conformational change and apparent rate of binding between interacting elements can determine reaction mechanisms. Coupled folding and binding of IDPs occurs mainly by induced-fit because of the slow folding in the free form, while ligand binding of globular proteins occurs mainly by conformational selection because of rapid conformational change. Protein folding can be regarded as the binding of intramolecular segments accompanied by secondary structure formation. Multi-subdomain proteins fold mainly by the induced-fit (hydrophobic collapse) mechanism, as the connection of interacting segments enhances the binding (compaction) rate. Fewer hydrophobic residues in small proteins reduce the intramolecular binding rate, resulting in the nucleation–condensation mechanism. Thus, the folding and binding of globular proteins and IDPs obey the same general principle, suggesting that the coarse-grained, statistical mechanical model of protein folding is promising for a unified theoretical description of all mechanisms.
Collapse
Affiliation(s)
- Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| |
Collapse
|
2
|
Mugler A, Tans SJ, Mashaghi A. Circuit topology of self-interacting chains: implications for folding and unfolding dynamics. Phys Chem Chem Phys 2015; 16:22537-44. [PMID: 25228051 DOI: 10.1039/c4cp03402c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the relationship between molecular structure and folding is a central problem in disciplines ranging from biology to polymer physics and DNA origami. Topology can be a powerful tool to address this question. For a folded linear chain, the arrangement of intra-chain contacts is a topological property because rearranging the contacts requires discontinuous deformations. Conversely, the topology is preserved when continuously stretching the chain while maintaining the contact arrangement. Here we investigate how the folding and unfolding of linear chains with binary contacts is guided by the topology of contact arrangements. We formalize the topology by describing the relations between any two contacts in the structure, which for a linear chain can either be in parallel, in series, or crossing each other. We show that even when other determinants of folding rate such as contact order and size are kept constant, this 'circuit' topology determines folding kinetics. In particular, we find that the folding rate increases with the fractions of parallel and crossed relations. Moreover, we show how circuit topology constrains the conformational phase space explored during folding and unfolding: the number of forbidden unfolding transitions is found to increase with the fraction of parallel relations and to decrease with the fraction of series relations. Finally, we find that circuit topology influences whether distinct intermediate states are present, with crossed contacts being the key factor. The approach presented here can be more generally applied to questions on molecular dynamics, evolutionary biology, molecular engineering, and single-molecule biophysics.
Collapse
Affiliation(s)
- Andrew Mugler
- Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
3
|
Giri Rao VVH, Gosavi S. In the multi-domain protein adenylate kinase, domain insertion facilitates cooperative folding while accommodating function at domain interfaces. PLoS Comput Biol 2014; 10:e1003938. [PMID: 25393408 PMCID: PMC4230728 DOI: 10.1371/journal.pcbi.1003938] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/25/2014] [Indexed: 12/30/2022] Open
Abstract
Having multiple domains in proteins can lead to partial folding and increased aggregation. Folding cooperativity, the all or nothing folding of a protein, can reduce this aggregation propensity. In agreement with bulk experiments, a coarse-grained structure-based model of the three-domain protein, E. coli Adenylate kinase (AKE), folds cooperatively. Domain interfaces have previously been implicated in the cooperative folding of multi-domain proteins. To understand their role in AKE folding, we computationally create mutants with deleted inter-domain interfaces and simulate their folding. We find that inter-domain interfaces play a minor role in the folding cooperativity of AKE. On further analysis, we find that unlike other multi-domain proteins whose folding has been studied, the domains of AKE are not singly-linked. Two of its domains have two linkers to the third one, i.e., they are inserted into the third one. We use circular permutation to modify AKE chain-connectivity and convert inserted-domains into singly-linked domains. We find that domain insertion in AKE achieves the following: (1) It facilitates folding cooperativity even when domains have different stabilities. Insertion constrains the N- and C-termini of inserted domains and stabilizes their folded states. Therefore, domains that perform conformational transitions can be smaller with fewer stabilizing interactions. (2) Inter-domain interactions are not needed to promote folding cooperativity and can be tuned for function. In AKE, these interactions help promote conformational dynamics limited catalysis. Finally, using structural bioinformatics, we suggest that domain insertion may also facilitate the cooperative folding of other multi-domain proteins. Most individual protein domains fold in an all or nothing fashion. This cooperative folding is important because it reduces the existence of partially folded proteins which can stick to each other and create disease causing aggregates. However, numerous proteins have multiple domains, independent units of folding, stability and/or function. Several such proteins also fold cooperatively. It is thought that strong interactions between individual domains allow the folding to propagate from a nucleating domain to neighbouring ones and this enables cooperative folding in multi-domain proteins. Here, we computationally study the folding of the three-domain protein AKE and find instead that the topology of the protein, wherein the two less stable domains are inserted into the more stable one, promotes folding cooperativity. When the more stable domain is folded, the ends of the inserted domains are constrained and this allows them to fold easily. In such a protein topology, strong inter-domain interactions are not needed to promote folding cooperativity. Interface amino acids which would have been involved in ensuring that the domains fit together correctly can now be tuned for binding or catalysis or conformational transitions. Thus, inserted domains may be present in multi-domain proteins to promote both function and folding.
Collapse
Affiliation(s)
- V. V. Hemanth Giri Rao
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shachi Gosavi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- * E-mail:
| |
Collapse
|
4
|
Unusual biophysics of intrinsically disordered proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:932-51. [PMID: 23269364 DOI: 10.1016/j.bbapap.2012.12.008] [Citation(s) in RCA: 435] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/21/2012] [Accepted: 12/12/2012] [Indexed: 02/08/2023]
Abstract
Research of a past decade and a half leaves no doubt that complete understanding of protein functionality requires close consideration of the fact that many functional proteins do not have well-folded structures. These intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered protein regions (IDPRs) are highly abundant in nature and play a number of crucial roles in a living cell. Their functions, which are typically associated with a wide range of intermolecular interactions where IDPs possess remarkable binding promiscuity, complement functional repertoire of ordered proteins. All this requires a close attention to the peculiarities of biophysics of these proteins. In this review, some key biophysical features of IDPs are covered. In addition to the peculiar sequence characteristics of IDPs these biophysical features include sequential, structural, and spatiotemporal heterogeneity of IDPs; their rough and relatively flat energy landscapes; their ability to undergo both induced folding and induced unfolding; the ability to interact specifically with structurally unrelated partners; the ability to gain different structures at binding to different partners; and the ability to keep essential amount of disorder even in the bound form. IDPs are also characterized by the "turned-out" response to the changes in their environment, where they gain some structure under conditions resulting in denaturation or even unfolding of ordered proteins. It is proposed that the heterogeneous spatiotemporal structure of IDPs/IDPRs can be described as a set of foldons, inducible foldons, semi-foldons, non-foldons, and unfoldons. They may lose their function when folded, and activation of some IDPs is associated with the awaking of the dormant disorder. It is possible that IDPs represent the "edge of chaos" systems which operate in a region between order and complete randomness or chaos, where the complexity is maximal. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.
Collapse
|
5
|
Jha SK, Deepalakshmi PD, Udgaonkar JB. Characterization of deamidation of barstar using electrospray ionization quadrupole time-of-flight mass spectrometry, which stabilizes an equilibrium unfolding intermediate. Protein Sci 2012; 21:633-46. [PMID: 22431291 DOI: 10.1002/pro.2047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 02/01/2012] [Accepted: 02/13/2012] [Indexed: 11/09/2022]
Abstract
Deamidation of asparaginyl residues is a common posttranslational modification in proteins and has been studied extensively because of its important biological effects, such as those on enzymatic activity, protein folding, and proteolytic degradation. However, characterization of the sites of deamidation of a protein has been a difficult analytical problem. In this study, mass spectrometry has been used as an analytical tool to characterize the deamidation of barstar, an RNAse inhibitor. Upon incubation of the protein at alkaline pH for 5 h, intact mass analysis of barstar, using electrospray ionization quadrupole time-of-flight mass spectrometry (ESI QToF MS), indicated an increase in the mass of +2 Da, suggesting possible deamidation of the protein. The sites of deamidation have been identified using the conventional bottom-up approach using a capillary liquid chromatography connected on line to an ESI QToF mass spectrometer and top down approach by direct infusion of the intact protein and fragmenting inside MS. These chemical modifications are shown to lead to stabilization of an unfolding intermediate, which can be observed in equilibrium unfolding studies.
Collapse
Affiliation(s)
- Santosh Kumar Jha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | | | | |
Collapse
|
6
|
Zhang H, Zhang T, Gao J, Ruan J, Shen S, Kurgan L. Determination of protein folding kinetic types using sequence and predicted secondary structure and solvent accessibility. Amino Acids 2010; 42:271-83. [DOI: 10.1007/s00726-010-0805-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 11/01/2010] [Indexed: 10/18/2022]
|
7
|
Patel MM, Sgourakis NG, Garcia AE, Makhatadze GI. Experimental Test of the Thermodynamic Model of Protein Cooperativity Using Temperature-Induced Unfolding of a Ubq−UIM Fusion Protein. Biochemistry 2010; 49:8455-67. [DOI: 10.1021/bi101163u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mayank M. Patel
- Center for Biotechnology and Interdisciplinary Studies and Department of Biology
| | | | | | - George I. Makhatadze
- Center for Biotechnology and Interdisciplinary Studies and Department of Biology
| |
Collapse
|
8
|
Tsukamoto S, Yamashita T, Yamada Y, Fujiwara K, Maki K, Kuwajima K, Matsumura Y, Kihara H, Tsuge H, Ikeguchi M. Non-native α-helix formation is not necessary for folding of lipocalin: Comparison of burst-phase folding between tear lipocalin and β-lactoglobulin. Proteins 2009; 76:226-36. [DOI: 10.1002/prot.22340] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Tsai CJ, Ma B, Nussinov R. Intra-molecular chaperone: the role of the N-terminal in conformational selection and kinetic control. Phys Biol 2009; 6:013001. [PMID: 19193974 DOI: 10.1088/1478-3975/6/1/013001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The vast majority of the proteins in nature are under thermodynamic control, consistent with the universally accepted notion that proteins exist in their thermodynamically most stable state. Yet, recently a number of examples of proteins whose fold is under kinetic control have come to light. Their functions and environments vary. The first among these are some proteases, discovered in the early 1990s. There, an N-terminal proregion is self-cleaved after the protein folded, leaving the remainder of the chain in a kinetically trapped state. A related scenario was observed for microcin J25, an antibacterial peptide. This peptide presents a trapped covalently knotted conformation. The third and the most recently discovered case is the multidrug-resistant transporter protein, P-glycoprotein. There, a synonymous 'silent' mutation leads to ribosome stalling with a consequent altered kinetically trapped state. Here we argue that in all three examples, the N-terminal plays the role of an intra-molecular chaperone, that is, the N-terminal conformation selects among all competing local conformations of a downstream segment. By providing a pattern, the N-terminal chaperone segment assists the protein folding process. If the N-terminal is subsequently cleaved, the protein can be under kinetic control, since it is trapped in a thermodynamically less-stable state.
Collapse
Affiliation(s)
- Chung-Jung Tsai
- Basic Research Program, SAIC-Frederick Inc, Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
10
|
Yagi M, Kameda A, Sakurai K, Nishimura C, Goto Y. Disulfide-Linked Bovine β-Lactoglobulin Dimers Fold Slowly, Navigating a Glassy Folding Landscape. Biochemistry 2008; 47:5996-6006. [DOI: 10.1021/bi8001715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masanori Yagi
- Institute for Protein Research, Osaka University, and CREST, Japan Science and Technology Agency, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan, and Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Atsushi Kameda
- Institute for Protein Research, Osaka University, and CREST, Japan Science and Technology Agency, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan, and Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Kazumasa Sakurai
- Institute for Protein Research, Osaka University, and CREST, Japan Science and Technology Agency, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan, and Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Chiaki Nishimura
- Institute for Protein Research, Osaka University, and CREST, Japan Science and Technology Agency, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan, and Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Yuji Goto
- Institute for Protein Research, Osaka University, and CREST, Japan Science and Technology Agency, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan, and Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
11
|
Patra AK, Udgaonkar JB. Characterization of the Folding and Unfolding Reactions of Single-Chain Monellin: Evidence for Multiple Intermediates and Competing Pathways. Biochemistry 2007; 46:11727-43. [PMID: 17902706 DOI: 10.1021/bi701142a] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanisms of folding and unfolding of the small plant protein monellin have been delineated in detail. For this study, a single-chain variant of the natively two-chain monellin, MNEI, was used, in which the C terminus of chain B was connected to the N terminus of chain A by a Gly-Phe linker. Equilibrium guanidine hydrochloride (GdnHCl)-induced unfolding experiments failed to detect any partially folded intermediate that is stable enough to be populated at equilibrium to a significant extent. Kinetic experiments in which the refolding of GdnHCl-unfolded protein was monitored by measurement of the change in the intrinsic tryptophan fluorescence of the protein indicated the accumulation of three transient partially structured folding intermediates. The fluorescence change occurred in three kinetic phases: very fast, fast, and slow. It appears that the fast and slow changes in fluorescence occur on competing folding pathways originating from one unfolded form and that the very fast change in fluorescence occurs on a third parallel pathway originating from a second unfolded form of the protein. Kinetic experiments in which the refolding of alkali-unfolded protein was monitored by the change in the fluorescence of the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid (ANS), consequent to the dye binding to the refolding protein, as well as by the change in intrinsic tryptophan fluorescence, not only confirmed the presence of the three kinetic intermediates but also indicated the accumulation of one or more early intermediates at a few milliseconds of refolding. These experiments also exposed a very slow kinetic phase of refolding, which was silent to any change in the intrinsic tryptophan fluorescence of the protein. Hence, the spectroscopic studies indicated that refolding of single-chain monellin occurs in five distinct kinetic phases. Double-jump, interrupted-folding experiments, in which the accumulation of folding intermediates and native protein during the folding process could be determined quantitatively by an unfolding assay, indicated that the fast phase of fluorescence change corresponds to the accumulation of two intermediates of differing stabilities on competing folding pathways. They also indicated that the very slow kinetic phase of refolding, identified by ANS binding, corresponds to the formation of native protein. Kinetic experiments in which the unfolding of native protein in GdnHCl was monitored by the change in intrinsic tryptophan fluorescence indicated that this change occurs in two kinetic phases. Double-jump, interrupted-unfolding experiments, in which the accumulation of unfolding intermediates and native protein during the unfolding process could be determined quantitatively by a refolding assay, indicated that the fast unfolding phase corresponds to the formation of fully unfolded protein via one unfolding pathway and that the slow unfolding phase corresponds to a separate unfolding pathway populated by partially unfolded intermediates. It is shown that the unfolded form produced by the fast unfolding pathway is the one which gives rise to the very fast folding pathway and that the unfolded form produced by the slower unfolding pathway is the one which gives rise to the slow and fast folding pathways.
Collapse
Affiliation(s)
- Ashish K Patra
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India
| | | |
Collapse
|
12
|
Kim CW, Han KS, Ryu KS, Kim BH, Kim KH, Choi SI, Seong BL. N-terminal domains of native multidomain proteins have the potential to assist de novo folding of their downstream domains in vivo by acting as solubility enhancers. Protein Sci 2007; 16:635-43. [PMID: 17384228 PMCID: PMC2203336 DOI: 10.1110/ps.062330907] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The fusion of soluble partner to the N terminus of aggregation-prone polypeptide has been popularly used to overcome the formation of inclusion bodies in the E. coli cytosol. The chaperone-like functions of the upstream fusion partner in the artificial multidomain proteins could occur in de novo folding of native multidomain proteins. Here, we show that the N-terminal domains of three E. coli multidomain proteins such as lysyl-tRNA synthetase, threonyl-tRNA synthetase, and aconitase are potent solubility enhancers for various C-terminal heterologous proteins. The results suggest that the N-terminal domains could act as solubility enhancers for the folding of their authentic C-terminal domains in vivo. Tandem repeat of N-terminal domain or insertion of aspartic residues at the C terminus of the N-terminal domain also increased the solubility of fusion proteins, suggesting that the solubilizing ability correlates with the size and charge of N-terminal domains. The solubilizing ability of N-terminal domains would contribute to the autonomous folding of multidomain proteins in vivo, and based on these results, we propose a model of how N-terminal domains solubilize their downstream domains.
Collapse
Affiliation(s)
- Chul Woo Kim
- Department of Biotechnology, College of Engineering, Yonsei University, Seodaemun-Gu, Seoul 120-749, Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Batey S, Clarke J. Apparent cooperativity in the folding of multidomain proteins depends on the relative rates of folding of the constituent domains. Proc Natl Acad Sci U S A 2006; 103:18113-8. [PMID: 17108086 PMCID: PMC1636339 DOI: 10.1073/pnas.0604580103] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Approximately 75% of eukaryotic proteins contain more than one so-called independently folding domain. However, there have been relatively few systematic studies to investigate the effect of interdomain interactions on protein stability and fewer still on folding kinetics. We present the folding of pairs of three-helix bundle spectrin domains as a paradigm to indicate how complex such an analysis can be. Equilibrium studies show an increase in denaturant concentration required to unfold the domains with only a single unfolding transition; however, in some cases, this is not accompanied by the increase in m value, which would be expected if the protein is a truly cooperative, all-or-none system. We analyze the complex kinetics of spectrin domain pairs, both wild-type and carefully selected mutants. By comparing these pairs, we are able to demonstrate that equilibrium data alone are insufficient to describe the folding of multidomain proteins and to quantify the effects that one domain can have on its neighbor.
Collapse
Affiliation(s)
- Sarah Batey
- Department of Chemistry, University of Cambridge, Medical Research Council Centre for Protein Engineering, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Medical Research Council Centre for Protein Engineering, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
Affiliation(s)
- Yawen Bai
- Laboratory of Biochemistry, National Cancer Institute, Building 37, Room 6114E, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
15
|
Abstract
To test whether the folding process of a large protein can be understood on the basis of the folding behavior of the domains that constitute it, we coupled two well-studied small -helical proteins, the B-domain of protein A (60 amino acids) and Rd-apocytochrome b562 (Rd-apocyt b562, 106 amino acids), by fusing the C-terminal helix of the B-domain of protein A with the N-terminal helix of Rd-apocyt b562 without changing their hydrophobic core residues. The success of the design was confirmed by determining the structure of the engineered protein with multidimensional NMR methods. Kinetic studies showed that the logarithms of the folding/unfolding rate constants of the engineered protein are linearly dependent on concentrations of guanidinium chloride in the measurable range from 1.7 to 4 M. Their slopes (m-values) are close to those of Rd-apocyt b562. In addition, the 1H-15N HSQC spectrum taken at 1.5 M guanidinium chloride reveals that only the Rd-apocyt b562 domain in the designed protein remained folded. These results suggest that the two domains have weak energetic coupling. Interestingly, the redesigned protein folds faster than Rd-apocyt b562, suggesting that the fused helix stabilizes the rate-limiting transition state.
Collapse
Affiliation(s)
- Zheng Zhou
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
16
|
Mesyanzhinov VV, Leiman PG, Kostyuchenko VA, Kurochkina LP, Miroshnikov KA, Sykilinda NN, Shneider MM. Molecular architecture of bacteriophage T4. BIOCHEMISTRY (MOSCOW) 2005; 69:1190-202. [PMID: 15627372 DOI: 10.1007/s10541-005-0064-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In studying bacteriophage T4--one of the basic models of molecular biology for several decades--there has come a Renaissance, and this virus is now actively used as object of structural biology. The structures of six proteins of the phage particle have recently been determined at atomic resolution by X-ray crystallography. Three-dimensional reconstruction of the infection device--one of the most complex multiprotein components--has been developed on the basis of cryo-electron microscopy images. The further study of bacteriophage T4 structure will allow a better understanding of the regulation of protein folding, assembly of biological structures, and also mechanisms of functioning of the complex biological molecular machines.
Collapse
Affiliation(s)
- V V Mesyanzhinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | | | | | | | | | | | | |
Collapse
|
17
|
Mesyanzhinov VV, Leiman PG, Kostyuchenko VA, Kurochkina LP, Miroshnikov KA, Sykilinda NN, Shneider MM. Molecular architecture of bacteriophage T4. BIOCHEMISTRY (MOSCOW) 2004. [DOI: 10.1007/pl00021751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Mesyanzhinov VV. Bacteriophage T4: Structure, Assembly, and Initiation Infection Studied in Three Dimensions. Adv Virus Res 2004; 63:287-352. [PMID: 15530564 DOI: 10.1016/s0065-3527(04)63005-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Vadim V Mesyanzhinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya S., 117997 Moscow, Russia
| |
Collapse
|
19
|
Viguera AR, Serrano L. Hydrogen-exchange stability analysis of Bergerac-Src homology 3 variants allows the characterization of a folding intermediate in equilibrium. Proc Natl Acad Sci U S A 2003; 100:5730-5. [PMID: 12719536 PMCID: PMC156269 DOI: 10.1073/pnas.0837456100] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amide hydrogendeuterium exchange rates have been determined for two mutants of alpha-spectrin Src homology 3 domain (WT), containing an elongated stable (SHH) and unstable (SHA) distal loop. SHA, similarly to WT, follows a two-state transition, whereas SHH apparently folds via a three-state mechanism. Native-state amide hydrogen exchange is effective in ascribing energetic readjustments observed in kinetic experiments to species stabilized within the denatured base and distinguishing those from high-energy barrier crossings. Comparison of DeltaG(ex) and m(ex) parameters for amide protons of these mutants demonstrates the existence of an intermediate and allows the identification of protons protected in this state. The consolidation of a form containing a prefolded long beta-hairpin induces the switch to a three-state mechanism in an otherwise two-state folder. It can be inferred that the unbalanced high stability of individual elements of secondary structure in a polypeptide could ultimately complicate its folding mechanism.
Collapse
Affiliation(s)
- Ana-Rosa Viguera
- Unidad de Biofisica-Consejo Superior de Investigaciones Cientificas-Universidad del Pais Vasco, P.O. Box 644, 48080 Bilbao, Spain.
| | | |
Collapse
|
20
|
Biekofsky RR, Martin SR, McCormick JE, Masino L, Fefeu S, Bayley PM, Feeney J. Thermal stability of calmodulin and mutants studied by (1)H-(15)N HSQC NMR measurements of selectively labeled [(15)N]Ile proteins. Biochemistry 2002; 41:6850-9. [PMID: 12022890 DOI: 10.1021/bi012187s] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calmodulin, the Ca(2+)-dependent activator of many cellular processes, contains two well-defined structural domains, each of which binds two Ca(2+) ions. In its Ca(2+)-free (apo) form, it provides an attractive model for studying mechanisms of protein unfolding, exhibiting two separable, reversible processes, indicating two structurally autonomous folding units. (1)H-(15)N HSQC NMR in principle offers a detailed picture of the behavior of individual residues during protein unfolding transitions, but is limited by the lack of dispersion of resonances in the unfolded state. In this work, we have used selective [(15)N]Ile labeling of four distinctive positions in each calmodulin domain to monitor the relative thermal stability of the folding units in wild-type apocalmodulin and in mutants in which either the N- or C-domain is destabilized. These mutations lead to a characteristic perturbation of the stability (T(m)) of the nonmutated domain relative to that of wild-type apocalmodulin. The ability to monitor specific (15)N-labeled residues, well-distributed throughout the domain, provides strong evidence for the autonomy of a given folding unit, as well as providing accurate measurements of the unfolding parameters T(m) and DeltaH(m). The thermodynamic parameters are interpreted in terms of interactions between one folded and one unfolded domain of apocalmodulin, where stabilization on the order of a few kilocalories per mole is sufficient to cause significant changes in the observed unfolding behavior of a given folding unit. The selective (15)N labeling approach is thus a general method that can provide detailed information about structural intermediates populated in complex protein unfolding processes.
Collapse
Affiliation(s)
- Rodolfo R Biekofsky
- Division of Molecular Structure and Division of Physical Biochemistry, National Institute for Medical Research, Mill Hill, London NW7 1AA, U.K
| | | | | | | | | | | | | |
Collapse
|
21
|
Boudko SP, Londer YY, Letarov AV, Sernova NV, Engel J, Mesyanzhinov VV. Domain organization, folding and stability of bacteriophage T4 fibritin, a segmented coiled-coil protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:833-41. [PMID: 11846809 DOI: 10.1046/j.1432-1033.2002.02734.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fibritin is a segmented coiled-coil homotrimer of the 486-residue product of phage T4 gene wac. This protein attaches to a phage particle by the N-terminal region and forms fibrous whiskers of 530 A, which perform a chaperone function during virus assembly. The short C-terminal region has a beta-annulus-like structure. We engineered a set of fibritin deletion mutants sequentially truncated from the N-termini, and the mutants were studied by differential scanning calorimetry (DSC) and CD measurements. The analysis of DSC curves indicates that full-length fibritin exhibits three thermal-heat-absorption peaks centred at 321 K (Delta H=1390 kJ x mol trimer(-1)), at 336 K (Delta H=7600 kJ x mol trimer(-1)), and at 345 K (Delta H=515 kJ x mol trimer(-1)). These transitions were assigned to the N-terminal, segmented coiled-coil, and C-terminal functional domains, respectively. The coiled-coil region, containing 13 segments, melts co-operatively as a single domain with a mean enthalpy Delta Hres=21 kJ x mol residue(-1). The ratio of Delta HVH/Delta Hcal for the coiled-coil part of the 120-, 182-, 258- and 281-residue per monomer mutants, truncated from the N-termini, and for full-length fibritin are 0.91, 0.88, 0.42, 0.39, and 0.13, respectively. This gives an indication of the decrease of the 'all-or-none' character of the transition with increasing protein size. The deletion of the 12-residue-long loop in the 120-residue fibritin increases the thermal stability of the coiled-coil region. According to CD data, full-length fibritin and all the mutants truncated from the N-termini refold properly after heat denaturation. In contrast, fibritin XN, which is deleted for the C-terminal domain, forms aggregates inside the cell. The XN protein can be partially refolded by dilution from urea and does not refold after heat denaturation. These results confirm that the C-terminal domain is essential for correct fibritin assembly both in vivo and in vitro and acts as a foldon.
Collapse
Affiliation(s)
- Sergei P Boudko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The influence of an inserted exogenous independent folding element on the thermodynamics and folding properties of SH3 domain from alpha-spectrin has been investigated by creating a fused form between this small all-beta domain and a stable beta-hairpin (BH19). NMR analysis of synthetic peptides shows that insertion of BH19 nucleates formation of the original natural beta-hairpin (distal loop) that is part of the SH3 folding nucleus. The resulting protein (Bergerac-SHH) is more stable, folds faster and contains an elongated hairpin protruding from the globular domain as determined by 2D-NMR. "Protein engineering" analysis of the inserted region shows that it is folded in the transition state. Interestingly, stabilisation by insertion of the distal loop region results in the appearance of a compact intermediate revealed by a curved chevron plot at low denaturant concentration. This effect is eliminated at low salt concentrations by a single mutation of a hydrophobic residue within BH19 sequence, which is most probably involved in non-native interactions. Local stabilisation by enlargement and reinforcement of the folding nucleus, global compaction by the addition of salt and non-native interactions are shown to contribute to the observed deviation from the two-state behaviour.
Collapse
Affiliation(s)
- A R Viguera
- Unidad de Biofisica-CSIC-UPV, Apdo. 644, Bilbao, 48080, Spain
| | | |
Collapse
|