1
|
Prasad D, Muniyappa K. The extended N-terminus of Mycobacterium smegmatis RecX potentiates its ability to antagonize RecA functions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140468. [PMID: 32526474 DOI: 10.1016/j.bbapap.2020.140468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 01/13/2023]
Abstract
The members of the RecX family of proteins have a unique capacity to regulate the catalytic activities of RecA/Rad51 proteins in both prokaryotic and eukaryotic organisms. However, our understanding of the functional roles of RecX in pathogenic and non-pathogenic mycobacteria has been limited by insufficient knowledge of the molecular mechanisms of its activity and regulation. Moreover, the significance of a unique 14 amino acid N-terminal extension in Mycobacterium smegmatis RecX (MsRecX) to its function remains unknown. Here, we advance our understanding of the antagonistic roles of mycobacterial RecX proteins and the functional significance of the extended N-terminus of MsRecX. The full-length MsRecX acts as an antagonist of RecA, negatively regulating RecA promoted functions, including DNA strand exchange, LexA cleavage and ATP hydrolysis, but not binding of ATP. The N-terminally truncated MsRecX variants retain the RecA inhibitory activity, albeit with lower efficiencies compared to the full-length protein. Perhaps most importantly, direct visualization of RecA nucleoprotein filaments, which had been incubated with RecX proteins, showed that they promote disassembly of nucleoprotein filaments primarily within the filaments. In addition, interaction of RecX proteins with the RecA nucleoprotein filaments results in the formation of stiff and irregularly shaped nucleoprotein filaments. Thus, these findings add an additional mechanism by which RecX disassembles RecA nucleoprotein filaments. Overall, this study provides strong evidence for the notion that the N-terminal 14 amino acid region of MsRecX plays an important role in the negative regulation of RecA functions and new insights into the molecular mechanism underlying RecX function.
Collapse
Affiliation(s)
- Deepika Prasad
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
2
|
Chai R, Zhang C, Tian F, Li H, Yang Q, Song A, Qiu L. Recombination function and recombination kinetics of Escherichia coli single-stranded DNA-binding protein. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1160-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Marsh ME, Scott DE, Ehebauer MT, Abell C, Blundell TL, Hyvönen M. ATP half-sites in RadA and RAD51 recombinases bind nucleotides. FEBS Open Bio 2016; 6:372-85. [PMID: 27419043 PMCID: PMC4856416 DOI: 10.1002/2211-5463.12052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/20/2022] Open
Abstract
Homologous recombination is essential for repair of DNA double-strand breaks. Central to this process is a family of recombinases, including archeal RadA and human RAD51, which form nucleoprotein filaments on damaged single-stranded DNA ends and facilitate their ATP-dependent repair. ATP binding and hydrolysis are dependent on the formation of a nucleoprotein filament comprising RadA/RAD51 and single-stranded DNA, with ATP bound between adjacent protomers. We demonstrate that truncated, monomeric Pyrococcus furiosus RadA and monomerised human RAD51 retain the ability to bind ATP and other nucleotides with high affinity. We present crystal structures of both apo and nucleotide-bound forms of monomeric RadA. These structures reveal that while phosphate groups are tightly bound, RadA presents a shallow, poorly defined binding surface for the nitrogenous bases of nucleotides. We suggest that RadA monomers would be constitutively bound to nucleotides in the cell and that the bound nucleotide might play a structural role in filament assembly.
Collapse
Affiliation(s)
- May E Marsh
- Department of Biochemistry University of Cambridge UK; Present address: Paul Scherrer Institut Villingen Switzerland
| | | | - Matthias T Ehebauer
- Department of Biochemistry University of Cambridge UK; Present address: Target Discovery Institute Nuffield Department of Medicine University of Oxford UK
| | - Chris Abell
- Department of Chemistry University of Cambridge UK
| | | | - Marko Hyvönen
- Department of Biochemistry University of Cambridge UK
| |
Collapse
|
4
|
Manjunath GP, Soni N, Vaddavalli PL, Shewale DJ, Madhusudhan MS, Muniyappa K. Molecular Mechanism Underlying ATP-Induced Conformational Changes in the Nucleoprotein Filament of Mycobacterium smegmatis RecA. Biochemistry 2016; 55:1850-62. [PMID: 26915388 DOI: 10.1021/acs.biochem.5b01383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
RecA plays a central role in bacterial DNA repair, homologous recombination, and restoration of stalled replication forks by virtue of its active extended nucleoprotein filament. Binding of ATP and its subsequent recognition by the carboxamide group of a highly conserved glutamine (Gln196 in MsRecA) have been implicated in the formation of active RecA nucleoprotein filaments. Although the mechanism of ATP-dependent structural transitions in RecA has been proposed on the basis of low-resolution electron microscopic reconstructions, the precise sequence of events that constitute these transitions is poorly understood. On the basis of biochemical and crystallographic analyses of MsRecA variants carrying mutations in highly conserved Gln196 and Arg198 residues, we propose that the disposition of the interprotomer interface is the structural basis of allosteric activation of RecA. Furthermore, this study accounts for the contributions of several conserved amino acids to ATP hydrolysis and to the transition from collapsed to extended filament forms in Mycobacterium smegmatis RecA (MsRecA). In addition to their role in the inactive compressed state, the study reveals a role for Gln196 and Arg198 along with Phe219 in ATP hydrolysis in the active extended nucleoprotein filament. Finally, our data suggest that the primary, but not secondary, nucleotide binding site in MsRecA isomerizes into the ATP binding site present in the extended nucleoprotein filament.
Collapse
Affiliation(s)
- G P Manjunath
- Department of Biochemistry, Indian Institute of Science (IISc) , Bangalore 560012, India.,Center of Excellence in Epigenetics, Indian Institute of Science Education and Research (IISER) , Pune 411008, India
| | - Neelesh Soni
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) , Pune 411008, India
| | - Pavana L Vaddavalli
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research (IISER) , Pune 411008, India
| | - Dipeshwari J Shewale
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research (IISER) , Pune 411008, India
| | - M S Madhusudhan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) , Pune 411008, India
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science (IISc) , Bangalore 560012, India
| |
Collapse
|
5
|
Rajendram M, Zhang L, Reynolds BJ, Auer GK, Tuson HH, Ngo KV, Cox MM, Yethiraj A, Cui Q, Weibel DB. Anionic Phospholipids Stabilize RecA Filament Bundles in Escherichia coli. Mol Cell 2015; 60:374-84. [PMID: 26481664 DOI: 10.1016/j.molcel.2015.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/14/2015] [Accepted: 09/09/2015] [Indexed: 10/22/2022]
Abstract
We characterize the interaction of RecA with membranes in vivo and in vitro and demonstrate that RecA binds tightly to the anionic phospholipids cardiolipin (CL) and phosphatidylglycerol (PG). Using computational models, we identify two regions of RecA that interact with PG and CL: (1) the N-terminal helix and (2) loop L2. Mutating these regions decreased the affinity of RecA to PG and CL in vitro. Using 3D super-resolution microscopy, we demonstrate that depleting Escherichia coli PG and CL altered the localization of RecA foci and hindered the formation of RecA filament bundles. Consequently, E. coli cells lacking aPLs fail to initiate a robust SOS response after DNA damage, indicating that the membrane acts as a scaffold for nucleating the formation of RecA filament bundles and plays an important role in the SOS response.
Collapse
Affiliation(s)
- Manohary Rajendram
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Leili Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bradley J Reynolds
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - George K Auer
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hannah H Tuson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Khanh V Ngo
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Arun Yethiraj
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qiang Cui
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Douglas B Weibel
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
6
|
Bugreev DV, Huang F, Mazina OM, Pezza RJ, Voloshin ON, Camerini-Otero RD, Mazin AV. HOP2-MND1 modulates RAD51 binding to nucleotides and DNA. Nat Commun 2014; 5:4198. [PMID: 24943459 PMCID: PMC4279451 DOI: 10.1038/ncomms5198] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 05/22/2014] [Indexed: 12/21/2022] Open
Abstract
The HOP2-MND1 heterodimer is required for progression of homologous recombination in eukaryotes. In vitro, HOP2-MND1 stimulates the DNA strand exchange activities of RAD51 and DMC1. We demonstrate that HOP2-MND1 induces changes in the conformation of RAD51 that profoundly alter the basic properties of RAD51. HOP2-MND1 enhances the interaction of RAD51 with nucleotide cofactors and modifies its DNA binding specificity in a manner that stimulates DNA strand exchange. It enables RAD51 DNA strand exchange in the absence of divalent metal ions required for ATP binding and offsets the effect of the K133A mutation that disrupts ATP binding. During nucleoprotein formation HOP2-MND1 helps to load RAD51 on ssDNA restricting its dsDNA-binding and during the homology search it promotes dsDNA binding removing the inhibitory effect of ssDNA. The magnitude of the changes induced in RAD51 defines HOP2-MND1 as a “molecular trigger” of RAD51 DNA strand exchange.
Collapse
Affiliation(s)
- Dmitry V Bugreev
- 1] Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA [2]
| | - Fei Huang
- 1] Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA [2]
| | - Olga M Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA
| | - Roberto J Pezza
- Oklahoma Medical Research Foundation, Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Oleg N Voloshin
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - R Daniel Camerini-Otero
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA
| |
Collapse
|
7
|
Pezza RJ, Voloshin ON, Volodin AA, Boateng KA, Bellani MA, Mazin AV, Camerini-Otero RD. The dual role of HOP2 in mammalian meiotic homologous recombination. Nucleic Acids Res 2013; 42:2346-57. [PMID: 24304900 PMCID: PMC3936763 DOI: 10.1093/nar/gkt1234] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Deletion of Hop2 in mice eliminates homologous chromosome synapsis and disrupts double-strand break (DSB) repair through homologous recombination. HOP2 in vitro shows two distinctive activities: when it is incorporated into a HOP2–MND1 complex it stimulates DMC1 and RAD51 recombination activities and the purified HOP2 alone is proficient in promoting strand invasion. We observed that a fraction of Mnd1−/− spermatocytes, which express HOP2 but apparently have inactive DMC1 and RAD51 due to lack of the HOP2–MND1 complex, exhibits a high level of chromosome synapsis and that most DSBs in these spermatocytes are repaired. This suggests that DSB repair catalyzed solely by HOP2 supports homologous chromosome pairing and synapsis. In addition, we show that in vitro HOP2 promotes the co-aggregation of ssDNA with duplex DNA, binds to ssDNA leading to unstacking of the bases, and promotes the formation of a three-strand synaptic intermediate. However, HOP2 shows distinctive mechanistic signatures as a recombinase. Namely, HOP2-mediated strand exchange does not require ATP and, in contrast to DMC1, joint molecules formed by HOP2 are more sensitive to mismatches and are efficiently dissociated by RAD54. We propose that HOP2 may act as a recombinase with specific functions in meiosis.
Collapse
Affiliation(s)
- Roberto J Pezza
- Oklahoma Medical Research Foundation, Oklahoma City, 73104 OK, USA, Department of Cell Biology, Oklahoma University Health Science Center, Oklahoma City, 73126 OK, USA, Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, 20892 MD, USA, Institute of Molecular Genetics of the Russian Academy of Sciences, 123182 Moscow, Russia, Biomedical Research Center, National Institute of Aging, Baltimore, 21224 MA, USA and Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, 19102 PA, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Homologous recombination is an ubiquitous process that shapes genomes and repairs DNA damage. The reaction is classically divided into three phases: presynaptic, synaptic, and postsynaptic. In Escherichia coli, the presynaptic phase involves either RecBCD or RecFOR proteins, which act on DNA double-stranded ends and DNA single-stranded gaps, respectively; the central synaptic steps are catalyzed by the ubiquitous DNA-binding protein RecA; and the postsynaptic phase involves either RuvABC or RecG proteins, which catalyze branch-migration and, in the case of RuvABC, the cleavage of Holliday junctions. Here, we review the biochemical properties of these molecular machines and analyze how, in light of these properties, the phenotypes of null mutants allow us to define their biological function(s). The consequences of point mutations on the biochemical properties of recombination enzymes and on cell phenotypes help refine the molecular mechanisms of action and the biological roles of recombination proteins. Given the high level of conservation of key proteins like RecA and the conservation of the principles of action of all recombination proteins, the deep knowledge acquired during decades of studies of homologous recombination in bacteria is the foundation of our present understanding of the processes that govern genome stability and evolution in all living organisms.
Collapse
|
9
|
Saladin A, Amourda C, Poulain P, Férey N, Baaden M, Zacharias M, Delalande O, Prévost C. Modeling the early stage of DNA sequence recognition within RecA nucleoprotein filaments. Nucleic Acids Res 2010; 38:6313-23. [PMID: 20507912 PMCID: PMC2965220 DOI: 10.1093/nar/gkq459] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Homologous recombination is a fundamental process enabling the repair of double-strand breaks with a high degree of fidelity. In prokaryotes, it is carried out by RecA nucleofilaments formed on single-stranded DNA (ssDNA). These filaments incorporate genomic sequences that are homologous to the ssDNA and exchange the homologous strands. Due to the highly dynamic character of this process and its rapid propagation along the filament, the sequence recognition and strand exchange mechanism remains unknown at the structural level. The recently published structure of the RecA/DNA filament active for recombination (Chen et al., Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structure, Nature 2008, 453, 489) provides a starting point for new exploration of the system. Here, we investigate the possible geometries of association of the early encounter complex between RecA/ssDNA filament and double-stranded DNA (dsDNA). Due to the huge size of the system and its dense packing, we use a reduced representation for protein and DNA together with state-of-the-art molecular modeling methods, including systematic docking and virtual reality simulations. The results indicate that it is possible for the double-stranded DNA to access the RecA-bound ssDNA while initially retaining its Watson–Crick pairing. They emphasize the importance of RecA L2 loop mobility for both recognition and strand exchange.
Collapse
Affiliation(s)
- Adrien Saladin
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, MTI, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Volodin AA, Bocharova TN, Smirnova EA, Camerini-Otero RD. Reversibility, equilibration, and fidelity of strand exchange reaction between short oligonucleotides promoted by RecA protein from escherichia coli and human Rad51 and Dmc1 proteins. J Biol Chem 2009; 284:1495-504. [PMID: 19004837 PMCID: PMC2615514 DOI: 10.1074/jbc.m800612200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 10/21/2008] [Indexed: 11/06/2022] Open
Abstract
We demonstrate the reversibility of RecA-promoted strand exchange reaction between short oligonucleotides in the presence of adenosine 5'-O-(thiotriphosphate). The reverse reaction proceeds without the dissociation of RecA from DNA. The reaction reaches equilibrium and its yield depends on the homology between the reaction substrates. We estimate the tolerance of the RecA-promoted strand exchange to individual base substitutions for a comprehensive set of possible base combinations in a selected position along oligonucleotide substrates for strand exchange and find, in agreement with previously reported estimations, that this tolerance is higher than in the case of free DNA. It is demonstrated that the short oligonucleotide-based approach can be applied to the human recombinases Rad51 and Dmc1 when strand exchange is performed in the presence of calcium ions and ATP. Remarkably, despite the commonly held belief that the eukaryotic recombinases have an inherently lower strand exchange activity, in our system their efficiencies in strand exchange are comparable with that of RecA. Under our experimental conditions, the human recombinases exhibit a significantly higher tolerance to interruptions of homology due to point base substitutions than RecA. Finding conditions where a chemical reaction is reversible and reaches equilibrium is critically important for its thermodynamically correct description. We believe that the experimental system described here will substantially facilitate further studies on different aspects of the mechanisms of homologous recombination.
Collapse
Affiliation(s)
- Alexander A Volodin
- Institute of Molecular Genetics of the Russian Academy of Sciences, Kurchatov Square, 123182 Moscow, Russia
| | | | | | | |
Collapse
|
11
|
Grigorescu AA, Vissers JHA, Ristic D, Pigli YZ, Lynch TW, Wyman C, Rice PA. Inter-subunit interactions that coordinate Rad51's activities. Nucleic Acids Res 2008; 37:557-67. [PMID: 19066203 PMCID: PMC2632893 DOI: 10.1093/nar/gkn973] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rad51 is the central catalyst of homologous recombination in eukaryotes and is thus critical for maintaining genomic integrity. Recent crystal structures of filaments formed by Rad51 and the closely related archeal RadA and eubacterial RecA proteins place the ATPase site at the protomeric interface. To test the relevance of this feature, we mutated conserved residues at this interface and examined their effects on key activities of Rad51: ssDNA-stimulated ATP hydrolysis, DNA binding, polymerization on DNA substrates and catalysis of strand-exchange reactions. Our results show that the interface seen in the crystal structures is very important for nucleoprotein filament formation. H352 and R357 of yeast Rad51 are essential for assembling the catalytically competent form of the enzyme on DNA substrates and coordinating its activities. However, contrary to some previous suggestions, neither of these residues is critical for ATP hydrolysis.
Collapse
Affiliation(s)
- Arabela A Grigorescu
- Department of Biochemistry, Molecular Biology and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhang XP, Galkin VE, Yu X, Egelman EH, Heyer WD. Loop 2 in Saccharomyces cerevisiae Rad51 protein regulates filament formation and ATPase activity. Nucleic Acids Res 2008; 37:158-71. [PMID: 19033358 PMCID: PMC2615628 DOI: 10.1093/nar/gkn914] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previous studies showed that the K342E substitution in the Saccharomyces cerevisiae Rad51 protein increases the interaction with Rad54 protein in the two-hybrid system, leads to increased sensitivity to the alkylating agent MMS and hyper-recombination in an oligonucleotide-mediated gene targeting assay. K342 localizes in loop 2, a region of Rad51 whose function is not well understood. Here, we show that Rad51-K342E displays DNA-independent and DNA-dependent ATPase activities, owing to its ability to form filaments in the absence of a DNA lattice. These filaments exhibit a compressed pitch of 81 Å, whereas filaments of wild-type Rad51 and Rad51-K342E on DNA form extended filaments with a 97 Å pitch. Rad51-K342E shows near normal binding to ssDNA, but displays a defect in dsDNA binding, resulting in less stable protein-dsDNA complexes. The mutant protein is capable of catalyzing the DNA strand exchange reaction and is insensitive to inhibition by the early addition of dsDNA. Wild-type Rad51 protein is inhibited under such conditions, because of its ability to bind dsDNA. No significant changes in the interaction between Rad51-K342E and Rad54 could be identified. These findings suggest that loop 2 contributes to the primary DNA-binding site in Rad51, controlling filament formation and ATPase activity.
Collapse
Affiliation(s)
- Xiao-Ping Zhang
- Department of Microbiology, University of California, Davis, CA 95616-8665, USA
| | | | | | | | | |
Collapse
|
13
|
Farb JN, Morrical SW. Role of allosteric switch residue histidine 195 in maintaining active-site asymmetry in presynaptic filaments of bacteriophage T4 UvsX recombinase. J Mol Biol 2008; 385:393-404. [PMID: 19027026 DOI: 10.1016/j.jmb.2008.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/30/2008] [Accepted: 11/03/2008] [Indexed: 11/28/2022]
Abstract
Recombinases of the highly conserved RecA/Rad51 family play central roles in homologous recombination and DNA double-stranded break repair. RecA/Rad51 enzymes form presynaptic filaments on single-stranded DNA (ssDNA) that are allosterically activated to catalyze ATPase and DNA strand-exchange reactions. Information is conveyed between DNA- and ATP-binding sites, in part, by a highly conserved glutamine residue (Gln194 in Escherichia coli RecA) that acts as an allosteric switch. The T4 UvsX protein is a divergent RecA ortholog and contains histidine (His195) in place of glutamine at the allosteric switch position. UvsX and RecA catalyze similar strand-exchange reactions, but differ in other properties. UvsX produces both ADP and AMP as products of its ssDNA-dependent ATPase activity--a property that is unique among characterized recombinases. Details of the kinetics of ssDNA-dependent ATP hydrolysis reactions indicate that UvsX-ssDNA presynaptic filaments are asymmetric and contain two classes of ATPase active sites: one that generates ADP, and another that generates AMP. Active-site asymmetry is reduced by mutations at the His195 position, since UvsX-H195Q and UvsX-H195A mutants both exhibit stronger ssDNA-dependent ATPase activity, with lower cooperativity and markedly higher ADP/AMP product ratios, than wild-type UvsX. Reduced active-site asymmetry correlates strongly with reduced ssDNA-binding affinity and DNA strand-exchange activity in both H195Q and H195A mutants. These and other results support a model in which allosteric switch residue His195 controls the formation of an asymmetric conformation of UvsX-ssDNA filaments that is active in DNA strand exchange. The implications of our findings for UvsX recombination functions, and for RecA functions in general, are discussed.
Collapse
Affiliation(s)
- Joshua N Farb
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | |
Collapse
|
14
|
Abstract
The bacterial RecA protein participates in a remarkably diverse set of functions, all of which are involved in the maintenance of genomic integrity. RecA is a central component in both the catalysis of recombinational DNA repair and the regulation of the cellular SOS response. Despite the mechanistic differences of its functions, all require formation of an active RecA/ATP/DNA complex. RecA is a classic allosterically regulated enzyme, and ATP binding results in a dramatic increase in DNA binding affinity and a cooperative assembly of RecA subunits to form an ordered, helical nucleoprotein filament. The molecular events that underlie this ATP-induced structural transition are becoming increasingly clear. This review focuses on descriptions of our current understanding of the molecular design and allosteric regulation of RecA. We present a comprehensive list of all published recA mutants and use the results of various genetic and biochemical studies, together with available structural information, to develop ideas regarding the design of RecA functional domains and their catalytic organization.
Collapse
Affiliation(s)
- Dharia A McGrew
- Department of Biochemistry and Molecular Pharmacology, Aaron Lazare Research Building, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | | |
Collapse
|
15
|
Lanzov VA. RecA homologous DNA transferase: Functional activities and a search for homology by recombining DNA molecules. Mol Biol 2007. [DOI: 10.1134/s0026893307030077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Voloshin ON, Camerini-Otero RD. The DinG protein from Escherichia coli is a structure-specific helicase. J Biol Chem 2007; 282:18437-18447. [PMID: 17416902 DOI: 10.1074/jbc.m700376200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli DinG protein is a DNA damage-inducible member of the helicase superfamily 2. Using a panel of synthetic substrates, we have systematically investigated structural requirements for DNA unwinding by DinG. We have found that the helicase does not unwind blunt-ended DNAs or substrates with 3'-ss tails. On the other hand, the 5'-ss tails of 11-15 nucleotides are sufficient to initiate DNA duplex unwinding; bifurcated substrates further facilitate helicase activity. DinG is active on 5'-flap structures; however, it is unable to unwind 3'-flaps. Similarly to the homologous Saccharomyces cerevisiae Rad3 helicase, DinG unwinds DNA.RNA duplexes. DinG is active on synthetic D-loops and R-loops. The ability of the enzyme to unwind D-loops formed on superhelical plasmid DNA by the E. coli recombinase RecA suggests that D-loops may be natural substrates for DinG. Although the availability of 5'-ssDNA tails is a strict requirement for duplex unwinding by DinG, the unwinding of D-loops can be initiated on substrates without any ss tails. Since DinG is DNA damage-inducible and is active on D-loops and forked structures, which mimic intermediates of homologous recombination and replication, we conclude that this helicase may be involved in recombinational DNA repair and the resumption of replication after DNA damage.
Collapse
Affiliation(s)
- Oleg N Voloshin
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - R Daniel Camerini-Otero
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
17
|
Qian X, Wu Y, He Y, Luo Y. Crystal structure of Methanococcus voltae RadA in complex with ADP: hydrolysis-induced conformational change. Biochemistry 2006; 44:13753-61. [PMID: 16229465 DOI: 10.1021/bi051222i] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Members of a superfamily of RecA-like recombinases facilitate a central strand exchange reaction in the DNA repair process. Archaeal RadA and Rad51 and eukaryal Rad51 and meiosis-specific DMC1 form a closely related group of recombinases distinct from bacterial RecA. Nevertheless, all such recombinases share a conserved core domain which carries the ATPase site and putative DNA-binding sites. Here we present the crystal structure of an archaeal RadA from Methanococcus voltae (MvRadA) in complex with ADP and Mg2+ at 2.1 A resolution. The crystallized RadA-ADP filament has an extended helical pitch similar to those of previously determined structures in the presence of nonhydrolyzable ATP analogue AMP-PNP. Structural comparison reveals two recurrent conformations with an extensive allosteric effect spanning the ATPase site and the putative DNA-binding L2 region. Varied conformations of the L2 region also imply a dynamic nature of recombinase-bound DNA.
Collapse
Affiliation(s)
- Xinguo Qian
- Department of Biochemistry, University of Saskatchewan, A3 Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E5
| | | | | | | |
Collapse
|
18
|
Abstract
RecA protein catalyses an ATP-dependent DNA strand-exchange reaction that is the central step in the repair of dsDNA breaks by homologous recombination. Although much is known about the structure of RecA protein itself, we do not at present have a detailed picture of how RecA binds to ssDNA and dsDNA substrates, and how these interactions are controlled by the binding and hydrolysis of the ATP cofactor. Recent studies from electron microscopy and X-ray crystallography have revealed important ATP-mediated conformational changes that occur within the protein, providing new insights into how RecA catalyses DNA strand-exchange. A unifying theme is emerging for RecA and related ATPase enzymes in which the binding of ATP at a subunit interface results in large conformational changes that are coupled to interactions with the substrates in such a way as to promote the desired reactions.
Collapse
Affiliation(s)
- Charles E Bell
- Department of Molecular and Cellular Biochemistry, Ohio State University College of Medicine and Public Health, 371 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
19
|
Schwartz CM, Drown PM, MacDonald G. Difference FTIR studies reveal nitrogen-containing amino acid side chains are involved in the allosteric regulation of RecA. Biochemistry 2005; 44:9733-45. [PMID: 16008358 DOI: 10.1021/bi047362u] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Escherichia coli RecA protein performs the DNA strand-exchange reaction utilized in both genetic recombination and DNA repair. The binding of nucleotides triggers conformational changes throughout the protein resulting in the RecA-ATP (high DNA affinity) and RecA-ADP (low DNA affinity) structures. Difference infrared spectroscopy has allowed us to study protein structural changes in RecA that occur after binding ADP or ATP. Experiments were performed on control and uniformly (15)N-labeled RecA in an effort to assign vibrational changes to protein structures and study the molecular changes associated with the allosteric regulation of RecA. Comparison of RecA-ATP and RecA-ADP data indicates that the protein adopts unique secondary structures in each form and altered N-H stretching vibrations in the RecA-ADP structure not observed in the RecA-ATP data. Numerous vibrations throughout the 1700-1300 cm(-)(1) region are influenced by isotopic substitution and imply that many nitrogen-containing side chains are altered after ADP binds to RecA. The RecA-ATP data contain unique vibrations that are not observed in the RecA-ADP data and may be associated with Gln, Lys, Arg, or Asn. Model compound studies on control and (15)N-labeled glutamine and lysine provide additional evidence that supports the tentative assignments of vibrations observed in our difference spectra. In addition, we provide evidence that nitrogen-containing amino acids are important in locking in the low-DNA affinity, more compact conformation of the protein and that some of these interactions may not be present in a more extended, flexible RecA-ATP conformation.
Collapse
Affiliation(s)
- Catherine M Schwartz
- Department of Chemistry, James Madison University, Harrisonburg, Virginia 22807, USA
| | | | | |
Collapse
|
20
|
Xing X, Bell CE. Crystal structures of Escherichia coli RecA in complex with MgADP and MnAMP-PNP. Biochemistry 2005; 43:16142-52. [PMID: 15610008 DOI: 10.1021/bi048165y] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RecA catalyzes the DNA pairing and strand-exchange steps of homologous recombination, an important mechanism for repair of double-stranded DNA breaks. The binding of RecA to DNA is modulated by adenosine nucleotides. ATP increases the affinity of RecA for DNA, while ADP decreases the affinity. Previously, the crystal structures of E. coli RecA and its complex with ADP have been determined to resolutions of 2.3 and 3.0 A, respectively, but the model for the RecA-ADP complex did not include magnesium ion or side chains. Here, we have determined the crystal structures of RecA in complex with MgADP and MnAMP-PNP, a nonhydrolyzable analogue of ATP, at resolutions of 1.9 and 2.1 A, respectively. Both crystals grow in the same conditions and have RecA in a right-handed helical form with a pitch of approximately 82 A. The crystal structures show the detailed interactions of RecA with the nucleotide cofactors, including the metal ion and the gamma phosphate of AMP-PNP. There are very few conformational differences between the structures of RecA bound to ADP and AMP-PNP, which differ from uncomplexed RecA only in a slight opening of the P-loop residues 66-73 upon nucleotide binding. To interpret the functional significance of the structure of the MnAMP-PNP complex, a coprotease assay was used to compare the ability of different nucleotides to promote the active, extended conformation of RecA. Whereas ATPgammaS and ADP-AlF(4) facilitate a robust coprotease activity, ADP and AMP-PNP do not activate RecA at all. We conclude that the crystal structure of the RecA-MnAMP-PNP complex represents a preisomerization state of the RecA protein that exists after ATP has bound but before the conformational transition to the active state.
Collapse
Affiliation(s)
- Xu Xing
- Department of Molecular and Cellular Biochemistry, Ohio State University College of Medicine and Public Health, 371 Hamilton Hall, 1645 Neil Avenue, Columbus, Ohio 43210, USA
| | | |
Collapse
|
21
|
Wu Y, Qian X, He Y, Moya IA, Luo Y. Crystal structure of an ATPase-active form of Rad51 homolog from Methanococcus voltae. Insights into potassium dependence. J Biol Chem 2004; 280:722-8. [PMID: 15537659 DOI: 10.1074/jbc.m411093200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homologous gene recombination is crucial for the repair of DNA. A superfamily of recombinases facilitate a central strand exchange reaction in the repair process. This reaction is initiated by coating single-stranded DNA (ssDNA) with recombinases in the presence of ATP and Mg(2+) co-factors to form helical nucleoprotein filaments with elevated ATPase and strand invasion activities. At the amino acid sequence level, archaeal RadA and Rad51 and eukaryal Rad51 and meiosis-specific DMC1 form a closely related group of recombinases distinct from bacterial RecA. Unlike the extensively studied Escherichia coli RecA (EcRecA), increasing evidences on yeast and human recombinases imply that their optimal activities are dependent on the presence of a monovalent cation, particularly potassium. Here we present the finding that archaeal RadA from Methanococcus voltae (MvRadA) is a stringent potassium-dependent ATPase, and the crystal structure of this protein in complex with the non-hydrolyzable ATP analog adenosine 5'-(beta,gamma-iminotriphosphate), Mg(2+), and K(+) at 2.4 A resolution. Potassium triggered an in situ conformational change in the ssDNA-binding L2 region concerted with incorporation of two potassium ions at the ATPase site in the RadA crystals preformed in K(+)-free medium. Both potassium ions were observed in contact with the gamma-phosphate of the ATP analog, implying a direct role by the monovalent cations in stimulating the ATPase activity. Cross-talk between the ATPase site and the ssDNA-binding L2 region visualized in the MvRadA structure provides an explanation to the co-factor-induced allosteric effect on RecA-like recombinases.
Collapse
Affiliation(s)
- Yan Wu
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | | | |
Collapse
|
22
|
Voloshin ON, Camerini-Otero RD. Synaptic complex revisited; a homologous recombinase flips and switches bases. Mol Cell 2004; 15:846-7. [PMID: 15383274 DOI: 10.1016/j.molcel.2004.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While it is still unclear how RecA and its eukaryotic homologs conduct genome-wide homology searches, Radding and colleagues report in this issue of Molecular Cell (Folta-Stogniew et al., 2004) that the latter stages of homologous recognition or alignment involve base flipping (localized melting) and switching (annealing) at A:T rich regions.
Collapse
Affiliation(s)
- Oleg N Voloshin
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
23
|
Wu Y, He Y, Moya IA, Qian X, Luo Y. Crystal structure of archaeal recombinase RADA: a snapshot of its extended conformation. Mol Cell 2004; 15:423-35. [PMID: 15304222 DOI: 10.1016/j.molcel.2004.07.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 06/25/2004] [Accepted: 06/29/2004] [Indexed: 12/18/2022]
Abstract
Homologous recombination of DNA plays crucial roles in repairing severe DNA damage and in generating genetic diversity. The process is facilitated by a superfamily of recombinases: bacterial RecA, archaeal RadA and Rad51, and eukaryal Rad51 and DMC1. These recombinases share a common ATP-dependent filamentous quaternary structure for binding DNA and facilitating strand exchange. We have determined the crystal structure of Methanococcus voltae RadA in complex with the ATP analog AMP-PNP at 2.0 A resolution. The RadA filament is a 106.7 A pitch helix with six subunits per turn. The DNA binding loops L1 and L2 are located in close proximity to the filament axis. The ATP analog is buried between two RadA subunits, a feature similar to that of the active filament of Escherichia coli RecA revealed by electron microscopy. The disposition of the N-terminal domain suggests a role of the Helix-hairpin-Helix motif in binding double-stranded DNA.
Collapse
Affiliation(s)
- Yan Wu
- Department of Biochemistry, University of Saskatchewan, A3 Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E5
| | | | | | | | | |
Collapse
|
24
|
Yokoyama H, Sarai N, Kagawa W, Enomoto R, Shibata T, Kurumizaka H, Yokoyama S. Preferential binding to branched DNA strands and strand-annealing activity of the human Rad51B, Rad51C, Rad51D and Xrcc2 protein complex. Nucleic Acids Res 2004; 32:2556-65. [PMID: 15141025 PMCID: PMC419466 DOI: 10.1093/nar/gkh578] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Rad51B, Rad51C, Rad51D and Xrcc2 proteins are Rad51 paralogs, and form a complex (BCDX2 complex) in mammalian cells. Mutant cells defective in any one of the Rad51-paralog genes exhibit spontaneous genomic instability and extreme sensitivity to DNA-damaging agents, due to inefficient recombinational repair. Therefore, the Rad51 paralogs play important roles in the maintenance of genomic integrity through recombinational repair. In the present study, we examined the DNA-binding preference of the human BCDX2 complex. Competitive DNA-binding assays using seven types of DNA substrates, single-stranded DNA (ssDNA), double-stranded DNA, 5'- and 3'-tailed duplexes, nicked duplex DNA, Y-shaped DNA and a synthetic Holliday junction, revealed that the BCDX2 complex preferentially bound to the two DNA substrates with branched structures (the Y-shaped DNA and the synthetic Holliday junction). Furthermore, the BCDX2 complex catalyzed the strand-annealing reaction between a long linear ssDNA (1.2 kb in length) and its complementary circular ssDNA. These properties of the BCDX2 complex may be important for its roles in the maintenance of chromosomal integrity.
Collapse
Affiliation(s)
- Hiroshi Yokoyama
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Voloshin ON, Vanevski F, Khil PP, Camerini-Otero RD. Characterization of the DNA damage-inducible helicase DinG from Escherichia coli. J Biol Chem 2003; 278:28284-93. [PMID: 12748189 DOI: 10.1074/jbc.m301188200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dinG promoter was first isolated in a genetic screen scoring for damage-inducible loci in Escherichia coli (Lewis, L. K., Jenkins, M. E., and Mount, D. W. (1992) J. Bacteriol. 174, 3377-3385). Sequence analysis suggests that the dinG gene encodes a putative helicase related to a group of eukaryotic helicases that includes mammalian XPD (Koonin, E. V. (1993) Nucleic Acids Res. 21, 1497), an enzyme involved in transcription-coupled nucleotide excision repair and basal transcription. We have characterized the dinG gene product from E. coli using genetic and biochemical approaches. Deletion of dinG has no severe phenotype, indicating that it is non-essential for cell viability. Both dinG deletion and over-expression of the DinG protein from a multicopy plasmid result in a slight reduction of UV resistance. DinG, purified as a fusion protein from E. coli cells, behaves as a monomer in solution, as judged from gel filtration experiments. DinG is an ATP-hydrolyzing enzyme; single-stranded (ss) DNA stimulates the ATPase activity 15-fold. Kinetic data yield a Hill coefficient of 1, consistent with one ATP-hydrolyzing site per DinG molecule. DinG possesses a DNA helicase activity; it translocates along ssDNA in a 5' --> 3' direction, as revealed in experiments with substrates containing non-natural 5'-5' and 3'-3' linkages. The ATP-dependent DNA helicase activity of DinG requires divalent cations (Mg2+, Ca2+, and Mn2+) but is not observed in the presence of Zn2+. The DinG helicase does not discriminate between ribonucleotide and deoxyribonucleotide triphosphates, and it unwinds duplex DNA with similar efficiency in the presence of ATP or dATP. We discuss the possible involvement of the DinG helicase in DNA replication and repair processes.
Collapse
Affiliation(s)
- Oleg N Voloshin
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
26
|
Baitin DM, Zaitsev EN, Lanzov VA. Hyper-recombinogenic RecA protein from Pseudomonas aeruginosa with enhanced activity of its primary DNA binding site. J Mol Biol 2003; 328:1-7. [PMID: 12683993 DOI: 10.1016/s0022-2836(03)00242-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
According to one prominent model, each protomer in the activated nucleoprotein filament of homologous recombinase RecA possesses two DNA-binding sites. The primary site binds (1) single-stranded DNA (ssDNA) to form presynaptic complex and (2) the newly formed double-stranded (ds) DNA whereas the secondary site binds (1) dsDNA of a partner to initiate strand exchange and (2) the displaced ssDNA following the strand exchange. RecA protein from Pseudomonas aeruginosa (RecAPa) promotes in Escherichia coli hyper-recombination in an SOS-independent manner. Earlier we revealed that RecAPa rapidly displaces E.coli SSB protein (SSB-Ec) from ssDNA to form presynaptic complex. Here we show that this property (1) is based on increased affinity of ssDNA for the RecAPa primary DNA binding site while the affinity for the secondary site remains similar to that for E.coli RecA, (2) is not specific for SSB-Ec but is also observed for SSB protein from P.aeruginosa that, in turn, predicts a possibility of enhanced recombination repair in this pathogenic bacterium.
Collapse
Affiliation(s)
- Dmitry M Baitin
- Molecular Genetics Laboratory, Division of Molecular and Radiation Biophysics, B P Konstantinov Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina, St Petersburg 188350, Russian Federation
| | | | | |
Collapse
|
27
|
Tombline G, Shim KS, Fishel R. Biochemical characterization of the human RAD51 protein. II. Adenosine nucleotide binding and competition. J Biol Chem 2002; 277:14426-33. [PMID: 11839740 DOI: 10.1074/jbc.m109916200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecA mediated homologous recombination requires cooperative ATP binding and hydrolysis to assume and maintain an active, extended DNA-protein (nucleoprotein) filament. Human RAD51 protein (hRAD51) lacks the magnitude of ATP-induced cooperativity and catalytic efficiency displayed by RecA. Here, we examined hRAD51 binding and ATPase inhibition pattern by ADP and ATP/adenosine 5'-O-(thiotriphosphate) (ATPgammaS). hRAD51 fully saturates with ATP/ATPgammaS regardless of DNA cofactor (K(D) approximately 5 microm; 1 ATP/1 hRAD51). The binding of ADP to hRAD51 appeared bimodal. The first mode was identical to ATP/ATPgammaS binding (K(app1) approximately 3 microm; 1 ADP/1 hRAD51), while a second mode occurred at elevated ADP concentrations (K(app2) > or = 125 microm; >1 ADP/1 hRAD51). We could detect ADP --> ATP exchange in the high affinity ADP binding mode (K(app1)) but not the low affinity binding mode (K(app2)). At low ATP concentrations (<0.3 mm), ADP and ATPgammaS competitively inhibit the hRAD51 ATPase (K(m)((app)) > K(m)). However, at high ATP (>0.3 mm), the hRAD51 ATPase was stimulated by concentrations of ATPgammaS that were 20-fold above the K(D). Ammonium sulfate plus spermidine decreased the affinity of hRAD51 for ADP substantially ( approximately 10-fold) and ATP modestly ( approximately 3-fold). Our results suggest that ATP binding is not rate-limiting but that the inability to sustain an active nucleoprotein filament probably restricts the hRAD51 ATPase.
Collapse
Affiliation(s)
- Gregory Tombline
- Genetics and Molecular Biology Program, Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
28
|
Butler BC, Hanchett RH, Rafailov H, MacDonald G. Investigating structural changes induced by nucleotide binding to RecA using difference FTIR. Biophys J 2002; 82:2198-210. [PMID: 11916875 PMCID: PMC1302013 DOI: 10.1016/s0006-3495(02)75566-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nucleotide binding to RecA results in either the high-DNA affinity form (Adenosine 5'-triphosphate (ATP)-bound) or the more inactive protein conformation associated with a lower affinity for DNA (Adenosine 5'-diphosphate (ADP)-bound). Many of the key structural differences between the RecA-ATP and RecA-ADP bound forms have yet to be elucidated. We have used caged-nucleotides and difference FTIR in efforts to obtain a comprehensive understanding of the molecular changes induced by nucleotide binding to RecA. The photochemical release of nucleotides (ADP and ATP) from biologically inactive precursors was used to initiate nucleotide binding to RecA. Here we present ATP hydrolysis assays and fluorescence studies suggesting that the caged nucleotides do not interact with RecA before photochemical release. Furthermore, we now compare difference spectra obtained in H2O and D2O as our first attempt at identifying the origin of the vibrations influenced by nucleotide binding. The infrared data suggest that unique alpha-helical, beta structures, and side chain rearrangements are associated with the high- and low-DNA affinity forms of RecA. Difference spectra obtained over time isolate contributions arising from perturbations in the nucleotide phosphates and have provided further information about the protein structural changes involved in nucleotide binding and the allosteric regulation of RecA.
Collapse
Affiliation(s)
- Blaine C Butler
- Department of Chemistry, James Madison University, Harrisonburg, Virginia 22807, USA
| | | | | | | |
Collapse
|
29
|
Rao VB, Mitchell MS. The N-terminal ATPase site in the large terminase protein gp17 is critically required for DNA packaging in bacteriophage T4. J Mol Biol 2001; 314:401-11. [PMID: 11846554 DOI: 10.1006/jmbi.2001.5169] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Double-stranded DNA packaging in bacteriophages is apparently driven by the most powerful molecular motor ever measured. Although it is widely accepted that a translocating ATPase powers the DNA packaging machine, the identity of the ATPase that generates this driving force is unknown. Evidence suggests that the large terminase protein gp17, which possesses two consensus ATP binding motifs and an ATPase activity, is a strong candidate for the translocating ATPase in bacteriophage T4. This hypothesis was tested by a PCR-directed combinatorial mutagenesis approach in which mutant libraries consisting of all possible codon combinations were constructed at the signature residues of the ATP binding motifs. The impact on gp17 function of each randomly selected mutant was evaluated by phenotypic analysis following recombinational transfer into the viral genome. The precise mutation giving rise to a particular phenotype was determined by DNA sequencing. The data showed that the N-terminal ATP binding site I (SRQLGKT(161-167)), but not the ATP binding site II (TAAVEGKS(299-306)), is critical for gp17 function. Even conservative substitutions such as G165A, K166R, and T167A were not tolerated at the GKT signature residues, which are predicted to interact with the ATP substrate. Biochemical analyses of the mutants showed a complete loss of in vitro DNA packaging activity but not the terminase (DNA-cutting) activity. The purified K166G mutant showed a loss of gp17-ATPase activity. The data, for the first time, implicated a specific ATPase center in the viral dsDNA packaging.
Collapse
Affiliation(s)
- V B Rao
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| | | |
Collapse
|
30
|
Abstract
We have compiled a comprehensive list of the articles published in the year 2000 that describe work employing commercial optical biosensors. Selected reviews of interest for the general biosensor user are highlighted. Emerging applications in areas of drug discovery, clinical support, food and environment monitoring, and cell membrane biology are emphasized. In addition, the experimental design and data processing steps necessary to achieve high-quality biosensor data are described and examples of well-performed kinetic analysis are provided.
Collapse
Affiliation(s)
- R L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
31
|
Voloshin ON, Ramirez BE, Bax A, Camerini-Otero RD. A model for the abrogation of the SOS response by an SOS protein: a negatively charged helix in DinI mimics DNA in its interaction with RecA. Genes Dev 2001; 15:415-27. [PMID: 11230150 PMCID: PMC312637 DOI: 10.1101/gad.862901] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2000] [Accepted: 12/22/2000] [Indexed: 11/25/2022]
Abstract
DinI is a recently described negative regulator of the SOS response in Escherichia coli. Here we show that it physically interacts with RecA and prevents the binding of single-stranded DNA to RecA, which is required for the activation of the latter. DinI also displaces ssDNA from a stable RecA-DNA cofilament, thus eliminating the SOS signal. In addition, DinI inhibits RecA-mediated homologous DNA pairing, but has no effect on actively proceeding strand exchange. Biochemical data, together with the molecular structure, define the C-terminal alpha-helix in DinI as the active site of the protein. In an unusual example of molecular mimicry, a negatively charged surface on this alpha-helix, by imitating single-stranded DNA, interacts with the loop L2 homologous pairing region of RecA and interferes with the activation of RecA.
Collapse
Affiliation(s)
- O N Voloshin
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
32
|
Organization, Replication, Transposition, and Repair of DNA. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|