1
|
Casari E, Gnugnoli M, Rinaldi C, Pizzul P, Colombo CV, Bonetti D, Longhese MP. To Fix or Not to Fix: Maintenance of Chromosome Ends Versus Repair of DNA Double-Strand Breaks. Cells 2022; 11:cells11203224. [PMID: 36291091 PMCID: PMC9601279 DOI: 10.3390/cells11203224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 02/08/2023] Open
Abstract
Early work by Muller and McClintock discovered that the physical ends of linear chromosomes, named telomeres, possess an inherent ability to escape unwarranted fusions. Since then, extensive research has shown that this special feature relies on specialized proteins and structural properties that confer identity to the chromosome ends, thus allowing cells to distinguish them from intrachromosomal DNA double-strand breaks. Due to the inability of conventional DNA replication to fully replicate the chromosome ends and the downregulation of telomerase in most somatic human tissues, telomeres shorten as cells divide and lose this protective capacity. Telomere attrition causes the activation of the DNA damage checkpoint that leads to a cell-cycle arrest and the entering of cells into a nondividing state, called replicative senescence, that acts as a barrier against tumorigenesis. However, downregulation of the checkpoint overcomes this barrier and leads to further genomic instability that, if coupled with re-stabilization of telomeres, can drive tumorigenesis. This review focuses on the key experiments that have been performed in the model organism Saccharomyces cerevisiae to uncover the mechanisms that protect the chromosome ends from eliciting a DNA damage response, the conservation of these pathways in mammals, as well as the consequences of their loss in human cancer.
Collapse
|
2
|
Galli M, Frigerio C, Longhese MP, Clerici M. The regulation of the DNA damage response at telomeres: focus on kinases. Biochem Soc Trans 2021; 49:933-943. [PMID: 33769480 DOI: 10.1042/bst20200856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022]
Abstract
The natural ends of linear chromosomes resemble those of accidental double-strand breaks (DSBs). DSBs induce a multifaceted cellular response that promotes the repair of lesions and slows down cell cycle progression. This response is not elicited at chromosome ends, which are organized in nucleoprotein structures called telomeres. Besides counteracting DSB response through specialized telomere-binding proteins, telomeres also prevent chromosome shortening. Despite of the different fate of telomeres and DSBs, many proteins involved in the DSB response also localize at telomeres and participate in telomere homeostasis. In particular, the DSB master regulators Tel1/ATM and Mec1/ATR contribute to telomere length maintenance and arrest cell cycle progression when chromosome ends shorten, thus promoting a tumor-suppressive process known as replicative senescence. During senescence, the actions of both these apical kinases and telomere-binding proteins allow checkpoint activation while bulk DNA repair activities at telomeres are still inhibited. Checkpoint-mediated cell cycle arrest also prevents further telomere erosion and deprotection that would favor chromosome rearrangements, which are known to increase cancer-associated genome instability. This review summarizes recent insights into functions and regulation of Tel1/ATM and Mec1/ATR at telomeres both in the presence and in the absence of telomerase, focusing mainly on discoveries in budding yeast.
Collapse
Affiliation(s)
- Michela Galli
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Chiara Frigerio
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| |
Collapse
|
3
|
Traczyk A, Liew CW, Gill DJ, Rhodes D. Structural basis of G-quadruplex DNA recognition by the yeast telomeric protein Rap1. Nucleic Acids Res 2020; 48:4562-4571. [PMID: 32187364 PMCID: PMC7192608 DOI: 10.1093/nar/gkaa171] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/04/2020] [Accepted: 03/15/2020] [Indexed: 12/14/2022] Open
Abstract
G-quadruplexes are four-stranded nucleic acid structures involved in multiple cellular pathways including DNA replication and telomere maintenance. Such structures are formed by G-rich DNA sequences typified by telomeric DNA repeats. Whilst there is evidence for proteins that bind and regulate G-quadruplex formation, the molecular basis for this remains poorly understood. The budding yeast telomeric protein Rap1, originally identified as a transcriptional regulator functioning by recognizing double-stranded DNA binding sites, was one of the first proteins to be discovered to also bind and promote G-quadruplex formation in vitro. Here, we present the 2.4 Å resolution crystal structure of the Rap1 DNA-binding domain in complex with a G-quadruplex. Our structure not only provides a detailed insight into the structural basis for G-quadruplex recognition by a protein, but also gives a mechanistic understanding of how the same DNA-binding domain adapts to specifically recognize different DNA structures. The key observation is the DNA-recognition helix functions in a bimodal manner: In double-stranded DNA recognition one helix face makes electrostatic interactions with the major groove of DNA, whereas in G-quadruplex recognition a different helix face is used to make primarily hydrophobic interactions with the planar face of a G-tetrad.
Collapse
Affiliation(s)
- Anna Traczyk
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Chong Wai Liew
- NTU Institute of Structural Biology, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore
| | - David James Gill
- NTU Institute of Structural Biology, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Daniela Rhodes
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
4
|
Bonetti D, Rinaldi C, Vertemara J, Notaro M, Pizzul P, Tisi R, Zampella G, Longhese MP. DNA binding modes influence Rap1 activity in the regulation of telomere length and MRX functions at DNA ends. Nucleic Acids Res 2020; 48:2424-2441. [PMID: 31879780 PMCID: PMC7049697 DOI: 10.1093/nar/gkz1203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
The cellular response to DNA double-strand breaks (DSBs) is initiated by the Mre11–Rad50–Xrs2 (MRX) complex that has structural and catalytic functions. MRX association at DSBs is counteracted by Rif2, which is known to interact with Rap1 that binds telomeric DNA through two tandem Myb-like domains. Whether and how Rap1 acts at DSBs is unknown. Here we show that Rif2 inhibits MRX association to DSBs in a manner dependent on Rap1, which binds to DSBs and promotes Rif2 association to them. Rap1 in turn can negatively regulate MRX function at DNA ends also independently of Rif2. In fact, a characterization of Rap1 mutant variants shows that Rap1 binding to DNA through both Myb-like domains results in formation of Rap1-DNA complexes that control MRX functions at both DSBs and telomeres primarily through Rif2. By contrast, Rap1 binding to DNA through a single Myb-like domain results in formation of high stoichiometry complexes that act at DNA ends mostly in a Rif2-independent manner. Altogether these findings indicate that the DNA binding modes of Rap1 influence its functional properties, thus highlighting the structural plasticity of this protein.
Collapse
Affiliation(s)
- Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| | - Carlo Rinaldi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| | - Jacopo Vertemara
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| | - Marco Notaro
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| | - Paolo Pizzul
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| | - Renata Tisi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| | - Giuseppe Zampella
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano - Bicocca, 20126 Milano, Italy
| |
Collapse
|
5
|
Abstract
The telomere regulator and transcription factor Rap1 is the only telomere protein conserved in yeasts and mammals. Its functional repertoire in budding yeasts is a particularly interesting field for investigation, given the high evolutionary diversity of this group of unicellular organisms. In the methylotrophic thermotolerant species Hansenula polymorpha DL-1 the RAP1 gene is duplicated (HpRAP1A and HpRAP1B). Here, we report the functional characterization of the two paralogues from H. polymorpha DL-1. We uncover distinct (but overlapping) DNA binding preferences of HpRap1A and HpRap1B proteins. We show that only HpRap1B is able to recognize telomeric DNA directly and to protect it from excessive recombination, whereas HpRap1A is associated with subtelomere regions. Furthermore, we identify specific binding sites for both HpRap1A and HpRap1B within promoters of a large number of ribosomal protein genes (RPGs), implicating Rap1 in the control of the RP regulon in H. polymorpha. Our bioinformatic analysis suggests that RAP1 was duplicated early in the evolution of the “methylotrophs” clade, and the two genes evolved independently. Therefore, our characterization of Rap1 paralogues in H. polymorpha may be relevant to other “methylotrophs”, yielding valuable insights into the evolution of budding yeasts.
Collapse
|
6
|
Aksenova AY, Mirkin SM. At the Beginning of the End and in the Middle of the Beginning: Structure and Maintenance of Telomeric DNA Repeats and Interstitial Telomeric Sequences. Genes (Basel) 2019; 10:genes10020118. [PMID: 30764567 PMCID: PMC6410037 DOI: 10.3390/genes10020118] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Tandem DNA repeats derived from the ancestral (TTAGGG)n run were first detected at chromosome ends of the majority of living organisms, hence the name telomeric DNA repeats. Subsequently, it has become clear that telomeric motifs are also present within chromosomes, and they were suitably called interstitial telomeric sequences (ITSs). It is well known that telomeric DNA repeats play a key role in chromosome stability, preventing end-to-end fusions and precluding the recurrent DNA loss during replication. Recent data suggest that ITSs are also important genomic elements as they confer its karyotype plasticity. In fact, ITSs appeared to be among the most unstable microsatellite sequences as they are highly length polymorphic and can trigger chromosomal fragility and gross chromosomal rearrangements. Importantly, mechanisms responsible for their instability appear to be similar to the mechanisms that maintain the length of genuine telomeres. This review compares the mechanisms of maintenance and dynamic properties of telomeric repeats and ITSs and discusses the implications of these dynamics on genome stability.
Collapse
Affiliation(s)
- Anna Y Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02421, USA.
| |
Collapse
|
7
|
Johnson AN, Weil PA. Identification of a transcriptional activation domain in yeast repressor activator protein 1 (Rap1) using an altered DNA-binding specificity variant. J Biol Chem 2017; 292:5705-5723. [PMID: 28196871 PMCID: PMC5392566 DOI: 10.1074/jbc.m117.779181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/13/2017] [Indexed: 01/06/2023] Open
Abstract
Repressor activator protein 1 (Rap1) performs multiple vital cellular functions in the budding yeast Saccharomyces cerevisiae These include regulation of telomere length, transcriptional repression of both telomere-proximal genes and the silent mating type loci, and transcriptional activation of hundreds of mRNA-encoding genes, including the highly transcribed ribosomal protein- and glycolytic enzyme-encoding genes. Studies of the contributions of Rap1 to telomere length regulation and transcriptional repression have yielded significant mechanistic insights. However, the mechanism of Rap1 transcriptional activation remains poorly understood because Rap1 is encoded by a single copy essential gene and is involved in many disparate and essential cellular functions, preventing easy interpretation of attempts to directly dissect Rap1 structure-function relationships. Moreover, conflicting reports on the ability of Rap1-heterologous DNA-binding domain fusion proteins to serve as chimeric transcriptional activators challenge use of this approach to study Rap1. Described here is the development of an altered DNA-binding specificity variant of Rap1 (Rap1AS). We used Rap1AS to map and characterize a 41-amino acid activation domain (AD) within the Rap1 C terminus. We found that this AD is required for transcription of both chimeric reporter genes and authentic chromosomal Rap1 enhancer-containing target genes. Finally, as predicted for a bona fide AD, mutation of this newly identified AD reduced the efficiency of Rap1 binding to a known transcriptional coactivator TFIID-binding target, Taf5. In summary, we show here that Rap1 contains an AD required for Rap1-dependent gene transcription. The Rap1AS variant will likely also be useful for studies of the functions of Rap1 in other biological pathways.
Collapse
Affiliation(s)
- Amanda N Johnson
- From the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - P Anthony Weil
- From the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
8
|
Koc KN, Singh SP, Stodola JL, Burgers PM, Galletto R. Pif1 removes a Rap1-dependent barrier to the strand displacement activity of DNA polymerase δ. Nucleic Acids Res 2016; 44:3811-9. [PMID: 27001517 PMCID: PMC4856994 DOI: 10.1093/nar/gkw181] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/08/2016] [Indexed: 11/13/2022] Open
Abstract
Using an in vitro reconstituted system in this work we provide direct evidence that the yeast repressor/activator protein 1 (Rap1), tightly bound to its consensus site, forms a strong non-polar barrier for the strand displacement activity of DNA polymerase δ. We propose that relief of inhibition may be mediated by the activity of an accessory helicase. To this end, we show that Pif1, a 5'-3' helicase, not only stimulates the strand displacement activity of Pol δ but it also allows efficient replication through the block, by removing bound Rap1 in front of the polymerase. This stimulatory activity of Pif1 is not limited to the displacement of a single Rap1 molecule; Pif1 also allows Pol δ to carry out DNA synthesis across an array of bound Rap1 molecules that mimics a telomeric DNA-protein assembly. This activity of Pif1 represents a novel function of this helicase during DNA replication.
Collapse
Affiliation(s)
- Katrina N Koc
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph L Stodola
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
9
|
Steinberg-Neifach O, Lue NF. Telomere DNA recognition in Saccharomycotina yeast: potential lessons for the co-evolution of ssDNA and dsDNA-binding proteins and their target sites. Front Genet 2015; 6:162. [PMID: 25983743 PMCID: PMC4416457 DOI: 10.3389/fgene.2015.00162] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/10/2015] [Indexed: 01/22/2023] Open
Abstract
In principle, alterations in the telomere repeat sequence would be expected to disrupt the protective nucleoprotein complexes that confer stability to chromosome ends, and hence relatively rare events in evolution. Indeed, numerous organisms in diverse phyla share a canonical 6 bp telomere repeat unit (5'-TTAGGG-3'/5'-CCCTAA-3'), suggesting common descent from an ancestor that carries this particular repeat. All the more remarkable, then, are the extraordinarily divergent telomere sequences that populate the Saccharomycotina subphylum of budding yeast. These sequences are distinguished from the canonical telomere repeat in being long, occasionally degenerate, and frequently non-G/C-rich. Despite the divergent telomere repeat sequences, studies to date indicate that the same families of single-strand and double-strand telomere binding proteins (i.e., the Cdc13 and Rap1 families) are responsible for telomere protection in Saccharomycotina yeast. The recognition mechanisms of the protein family members therefore offer an informative paradigm for understanding the co-evolution of DNA-binding proteins and the cognate target sequences. Existing data suggest three potential, inter-related solutions to the DNA recognition problem: (i) duplication of the recognition protein and functional modification; (ii) combinatorial recognition of target site; and (iii) flexibility of the recognition surfaces of the DNA-binding proteins to adopt alternative conformations. Evidence in support of these solutions and the relevance of these solutions to other DNA-protein regulatory systems are discussed.
Collapse
Affiliation(s)
- Olga Steinberg-Neifach
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College, Cornell University , New York, NY, USA ; Hostos Community College, City University of New York , Bronx, NY, USA
| | - Neal F Lue
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College, Cornell University , New York, NY, USA
| |
Collapse
|
10
|
Feldmann EA, De Bona P, Galletto R. The wrapping loop and Rap1 C-terminal (RCT) domain of yeast Rap1 modulate access to different DNA binding modes. J Biol Chem 2015; 290:11455-66. [PMID: 25805496 DOI: 10.1074/jbc.m115.637678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 11/06/2022] Open
Abstract
Budding yeast Rap1 is a specific double-stranded DNA-binding protein involved in repression and activation of gene transcription and in the establishment of the nucleoprotein complex formed at telomeres. The DNA-binding domain (DBD) of Rap1 forms a high affinity complex with DNA where both Myb-like domains bind to the recognition site. However, we recently showed that the DBD can also access an alternative, lower affinity DNA-binding mode where a single Myb-like domain binds. This results in Rap1-DNA complexes with stoichiometry higher than previously anticipated. In this work, we show that the ability of the DBD to form higher stoichiometry complexes on DNA is maintained also in larger Rap1 constructs. This indicates that transition between at least two DNA-binding modes is a general property of the protein and not a specific feature of the DBD in isolation. The transition between binding modes is modulated by the C-terminal wrapping loop within the DBD, consistent with the proposed model in which the transient opening of this region allows a switch between binding modes. Finally, we provide evidence that the Rap1 C terminus interacts with the DNA-binding domain, suggesting a complex network of interactions that couples changes in conformation of the protein to the binding of its DNA recognition sequence.
Collapse
Affiliation(s)
- Erik A Feldmann
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Paolo De Bona
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Roberto Galletto
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110
| |
Collapse
|
11
|
Alternative arrangements of telomeric recognition sites regulate the binding mode of the DNA-binding domain of yeast Rap1. Biophys Chem 2015; 198:1-8. [PMID: 25637888 DOI: 10.1016/j.bpc.2015.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/02/2015] [Accepted: 01/02/2015] [Indexed: 01/17/2023]
Abstract
The function of yeast Rap1 as an activator in transcription, a repressor at silencer elements, and as a major component of the shelterin-like complex at telomeres requires the known high-affinity and specific interaction of the DNA-binding domain (DBD) with its recognition sequences. In addition to a high-affinity one-to-one complex with its DNA recognition site, Rap1(DBD) also forms lower affinity complexes with higher stoichiometries on DNA. We proposed that this originates from the ability of Rap1(DBD) to access at least two DNA-binding modes. In this work, we show that Rap1(DBD) binds in multiple binding modes to recognition sequences that contain different spacer lengths between the hemi-sites. We also provide evidence that in the singly-ligated complex Rap1(DBD) binds quite differently to these sequences. Rap1(DBD) also binds to a single half-site but does so using the alternative DNA-binding mode where only a single Myb-like domain interacts with DNA. We found that all arrangements of Rap1 sites tested are represented within the telomeric sequence and our data suggest that at telomeres Rap1 might form a nucleoprotein complex with a heterogeneous distribution of bound states.
Collapse
|
12
|
Feldmann EA, Galletto R. The DNA-binding domain of yeast Rap1 interacts with double-stranded DNA in multiple binding modes. Biochemistry 2014; 53:7471-83. [PMID: 25382181 PMCID: PMC4263426 DOI: 10.1021/bi501049b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Saccharomyces cerevisiae repressor-activator protein
1 (Rap1) is an essential protein involved in multiple steps of DNA
regulation, as an activator in transcription, as a repressor at silencer
elements, and as a major component of the shelterin-like complex at
telomeres. All the known functions of Rap1 require the known high-affinity
and specific interaction of the DNA-binding domain with its recognition
sequences. In this work, we focus on the interaction of the DNA-binding
domain of Rap1 (Rap1DBD) with double-stranded DNA substrates.
Unexpectedly, we found that while Rap1DBD forms a high-affinity
1:1 complex with its DNA recognition site, it can also form lower-affinity
complexes with higher stoichiometries on DNA. These lower-affinity
interactions are independent of the presence of the recognition sequence,
and we propose they originate from the ability of Rap1DBD to bind to DNA in two different binding modes. In one high-affinity
binding mode, Rap1DBD likely binds in the conformation
observed in the available crystal structures. In the other alternative
lower-affinity binding mode, we propose that a single Myb-like domain
of the Rap1DBD makes interactions with DNA, allowing for
more than one protein molecule to bind to the DNA substrates. Our
findings suggest that the Rap1DBD does not simply target
the protein to its recognition sequence but rather it might be a possible
point of regulation.
Collapse
Affiliation(s)
- Erik A Feldmann
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | | |
Collapse
|
13
|
Knight B, Kubik S, Ghosh B, Bruzzone MJ, Geertz M, Martin V, Dénervaud N, Jacquet P, Ozkan B, Rougemont J, Maerkl SJ, Naef F, Shore D. Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription. Genes Dev 2014; 28:1695-709. [PMID: 25085421 PMCID: PMC4117944 DOI: 10.1101/gad.244434.114] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In yeast, ribosome production is controlled transcriptionally by tight coregulation of the 138 ribosomal protein genes (RPGs). RPG promoters display limited sequence homology, and the molecular basis for their coregulation remains largely unknown. Here we identify two prevalent RPG promoter types, both characterized by upstream binding of the general transcription factor (TF) Rap1 followed by the RPG-specific Fhl1/Ifh1 pair, with one type also binding the HMG-B protein Hmo1. We show that the regulatory properties of the two promoter types are remarkably similar, suggesting that they are determined to a large extent by Rap1 and the Fhl1/Ifh1 pair. Rapid depletion experiments allowed us to define a hierarchy of TF binding in which Rap1 acts as a pioneer factor required for binding of all other TFs. We also uncovered unexpected features underlying recruitment of Fhl1, whose forkhead DNA-binding domain is not required for binding at most promoters, and Hmo1, whose binding is supported by repeated motifs. Finally, we describe unusually micrococcal nuclease (MNase)-sensitive nucleosomes at all RPG promoters, located between the canonical +1 and -1 nucleosomes, which coincide with sites of Fhl1/Ifh1 and Hmo1 binding. We speculate that these "fragile" nucleosomes play an important role in regulating RPG transcriptional output.
Collapse
Affiliation(s)
- Britta Knight
- Department of Molecular Biology, National Centres of Competence in Research Program "Frontiers in Genetics," Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Slawomir Kubik
- Department of Molecular Biology, National Centres of Competence in Research Program "Frontiers in Genetics," Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Bhaswar Ghosh
- The Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular Biology, National Centres of Competence in Research Program "Frontiers in Genetics," Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Marcel Geertz
- Department of Molecular Biology, National Centres of Competence in Research Program "Frontiers in Genetics," Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland; The Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Victoria Martin
- Department of Molecular Biology, National Centres of Competence in Research Program "Frontiers in Genetics," Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Dénervaud
- The Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Philippe Jacquet
- Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Burak Ozkan
- Department of Molecular Biology, National Centres of Competence in Research Program "Frontiers in Genetics," Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Jacques Rougemont
- Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Sebastian J Maerkl
- The Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Félix Naef
- The Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - David Shore
- Department of Molecular Biology, National Centres of Competence in Research Program "Frontiers in Genetics," Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland;
| |
Collapse
|
14
|
Le Bihan YV, Matot B, Pietrement O, Giraud-Panis MJ, Gasparini S, Le Cam E, Gilson E, Sclavi B, Miron S, Le Du MH. Effect of Rap1 binding on DNA distortion and potassium permanganate hypersensitivity. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:409-19. [DOI: 10.1107/s0907444912049311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/30/2012] [Indexed: 11/11/2022]
|
15
|
The enigmatic conservation of a Rap1 binding site in the Saccharomyces cerevisiae HMR-E silencer. G3-GENES GENOMES GENETICS 2012; 2:1555-62. [PMID: 23275878 PMCID: PMC3516477 DOI: 10.1534/g3.112.004077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 09/27/2012] [Indexed: 11/26/2022]
Abstract
Silencing at the HMR and HML loci in Saccharomyces cerevisiae requires recruitment of Sir proteins to the HML and HMR silencers. The silencers are regulatory sites flanking both loci and consisting of binding sites for the Rap1, Abf1, and ORC proteins, each of which also functions at hundreds of sites throughout the genome in processes unrelated to silencing. Interestingly, the sequence of the binding site for Rap1 at the silencers is distinct from the genome-wide binding profile of Rap1, being a weaker match to the consensus, and indeed is bound with low affinity relative to the consensus sequence. Remarkably, this low-affinity Rap1 binding site variant was conserved among silencers of the sensu stricto Saccharomyces species, maintained as a poor match to the Rap1 genome-wide consensus sequence in all of them. We tested multiple predictions about the possible role of this binding-site variant in silencing by substituting the native Rap1 binding site at the HMR-E silencer with the genome-wide consensus sequence for Rap1. Contrary to the predictions from the current models of Rap1, we found no influence of the Rap1 binding site version on the kinetics of establishing silencing, nor on the maintenance of silencing, nor the extent of silencing. We further explored implications of these findings with regard to prevention of ectopic silencing, and deduced that the selective pressure for the unprecedented conservation of this binding site variant may not be related to silencing.
Collapse
|
16
|
Matot B, Le Bihan YV, Lescasse R, Pérez J, Miron S, David G, Castaing B, Weber P, Raynal B, Zinn-Justin S, Gasparini S, Le Du MH. The orientation of the C-terminal domain of the Saccharomyces cerevisiae Rap1 protein is determined by its binding to DNA. Nucleic Acids Res 2012; 40:3197-207. [PMID: 22139930 PMCID: PMC3326314 DOI: 10.1093/nar/gkr1166] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 11/22/2022] Open
Abstract
Rap1 is an essential DNA-binding factor from the yeast Saccharomyces cerevisiae involved in transcription and telomere maintenance. Its binding to DNA targets Rap1 at particular loci, and may optimize its ability to form functional macromolecular assemblies. It is a modular protein, rich in large potentially unfolded regions, and comprising BRCT, Myb and RCT well-structured domains. Here, we present the architectures of Rap1 and a Rap1/DNA complex, built through a step-by-step integration of small angle X-ray scattering, X-ray crystallography and nuclear magnetic resonance data. Our results reveal Rap1 structural adjustment upon DNA binding that involves a specific orientation of the C-terminal (RCT) domain with regard to the DNA binding domain (DBD). Crystal structure of DBD in complex with a long DNA identifies an essential wrapping loop, which constrains the orientation of the RCT and affects Rap1 affinity to DNA. Based on our structural information, we propose a model for Rap1 assembly at telomere.
Collapse
Affiliation(s)
- Béatrice Matot
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et Technologie de Saclay, Laboratoire de Biologie Structurale et Radiobiologie, CNRS-URA2096, 91191 Gif-sur-Yvette, France, Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service Instabilité Génétique Réparation et Recombinaison, Laboratoire Télomère et Réparation du Chromosome, 92260 Fontenay-aux-roses, SOLEIL Synchrotron, L'Orme des Merisiers Saint-Aubin, Gif-sur-Yvette, Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, Institut Pasteur, CNRS-URA2185, Plate-forme 6, Cristallogenèse et Diffraction des Rayons X, 25 Rue Dr. Roux, 75724 Paris and Institut Pasteur, Plateforme de Biophysique des Macromolécules et de leurs Interactions, Département de Biologie Structurale et Chimie, F-75015 Paris, France
| | - Yann-Vaï Le Bihan
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et Technologie de Saclay, Laboratoire de Biologie Structurale et Radiobiologie, CNRS-URA2096, 91191 Gif-sur-Yvette, France, Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service Instabilité Génétique Réparation et Recombinaison, Laboratoire Télomère et Réparation du Chromosome, 92260 Fontenay-aux-roses, SOLEIL Synchrotron, L'Orme des Merisiers Saint-Aubin, Gif-sur-Yvette, Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, Institut Pasteur, CNRS-URA2185, Plate-forme 6, Cristallogenèse et Diffraction des Rayons X, 25 Rue Dr. Roux, 75724 Paris and Institut Pasteur, Plateforme de Biophysique des Macromolécules et de leurs Interactions, Département de Biologie Structurale et Chimie, F-75015 Paris, France
| | - Rachel Lescasse
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et Technologie de Saclay, Laboratoire de Biologie Structurale et Radiobiologie, CNRS-URA2096, 91191 Gif-sur-Yvette, France, Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service Instabilité Génétique Réparation et Recombinaison, Laboratoire Télomère et Réparation du Chromosome, 92260 Fontenay-aux-roses, SOLEIL Synchrotron, L'Orme des Merisiers Saint-Aubin, Gif-sur-Yvette, Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, Institut Pasteur, CNRS-URA2185, Plate-forme 6, Cristallogenèse et Diffraction des Rayons X, 25 Rue Dr. Roux, 75724 Paris and Institut Pasteur, Plateforme de Biophysique des Macromolécules et de leurs Interactions, Département de Biologie Structurale et Chimie, F-75015 Paris, France
| | - Javier Pérez
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et Technologie de Saclay, Laboratoire de Biologie Structurale et Radiobiologie, CNRS-URA2096, 91191 Gif-sur-Yvette, France, Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service Instabilité Génétique Réparation et Recombinaison, Laboratoire Télomère et Réparation du Chromosome, 92260 Fontenay-aux-roses, SOLEIL Synchrotron, L'Orme des Merisiers Saint-Aubin, Gif-sur-Yvette, Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, Institut Pasteur, CNRS-URA2185, Plate-forme 6, Cristallogenèse et Diffraction des Rayons X, 25 Rue Dr. Roux, 75724 Paris and Institut Pasteur, Plateforme de Biophysique des Macromolécules et de leurs Interactions, Département de Biologie Structurale et Chimie, F-75015 Paris, France
| | - Simona Miron
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et Technologie de Saclay, Laboratoire de Biologie Structurale et Radiobiologie, CNRS-URA2096, 91191 Gif-sur-Yvette, France, Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service Instabilité Génétique Réparation et Recombinaison, Laboratoire Télomère et Réparation du Chromosome, 92260 Fontenay-aux-roses, SOLEIL Synchrotron, L'Orme des Merisiers Saint-Aubin, Gif-sur-Yvette, Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, Institut Pasteur, CNRS-URA2185, Plate-forme 6, Cristallogenèse et Diffraction des Rayons X, 25 Rue Dr. Roux, 75724 Paris and Institut Pasteur, Plateforme de Biophysique des Macromolécules et de leurs Interactions, Département de Biologie Structurale et Chimie, F-75015 Paris, France
| | - Gabriel David
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et Technologie de Saclay, Laboratoire de Biologie Structurale et Radiobiologie, CNRS-URA2096, 91191 Gif-sur-Yvette, France, Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service Instabilité Génétique Réparation et Recombinaison, Laboratoire Télomère et Réparation du Chromosome, 92260 Fontenay-aux-roses, SOLEIL Synchrotron, L'Orme des Merisiers Saint-Aubin, Gif-sur-Yvette, Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, Institut Pasteur, CNRS-URA2185, Plate-forme 6, Cristallogenèse et Diffraction des Rayons X, 25 Rue Dr. Roux, 75724 Paris and Institut Pasteur, Plateforme de Biophysique des Macromolécules et de leurs Interactions, Département de Biologie Structurale et Chimie, F-75015 Paris, France
| | - Bertrand Castaing
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et Technologie de Saclay, Laboratoire de Biologie Structurale et Radiobiologie, CNRS-URA2096, 91191 Gif-sur-Yvette, France, Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service Instabilité Génétique Réparation et Recombinaison, Laboratoire Télomère et Réparation du Chromosome, 92260 Fontenay-aux-roses, SOLEIL Synchrotron, L'Orme des Merisiers Saint-Aubin, Gif-sur-Yvette, Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, Institut Pasteur, CNRS-URA2185, Plate-forme 6, Cristallogenèse et Diffraction des Rayons X, 25 Rue Dr. Roux, 75724 Paris and Institut Pasteur, Plateforme de Biophysique des Macromolécules et de leurs Interactions, Département de Biologie Structurale et Chimie, F-75015 Paris, France
| | - Patrick Weber
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et Technologie de Saclay, Laboratoire de Biologie Structurale et Radiobiologie, CNRS-URA2096, 91191 Gif-sur-Yvette, France, Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service Instabilité Génétique Réparation et Recombinaison, Laboratoire Télomère et Réparation du Chromosome, 92260 Fontenay-aux-roses, SOLEIL Synchrotron, L'Orme des Merisiers Saint-Aubin, Gif-sur-Yvette, Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, Institut Pasteur, CNRS-URA2185, Plate-forme 6, Cristallogenèse et Diffraction des Rayons X, 25 Rue Dr. Roux, 75724 Paris and Institut Pasteur, Plateforme de Biophysique des Macromolécules et de leurs Interactions, Département de Biologie Structurale et Chimie, F-75015 Paris, France
| | - Bertrand Raynal
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et Technologie de Saclay, Laboratoire de Biologie Structurale et Radiobiologie, CNRS-URA2096, 91191 Gif-sur-Yvette, France, Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service Instabilité Génétique Réparation et Recombinaison, Laboratoire Télomère et Réparation du Chromosome, 92260 Fontenay-aux-roses, SOLEIL Synchrotron, L'Orme des Merisiers Saint-Aubin, Gif-sur-Yvette, Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, Institut Pasteur, CNRS-URA2185, Plate-forme 6, Cristallogenèse et Diffraction des Rayons X, 25 Rue Dr. Roux, 75724 Paris and Institut Pasteur, Plateforme de Biophysique des Macromolécules et de leurs Interactions, Département de Biologie Structurale et Chimie, F-75015 Paris, France
| | - Sophie Zinn-Justin
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et Technologie de Saclay, Laboratoire de Biologie Structurale et Radiobiologie, CNRS-URA2096, 91191 Gif-sur-Yvette, France, Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service Instabilité Génétique Réparation et Recombinaison, Laboratoire Télomère et Réparation du Chromosome, 92260 Fontenay-aux-roses, SOLEIL Synchrotron, L'Orme des Merisiers Saint-Aubin, Gif-sur-Yvette, Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, Institut Pasteur, CNRS-URA2185, Plate-forme 6, Cristallogenèse et Diffraction des Rayons X, 25 Rue Dr. Roux, 75724 Paris and Institut Pasteur, Plateforme de Biophysique des Macromolécules et de leurs Interactions, Département de Biologie Structurale et Chimie, F-75015 Paris, France
| | - Sylvaine Gasparini
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et Technologie de Saclay, Laboratoire de Biologie Structurale et Radiobiologie, CNRS-URA2096, 91191 Gif-sur-Yvette, France, Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service Instabilité Génétique Réparation et Recombinaison, Laboratoire Télomère et Réparation du Chromosome, 92260 Fontenay-aux-roses, SOLEIL Synchrotron, L'Orme des Merisiers Saint-Aubin, Gif-sur-Yvette, Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, Institut Pasteur, CNRS-URA2185, Plate-forme 6, Cristallogenèse et Diffraction des Rayons X, 25 Rue Dr. Roux, 75724 Paris and Institut Pasteur, Plateforme de Biophysique des Macromolécules et de leurs Interactions, Département de Biologie Structurale et Chimie, F-75015 Paris, France
| | - Marie-Hélène Le Du
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et Technologie de Saclay, Laboratoire de Biologie Structurale et Radiobiologie, CNRS-URA2096, 91191 Gif-sur-Yvette, France, Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service Instabilité Génétique Réparation et Recombinaison, Laboratoire Télomère et Réparation du Chromosome, 92260 Fontenay-aux-roses, SOLEIL Synchrotron, L'Orme des Merisiers Saint-Aubin, Gif-sur-Yvette, Centre de Biophysique Moléculaire, UPR4301, CNRS, rue Charles Sadron, 45071 Orléans cedex 02, Institut Pasteur, CNRS-URA2185, Plate-forme 6, Cristallogenèse et Diffraction des Rayons X, 25 Rue Dr. Roux, 75724 Paris and Institut Pasteur, Plateforme de Biophysique des Macromolécules et de leurs Interactions, Département de Biologie Structurale et Chimie, F-75015 Paris, France
| |
Collapse
|
17
|
Novel transcript truncating function of Rap1p revealed by synthetic codon-optimized Ty1 retrotransposon. Genetics 2011; 190:523-35. [PMID: 22135353 DOI: 10.1534/genetics.111.136648] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extensive mutagenesis via massive recoding of retrotransposon Ty1 produced a synthetic codon-optimized retrotransposon (CO-Ty1). CO-Ty1 is defective for retrotransposition, suggesting a sequence capable of down-regulating retrotransposition. We mapped this sequence to a critical ~20-bp region within CO-Ty1 reverse transcriptase (RT) and confirmed that it reduced Ty1 transposition, protein, and RNA levels. Repression was not Ty1 specific; when introduced immediately downstream of the green fluorescent protein (GFP) stop codon, GFP expression was similarly reduced. Rap1p mediated this down-regulation, as shown by mutagenesis and chromatin immunoprecipitation. A regular threefold drop is observed in different contexts, suggesting utility for synthetic circuits. A large reduction of RNAP II occupancy on the CO-Ty1 construct was observed 3' to the identified Rap1p site and a novel 3' truncated RNA species was observed. We propose a novel mechanism of transcriptional regulation by Rap1p whereby it serves as a transcriptional roadblock when bound to transcription unit sequences.
Collapse
|
18
|
Gustafsson C, Rhodin Edsö J, Cohn M. Rap1 binds single-stranded DNA at telomeric double- and single-stranded junctions and competes with Cdc13 protein. J Biol Chem 2011; 286:45174-85. [PMID: 22075002 DOI: 10.1074/jbc.m111.300517] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ends of eukaryotic chromosomes are protected by specialized telomere chromatin structures. Rap1 and Cdc13 are essential for the formation of functional telomere chromatin in budding yeast by binding to the double-stranded part and the single-stranded 3' overhang, respectively. We analyzed the binding properties of Saccharomyces castellii Rap1 and Cdc13 to partially single-stranded oligonucleotides, mimicking the junction of the double- and single-stranded DNA (ds-ss junction) at telomeres. We determined the optimal and the minimal DNA setup for a simultaneous binding of Rap1 and Cdc13 at the ds-ss junction. Remarkably, Rap1 is able to bind to a partially single-stranded binding site spanning the ds-ss junction. The binding over the ds-ss junction is anchored in a single double-stranded hemi-site and is stabilized by a sequence-independent interaction of Rap1 with the single-stranded 3' overhang. Thus, Rap1 is able to switch between a sequence-specific and a nonspecific binding mode of one hemi-site. At a ds-ss junction configuration where the two binding sites partially overlap, Rap1 and Cdc13 are competing for the binding. These results shed light on the end protection mechanisms and suggest that Rap1 and Cdc13 act together to ensure the protection of both the 3' and the 5' DNA ends at telomeres.
Collapse
Affiliation(s)
- Cecilia Gustafsson
- Department of Biology, Genetics Group, Lund University, SE-223 62 Lund, Sweden
| | | | | |
Collapse
|
19
|
Rhodin Edsö J, Gustafsson C, Cohn M. Single- and double-stranded DNA binding proteins act in concert to conserve a telomeric DNA core sequence. Genome Integr 2011; 2:2. [PMID: 21235754 PMCID: PMC3033795 DOI: 10.1186/2041-9414-2-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 01/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Telomeres are protective cap structures at the ends of the linear eukaryotic chromosomes, which provide stability to the genome by shielding from degradation and chromosome fusions. The cap consists of telomere-specific proteins binding to the respective single- and double-stranded parts of the telomeric sequence. In addition to the nucleation of the chromatin structure the telomere-binding proteins are involved in the regulation of the telomere length. However, the telomeric sequences are highly diverged among yeast species. During the evolution this high rate of divergency presents a challenge for the sequence recognition of the telomere-binding proteins. RESULTS We found that the Saccharomyces castellii protein Rap1, a negative regulator of telomere length, binds a 12-mer minimal binding site (MBS) within the double-stranded telomeric DNA. The sequence specificity is dependent on the interaction with two 5 nucleotide motifs, having a 6 nucleotide centre-to-centre spacing. The isolated DNA-binding domain binds the same MBS and retains the same motif binding characteristics as the full-length Rap1 protein. However, it shows some deviations in the degree of sequence-specific dependence in some nucleotide positions. Intriguingly, the positions of most importance for the sequence-specific binding of the full-length Rap1 protein coincide with 3 of the 4 nucleotides utilized by the 3' overhang binding protein Cdc13. These nucleotides are very well conserved within the otherwise highly divergent telomeric sequences of yeasts. CONCLUSIONS Rap1 and Cdc13 are two very distinct types of DNA-binding proteins with highly separate functions. They interact with the double-stranded vs. the single-stranded telomeric DNA via significantly different types of DNA-binding domain structures. However, we show that they are dependent on coinciding nucleotide positions for their sequence-specific binding to telomeric sequences. Thus, we conclude that during the molecular evolution they act together to preserve a core sequence of the telomeric DNA.
Collapse
Affiliation(s)
- Jenny Rhodin Edsö
- Department of Biology, Lund University, Biology building, Sölvegatan 35, SE-223 62 Lund, Sweden.
| | | | | |
Collapse
|
20
|
Williams TL, Levy DL, Maki-Yonekura S, Yonekura K, Blackburn EH. Characterization of the yeast telomere nucleoprotein core: Rap1 binds independently to each recognition site. J Biol Chem 2010; 285:35814-24. [PMID: 20826803 DOI: 10.1074/jbc.m110.170167] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
At the core of Saccharomyces cerevisiae telomeres is an array of tandem telomeric DNA repeats bound site-specifically by multiple Rap1 molecules. There, Rap1 orchestrates the binding of additional telomere-associated proteins and negatively regulates both telomere fusion and length homeostasis. Using electron microscopy, viscosity, and light scattering measurements, we show that purified Rap1 is a monomer in solution that adopts a ringlike or C shape with a central cavity. Rap1 could orchestrate telomere function by binding multiple telomere array sites through either cooperative or independent mechanisms. To determine the mechanism, we analyze the distribution of Rap1 monomers on defined telomeric DNA arrays. This analysis clearly indicates that Rap1 binds independently to each nonoverlapping site in an array, regardless of the spacing between sites, the total number of sites, the affinity of the sites for Rap1, and over a large concentration range. Previous experiments have not clearly separated the effects of affinity from repeat spacing on telomere function. We clarify these results by testing in vivo the function of defined telomere arrays containing the same Rap1 binding site separated by spacings that were previously defined as low or high activity. We find that Rap1 binding affinity in vitro correlates with the ability of telomeric repeat arrays to regulate telomere length in vivo. We suggest that Rap1 binding to multiple sites in a telomere array does not, by itself, promote formation of a more energetically stabile complex.
Collapse
Affiliation(s)
- Tanya L Williams
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, USA
| | | | | | | | | |
Collapse
|
21
|
Giraud-Panis MJ, Pisano S, Poulet A, Le Du MH, Gilson E. Structural identity of telomeric complexes. FEBS Lett 2010; 584:3785-99. [PMID: 20696167 DOI: 10.1016/j.febslet.2010.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 02/01/2023]
Abstract
A major issue in telomere research is to understand how the integrity of chromosome ends is controlled. Although several nucleoprotein complexes have been described at the telomeres of different organisms, it is still unclear how they confer a structural identity to chromosome ends in order to mask them from DNA repair and to ensure their proper replication. In this review, we describe how telomeric nucleoprotein complexes are structured, comparing different organisms and trying to link these structures to telomere biology. It emerges that telomeres are formed by a complex and specific network of interactions between DNA, RNA and proteins. The fact that these interactions and associated activities are reinforcing each other might help to guaranty the robustness of telomeric functions across the cell cycle and in the event of cellular perturbations. We propose that telomeric nucleoprotein complexes orient cell fate through dynamic transitions in their structures and their organization.
Collapse
Affiliation(s)
- Marie-Josèphe Giraud-Panis
- University de Nice, Laboratory of Biology and Pathology of Genomes, UMR 6267 CNRS U998 INSERM, Faculté de Médecine, Nice, France
| | | | | | | | | |
Collapse
|
22
|
Lavoie H, Hogues H, Mallick J, Sellam A, Nantel A, Whiteway M. Evolutionary tinkering with conserved components of a transcriptional regulatory network. PLoS Biol 2010; 8:e1000329. [PMID: 20231876 PMCID: PMC2834713 DOI: 10.1371/journal.pbio.1000329] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 02/03/2010] [Indexed: 12/14/2022] Open
Abstract
Gene expression variation between species is a major contributor to phenotypic diversity, yet the underlying flexibility of transcriptional regulatory networks remains largely unexplored. Transcription of the ribosomal regulon is a critical task for all cells; in S. cerevisiae the transcription factors Rap1, Fhl1, Ifh1, and Hmo1 form a multi-subunit complex that controls ribosomal gene expression, while in C. albicans this regulation is under the control of Tbf1 and Cbf1. Here, we analyzed, using full-genome transcription factor mapping, the roles, in both S. cerevisiae and C. albicans, of each orthologous component of this complete set of regulators. We observe dramatic changes in the binding profiles of the generalist regulators Cbf1, Hmo1, Rap1, and Tbf1, while the Fhl1-Ifh1 dimer is the only component involved in ribosomal regulation in both fungi: it activates ribosomal protein genes and rDNA expression in a Tbf1-dependent manner in C. albicans and a Rap1-dependent manner in S. cerevisiae. We show that the transcriptional regulatory network governing the ribosomal expression program of two related yeast species has been massively reshaped in cis and trans. Changes occurred in transcription factor wiring with cellular functions, movements in transcription factor hierarchies, DNA-binding specificity, and regulatory complexes assembly to promote global changes in the architecture of the fungal transcriptional regulatory network.
Collapse
Affiliation(s)
- Hugo Lavoie
- Biotechnology Research Institute, National Research Council, Montreal, Quebec, Canada
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Hervé Hogues
- Biotechnology Research Institute, National Research Council, Montreal, Quebec, Canada
| | - Jaideep Mallick
- Biotechnology Research Institute, National Research Council, Montreal, Quebec, Canada
| | - Adnane Sellam
- Biotechnology Research Institute, National Research Council, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - André Nantel
- Biotechnology Research Institute, National Research Council, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Malcolm Whiteway
- Biotechnology Research Institute, National Research Council, Montreal, Quebec, Canada
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Rap1 in Candida albicans: an unusual structural organization and a critical function in suppressing telomere recombination. Mol Cell Biol 2009; 30:1254-68. [PMID: 20008550 DOI: 10.1128/mcb.00986-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rap1 (repressor activator protein 1) is a conserved multifunctional protein initially identified as a transcriptional regulator of ribosomal protein genes in Saccharomyces cerevisiae but subsequently shown to play diverse functions at multiple chromosomal loci, including telomeres. The function of Rap1 appears to be evolutionarily plastic, especially in the budding yeast lineages. We report here our biochemical and molecular genetic characterizations of Candida albicans Rap1, which exhibits an unusual, miniaturized domain organization in comparison to the S. cerevisiae homologue. We show that in contrast to S. cerevisiae, C. albicans RAP1 is not essential for cell viability but is critical for maintaining normal telomere length and structure. The rap1 null mutant exhibits drastic telomere-length dysregulation and accumulates high levels of telomere circles, which can be largely attributed to aberrant recombination activities at telomeres. Analysis of combination mutants indicates that Rap1 and other telomere proteins mediate overlapping but nonredundant roles in telomere protection. Consistent with the telomere phenotypes of the mutant, C. albicans Rap1 is localized to telomeres in vivo and recognizes the unusual telomere repeat unit with high affinity and sequence specificity in vitro. The DNA-binding Myb domain of C. albicans Rap1 is sufficient to suppress most of the telomere aberrations observed in the null mutant. Notably, we were unable to detect specific binding of C. albicans Rap1 to gene promoters in vivo or in vitro, suggesting that its functions are more circumscribed in this organism. Our findings provide insights on the evolution and mechanistic plasticity of a widely conserved and functionally critical telomere component.
Collapse
|
24
|
Determination of the core promoter regions of the Saccharomyces cerevisiae RPS3 gene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:741-50. [PMID: 19853675 DOI: 10.1016/j.bbagrm.2009.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 12/13/2022]
Abstract
Ribosomal protein genes (RPG), which are scattered throughout the genomes of all eukaryotes, are subjected to coordinated expression. In yeast, the expression of RPGs is highly regulated, mainly at the transcriptional level. Recent research has found that many ribosomal proteins (RPs) function in multiple processes in addition to protein synthesis. Therefore, detailed knowledge of promoter architecture as well as gene regulation is important in understanding the multiple cellular processes mediated by RPGs. In this study, we investigated the functional architecture of the yeast RPS3 promoter and identified many putative cis-elements. Using beta-galactosidase reporter analysis and EMSA, the core promoter of RPS3 containing UASrpg and T-rich regions was corroborated. Moreover, the promoter occupancy of RPS3 by three transcription factors was confirmed. Taken together, our results further the current understanding of the promoter architecture and trans-elements of the Saccharomyces cerevisiae RPS3 gene.
Collapse
|
25
|
Underwood DH, Carroll C, McEachern MJ. Genetic dissection of the Kluyveromyces lactis telomere and evidence for telomere capping defects in TER1 mutants with long telomeres. EUKARYOTIC CELL 2004; 3:369-84. [PMID: 15075267 PMCID: PMC387640 DOI: 10.1128/ec.3.2.369-384.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the yeast Kluyveromyces lactis, the telomeres are composed of perfect 25-bp repeats copied from a 30-nucleotide RNA template defined by 5-nucleotide terminal repeats. A genetic dissection of the K. lactis telomere was performed by using mutant telomerase RNA (TER1) alleles to incorporate mutated telomeric repeats. This analysis has shown that each telomeric repeat contains several functional regions, some of which may physically overlap. Mutations in the terminal repeats of the template RNA typically lead to telomere shortening, as do mutations in the right side of the Rap1p binding site. Mutations in the left half of the Rap1p binding site, however, lead to the immediate formation of long telomeres. When mutated, the region immediately 3' of the Rap1p binding site on the TG-rich strand of the telomere leads to telomeres that are initially short but eventually undergo extreme telomere elongation. Mutations between this region and the 3' terminal repeat cause elevated recombination despite the presence of telomeres of nearly wild-type length. Mutants with highly elongated telomeres were further characterized and exhibit signs of telomere capping defects, including elevated levels of subtelomeric recombination and the formation of extrachromosomal and single-stranded telomeric DNA. Lengthening caused by some Rap1 binding site mutations can be suppressed by high-copy-number RAP1. Mutated telomeric repeats from a delayed elongation mutant are shown to be defective at regulating telomere length in cells with wild-type telomerase, indicating that the telomeric repeats are defective at telomere length regulation.
Collapse
Affiliation(s)
- Dana H Underwood
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
26
|
Del Vescovo V, De Sanctis V, Bianchi A, Shore D, Di Mauro E, Negri R. Distinct DNA elements contribute to Rap1p affinity for its binding sites. J Mol Biol 2004; 338:877-93. [PMID: 15111054 DOI: 10.1016/j.jmb.2004.03.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 03/15/2004] [Accepted: 03/18/2004] [Indexed: 11/17/2022]
Abstract
The essential Saccharomyces cerevisiae regulatory protein Rap1 contains two tandem Myb-like DNA binding sub-domains that interact with two defined DNA "hemisites", separated by a trinucleotide linker sequence. We have mapped the thermodynamically defined DNA-binding site of Rap1 by a primer extension method coupled with electrophoretic separation of bound and unbound DNAs. Relative to published consensus sequences, we detect binding interactions that extend 3 bp beyond the 5'-end of the putative DNA-binding site. This new site of interaction is located where the DNA minor groove faces the protein, and may account for the major DNA bending induced by Rap1p that previous studies have mapped to a site immediately upstream of the consensus binding site. In addition, we show that a minimal DNA-binding site made of one single consensus hemisite, preceded or followed by a spacer trinucleotide that interacts with the unstructured protein linker between the two Rap1p DNA binding domains, is able to bind the protein, although at lower affinity. These findings may explain the observed in vivo binding properties of Rap1p at many promoters that lack canonical binding sites.
Collapse
Affiliation(s)
- Valerio Del Vescovo
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università La Sapienza di Roma, Rome, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Piña B, Fernández-Larrea J, García-Reyero N, Idrissi FZ. The different (sur)faces of Rap1p. Mol Genet Genomics 2003; 268:791-8. [PMID: 12655405 DOI: 10.1007/s00438-002-0801-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2002] [Accepted: 12/02/2002] [Indexed: 10/25/2022]
Abstract
The DNA-binding protein Rap1p fulfills many different functions in the yeast cell. It targets 5% of the promoters, acting both as a transcriptional activator and as a repressor, depending on the DNA sequence context. In addition, Rap1p is an essential structural component of yeast telomeres, where it contributes to telomeric silencing. Here we review the evidence indicating that Rap1p function is modulated by the precise architecture of the its binding site and its surroundings: long tracts of telomeric repeats for telomeric functions, specific sequences and orientation for maximal transcriptional activation, and specific DNA recognition sequences for complementary factors in other cases. Many of these functions are probably related to chromatin organization around Rap1p DNA binding sites, resulting from the very tight binding of Rap1p to DNA. We propose that Rap1p alters its structure to bind to different versions of its DNA binding sequence. These structural changes may modulate the function of Rap1p domains, providing different interacting surfaces for binding to specific co-operating factors, and thus contributing to the diversity of Rap1p function.
Collapse
Affiliation(s)
- B Piña
- Molecular and Cellular Biology Department, Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Jordi Girona 18, Spain.
| | | | | | | |
Collapse
|
28
|
Abstract
Telomeres are protein-DNA complexes that cap chromosome ends and protect them from being recognized and processed as DNA breaks. Loss of capping function results in genetic instability and loss of cellular viability. The emerging view is that maintenance of an appropriate telomere structure is essential for function. Structural information on telomeric proteins that bind to double and single-stranded telomeric DNA shows that, despite a lack of extensive amino-acid sequence conservation, telomeric DNA recognition occurs via conserved DNA-binding domains. Furthermore, telomeric proteins have multidomain structures and hence are conformationally flexible. A possibility is that telomeric proteins take up different conformations when bound to different partners, providing a simple mechanism for modulating telomere architecture.
Collapse
Affiliation(s)
- Daniela Rhodes
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | | | | | |
Collapse
|
29
|
De Sanctis V, La Terra S, Bianchi A, Shore D, Burderi L, Di Mauro E, Negri R. In vivo topography of Rap1p-DNA complex at Saccharomyces cerevisiae TEF2 UAS(RPG) during transcriptional regulation. J Mol Biol 2002; 318:333-49. [PMID: 12051841 DOI: 10.1016/s0022-2836(02)00110-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have analyzed in detail the structure of RAP1-UAS(RPG) complexes in Saccharomyces cerevisiae cells using multi-hit KMnO(4), UV and micrococcal nuclease high-resolution footprinting. Three copies of the Rap1 protein are bound to the promoter simultaneously in exponentially growing cells, as shown by KMnO(4) multi-hit footprinting analysis, causing extended and diagnostic changes in the DNA structure of the region containing the UAS(RPG). Amino acid starvation does not cause loss of Rap1p from the complex; however, in vivo UV-footprinting reveals the occurrence of structural modifications of the complex. Moreover, low-resolution micrococcal nuclease digestion shows that the chromatin of the entire region is devoid of positioned nucleosomes but is susceptible to changes in accessibility to the nuclease upon amino acid starvation. The implications of these results for the mechanism of Rap1p action are discussed.
Collapse
Affiliation(s)
- Veronica De Sanctis
- Fondazione "Istituto Pasteur-Fondazione Cenci-Bolognetti", c/o Dipartimento di Genetica e Biologia Molecolare, Università di Roma, La Sapienza, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Wahlin J, Cohn M. Analysis of the RAP1 protein binding to homogeneous telomeric repeats in Saccharomyces castellii. Yeast 2002; 19:241-56. [PMID: 11816032 DOI: 10.1002/yea.816] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The repressor activator protein 1 (RAP1) plays a role in telomere structure and function inS. cerevisiae. Here, the RAP1 homologue was identified and cloned from the budding yeast Saccharomyces castellii (scasRAP1). The scasRAP1 gene encodes a protein of 826 amino acids and shares an overall high degree of similarity with the S. cerevisiae RAP1 (scerRAP1). We demonstrate that the scasRAP1 is able to complement scerRAP1 in temperature-sensitive S. cerevisiae strains and is able to function as a regulator to maintain the original telomere lengths. Binding analyses of the E. coli-expressed scasRAP1 protein demonstrate that it needs two consecutive telomeric repeats in order to bind the S. castellii telomeric DNA sequences, and that it binds adjacent sites having a 16 bp centre-to-centre spacing. The binding affinity to telomeric DNA of several other yeasts is similar to that of scerRap1p. However, in contrast to scerRap1p, scasRap1p was found to bind the human telomeric sequence. Moreover, the scasRap1p was found to incorporate a variant repeat in its binding to the otherwise homogeneous telomeric DNA of S. castellii. This ability to bind various sites differing in DNA sequence indicates a high degree of adjustability in the binding of scasRap1p to DNA.
Collapse
Affiliation(s)
- Johan Wahlin
- Department of Molecular Genetics, Lund University, Sölvegatan 29, S-223 62 Lund, Sweden
| | | |
Collapse
|
31
|
Nishikawa T, Okamura H, Nagadoi A, König P, Rhodes D, Nishimura Y. Solution structure of a telomeric DNA complex of human TRF1. Structure 2001; 9:1237-51. [PMID: 11738049 DOI: 10.1016/s0969-2126(01)00688-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Mammalian telomeres consist of long tandem arrays of double-stranded TTAGGG sequence motif packaged by TRF1 and TRF2. In contrast to the DNA binding domain of c-Myb, which consists of three imperfect tandem repeats, DNA binding domains of both TRF1 and TRF2 contain only a single Myb repeat. In a DNA complex of c-Myb, both the second and third repeats are closely packed in the major groove of DNA and recognize a specific base sequence cooperatively. RESULTS The structure of the DNA binding domain of human TRF1 bound to telomeric DNA has been determined by NMR. It consists of three helices, whose architecture is very close to that of three repeats of the c-Myb DNA binding domain. Only the single Myb domain of TRF1 is sufficient for the sequence-specific recognition. The third helix of TRF1 recognizes the TAGGG part in the major groove, and the N-terminal arm interacts with the TT part in the minor groove. CONCLUSIONS The DNA binding domain of TRF1 can specifically and fully recognize the AGGGTT sequence. It is likely that, in the dimer of TRF1, two DNA binding domains can bind independently in tandem arrays to two binding sites of telomeric DNA that is composed of the repeated AGGGTT motif. Although TRF2 plays an important role in the t loop formation that protects the ends of telomeres, it is likely that the binding mode of TRF2 to double-stranded telomeric DNA is almost identical to that of TRF1.
Collapse
Affiliation(s)
- T Nishikawa
- Graduate School of Integrated Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Telomerase is a ribonucleoprotein enzyme that adds repetitive sequences to the ends of linear chromosomes, thereby counteracting nucleotide loss due to incomplete replication. A short region of the telomerase RNA subunit serves as template for nucleotide addition onto the telomere 3' end. Although Saccharomyces cerevisiae contains only one telomerase RNA gene, telomere repeat sequences are degenerate in this organism. Based on a detailed analysis of the telomere sequences specified by wild-type and mutant RNA templates in vivo, we show that the divergence of telomere repeats is due to abortive reverse transcription in the 3' and 5' regions of the template and due to the alignment of telomeres in multiple registers within the RNA template. Through the interpretation of wild-type telomere sequences, we identify nucleotides in the template that are not accessible for base pairing during substrate annealing. Rather, these positions become available as templates for reverse transcription only after alignment with adjacent nucleotides has occurred, indicating that a conformational change takes place upon substrate binding. We also infer that the central part of the template region is reverse transcribed processively. The inaccessibility of certain template positions for alignment and the processive polymerization of the central template portion may serve to reduce the possible repeat diversification and enhance the incorporation of binding sites for Rap1p, the telomere binding protein of budding yeast.
Collapse
Affiliation(s)
- K Förstemann
- Swiss Institute for Experimental Cancer Research (ISREC), CH-1066 Epalinges, Switzerland
| | | |
Collapse
|
33
|
Idrissi FZ, Garcia-Reyero N, Fernandez-Larrea JB, Piña B. Alternative Mechanisms of Transcriptional Activation by Rap1p. J Biol Chem 2001; 276:26090-8. [PMID: 11358963 DOI: 10.1074/jbc.m101746200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single Rap1p DNA-binding sites are poor activators of transcription of yeast minimal promoters, even when fully occupied in vivo. This low efficiency is due to two independent repression mechanisms as follows: one that requires the presence of histones, and one that requires Hrs1p, a component of the RNA polymerase II mediator complex. Both repression mechanisms were greatly reduced for constructs with tandemly arranged sites. In these constructs, UASrpg sequences (ACACCCATACATTT) activated better than telomere-like sequences (ACACCCACACACCC) in an orientation-dependent manner. Both mutations in the SWI/SNF complex and a deletion of amino acids 597--629 of Rap1p (Tox domain) decreased synergistic effects of contiguous telomeric sites. Conversely, deletion of amino acids 700--798 of Rap1p (Sil domain) made UASrpg and telomeric sites functionally indistinguishable. We propose that the Sil domain masks the main transactivation domain of Rap1p in Rap1p-telomere complexes, where the Tox domain behaves as a secondary activation domain, probably by interacting with chromatin-remodeling complexes. Rap1p DNA-binding sites in ribosomal protein gene promoters are mainly UASrpg-like; their replacement by telomeric sequences in one of these promoters (RPS17B) decreased transcription by two-thirds. The functional differences between UASrpgs and telomeric sequences may thus contribute to the differential expression of Rap1p-regulated promoters in vivo.
Collapse
Affiliation(s)
- F Z Idrissi
- Departament de Biologia Molecular i Cellular, Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Cientificas, Jordi Girona, 18.08034 Barcelona, Spain
| | | | | | | |
Collapse
|
34
|
Current Awareness. Yeast 2001. [DOI: 10.1002/yea.683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
35
|
Rossetti L, Cacchione S, De Menna A, Chapman L, Rhodes D, Savino M. Specific interactions of the telomeric protein Rap1p with nucleosomal binding sites. J Mol Biol 2001; 306:903-13. [PMID: 11237607 DOI: 10.1006/jmbi.2001.4458] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The telomeres of Saccharomyces cerevisiae are structurally and functionally well characterized. Their telomeric DNA is packaged by the protein Rap1p (repressor activator protein 1). Rap1p is a multifunctional, sequence-specific, DNA-binding protein which, besides participating in the regulation of telomeres structure and length, is also involved in transcriptional regulation of genes essential for cell growth and in silencing. Whereas the long tracts of telomeric DNA repeats of higher eukaryotes are mostly organized in closely spaced canonical nucleosomal arrays, it has been proposed that the 300 base-pairs of S. cerevisiae telomeric DNA are organized in a large non-nucleosomal structure that has been called the telosome. Recently, nucleosomes have been found also in Tetrahymena thermophila telomeres, suggesting that, in general, telomere structural differences between lower and higher eukaryotes could be quantitative, rather than qualitative. Using an in vitro model system, we have addressed the question of whether Rap1p can form a stable ternary complex with nucleosomes containing telomeric binding sites, or competes with nucleosome core formation. The approach we have taken is to place a single Rap1p-binding site at different positions within a nucleosome core and then test the binding of Rap1p and its DNA-binding domain (Rap1p-DBD). We show here that both proteins are able to specifically recognize their nucleosomal binding site, but that binding is dependent on the location of the site within the nucleosome core structure. These results show that a ternary complex between a nucleosome and Rap1p is stable and could be a possible intermediate between telomeric nucleosomes and telosomes in the dynamics of S. cerevisiae telomere organization.
Collapse
Affiliation(s)
- L Rossetti
- Dipartimento di Genetica e Biologia Molecolare, Fondazione Istituto Pasteur -Fondazione Cenci Bolognetti, Università di Roma La Sapienza, Piazzale A Moro 5,00185, Roma, Italy
| | | | | | | | | | | |
Collapse
|