1
|
Minnick MF. Functional Roles and Genomic Impact of Miniature Inverted-Repeat Transposable Elements (MITEs) in Prokaryotes. Genes (Basel) 2024; 15:328. [PMID: 38540387 PMCID: PMC10969869 DOI: 10.3390/genes15030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 06/14/2024] Open
Abstract
Prokaryotic genomes are dynamic tapestries that are strongly influenced by mobile genetic elements (MGEs), including transposons (Tn's), plasmids, and bacteriophages. Of these, miniature inverted-repeat transposable elements (MITEs) are undoubtedly the least studied MGEs in bacteria and archaea. This review explores the diversity and distribution of MITEs in prokaryotes and describes what is known about their functional roles in the host and involvement in genomic plasticity and evolution.
Collapse
Affiliation(s)
- Michael F Minnick
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
2
|
Medvedeva S, Brandt D, Cvirkaite-Krupovic V, Liu Y, Severinov K, Ishino S, Ishino Y, Prangishvili D, Kalinowski J, Krupovic M. New insights into the diversity and evolution of the archaeal mobilome from three complete genomes of Saccharolobus shibatae. Environ Microbiol 2021; 23:4612-4630. [PMID: 34190379 DOI: 10.1111/1462-2920.15654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022]
Abstract
Saccharolobus (formerly Sulfolobus) shibatae B12, isolated from a hot spring in Beppu, Japan in 1982, is one of the first hyperthermophilic and acidophilic archaeal species to be discovered. It serves as a natural host to the extensively studied spindle-shaped virus SSV1, a prototype of the Fuselloviridae family. Two additional Sa. shibatae strains, BEU9 and S38A, sensitive to viruses of the families Lipothrixviridae and Portogloboviridae, respectively, have been isolated more recently. However, none of the strains has been fully sequenced, limiting their utility for studies on archaeal biology and virus-host interactions. Here, we present the complete genome sequences of all three Sa. shibatae strains and explore the rich diversity of their integrated mobile genetic elements (MGE), including transposable insertion sequences, integrative and conjugative elements, plasmids, and viruses, some of which were also detected in the extrachromosomal form. Analysis of related MGEs in other Sulfolobales species and patterns of CRISPR spacer targeting revealed a complex network of MGE distributions, involving horizontal spread and relatively frequent host switching by MGEs over large phylogenetic distances, involving species of the genera Saccharolobus, Sulfurisphaera and Acidianus. Furthermore, we characterize a remarkable case of a virus-to-plasmid transition, whereby a fusellovirus has lost the genes encoding for the capsid proteins, while retaining the replication module, effectively becoming a plasmid.
Collapse
Affiliation(s)
- Sofia Medvedeva
- Archaeal Virology Unit, Institut Pasteur, Paris, 75015, France.,Center of Life Science, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - David Brandt
- Center for Biotechnology, Universität Bielefeld, Bielefeld, 33615, Germany
| | | | - Ying Liu
- Archaeal Virology Unit, Institut Pasteur, Paris, 75015, France
| | - Konstantin Severinov
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.,Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - David Prangishvili
- Archaeal Virology Unit, Institut Pasteur, Paris, 75015, France.,Ivane Javakhishvili Tbilisi State University, Tbilisi, 0179, Georgia
| | - Jörn Kalinowski
- Center for Biotechnology, Universität Bielefeld, Bielefeld, 33615, Germany
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, 75015, France
| |
Collapse
|
3
|
Delihas N. Enterobacterial Small Mobile Sequences Carry Open Reading Frames and are Found Intragenically–-Evolutionary Implications for Formation of New Peptides. GENE REGULATION AND SYSTEMS BIOLOGY 2017. [DOI: 10.1177/117762500700100017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Intergenic repeat units of 127-bp (RU-1) and 168-bp (RU-2), as well as a newly-found class of 103-bp (RU-3), represent small mobile sequences in enterobacterial genomes present in multiple intergenic regions. These repeat sequences display similarities to eukaryotic miniature inverted-repeat transposable elements (MITE). The RU mobile elements have not been reported to encode amino acid sequences. An in silico approach was used to scan genomes for location of repeat units. RU sequences are found to have open reading frames, which are present in annotated gene loci whereby the RU amino acid sequence is maintained. Gene loci that display repeat units include those that encode large proteins which are part of super families that carry conserved domains and those that carry predicted motifs such as signal peptide sequences and transmembrane domains. A putative exported protein in Y. pestis and a phylogenetically conserved putative inner membrane protein in Salmonella species represent some of the more interesting constructs. We hypothesize that a major outcome of RU open reading frame fusions is the evolutionary emergence of new proteins.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Molecular Genetics and Microbiology, School of Medicine, SUNY, Stony Brook, NY 11794-5222, U.S.A
| |
Collapse
|
4
|
Garrett RA, Shah SA, Erdmann S, Liu G, Mousaei M, León-Sobrino C, Peng W, Gudbergsdottir S, Deng L, Vestergaard G, Peng X, She Q. CRISPR-Cas Adaptive Immune Systems of the Sulfolobales: Unravelling Their Complexity and Diversity. Life (Basel) 2015; 5:783-817. [PMID: 25764276 PMCID: PMC4390879 DOI: 10.3390/life5010783] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 12/26/2022] Open
Abstract
The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR-Cas systems of bacteria. Despite this, there is evidence for a complex and differential regulation of expression of the diverse functional modules in response to viral infection. Recent work also supports critical roles for non-core Cas proteins, especially during Type III-directed interference, and this is consistent with these proteins tending to coevolve with core Cas proteins. Various novel aspects of CRISPR-Cas systems of the Sulfolobales are considered including an alternative spacer acquisition mechanism, reversible spacer acquisition, the formation and significance of antisense CRISPR RNAs, and a novel mechanism for avoidance of CRISPR-Cas defense. Finally, questions regarding the basis for the complexity, diversity, and apparent redundancy, of the intracellular CRISPR-Cas systems are discussed.
Collapse
Affiliation(s)
- Roger A Garrett
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Shiraz A Shah
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Susanne Erdmann
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, 2052 Sydney NSW, Australia.
| | - Guannan Liu
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Marzieh Mousaei
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Carlos León-Sobrino
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Wenfang Peng
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Soley Gudbergsdottir
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Ling Deng
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Gisle Vestergaard
- Helmholtz Zentrum München, Research Unit Environmental Genomics, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
| | - Xu Peng
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Qunxin She
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| |
Collapse
|
5
|
Xiang X, Huang X, Wang H, Huang L. pTC Plasmids from Sulfolobus Species in the Geothermal Area of Tengchong, China: Genomic Conservation and Naturally-Occurring Variations as a Result of Transposition by Mobile Genetic Elements. Life (Basel) 2015; 5:506-20. [PMID: 25686154 PMCID: PMC4390865 DOI: 10.3390/life5010506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/04/2015] [Indexed: 11/30/2022] Open
Abstract
Plasmids occur frequently in Archaea. A novel plasmid (denoted pTC1) containing typical conjugation functions has been isolated from Sulfolobus tengchongensis RT8-4, a strain obtained from a hot spring in Tengchong, China, and characterized. The plasmid is a circular double-stranded DNA molecule of 20,417 bp. Among a total of 26 predicted pTC1 ORFs, 23 have homologues in other known Sulfolobus conjugative plasmids (CPs). pTC1 resembles other Sulfolobus CPs in genome architecture, and is most highly conserved in the genomic region encoding conjugation functions. However, attempts to demonstrate experimentally the capacity of the plasmid for conjugational transfer were unsuccessful. A survey revealed that pTC1 and its closely related plasmid variants were widespread in the geothermal area of Tengchong. Variations of the plasmids at the target sites for transposition by an insertion sequence (IS) and a miniature inverted-repeat transposable element (MITE) were readily detected. The IS was efficiently inserted into the pTC1 genome, and the inserted sequence was inactivated and degraded more frequently in an imprecise manner than in a precise manner. These results suggest that the host organism has evolved a strategy to maintain a balance between the insertion and elimination of mobile genetic elements to permit genomic plasticity while inhibiting their fast spreading.
Collapse
Affiliation(s)
- Xiaoyu Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China.
| | - Xiaoxing Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China.
| | - Haina Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China.
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
6
|
Jaubert C, Danioux C, Oberto J, Cortez D, Bize A, Krupovic M, She Q, Forterre P, Prangishvili D, Sezonov G. Genomics and genetics of Sulfolobus islandicus LAL14/1, a model hyperthermophilic archaeon. Open Biol 2013; 3:130010. [PMID: 23594878 PMCID: PMC3718332 DOI: 10.1098/rsob.130010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The 2 465 177 bp genome of Sulfolobus islandicus LAL14/1, host of the model rudivirus SIRV2, was sequenced. Exhaustive comparative genomic analysis of S. islandicus LAL14/1 and the nine other completely sequenced S. islandicus strains isolated from Iceland, Russia and USA revealed a highly syntenic common core genome of approximately 2 Mb and a long hyperplastic region containing most of the strain-specific genes. In LAL14/1, the latter region is enriched in insertion sequences, CRISPR (clustered regularly interspaced short palindromic repeats), glycosyl transferase genes, toxin-antitoxin genes and MITE (miniature inverted-repeat transposable elements). The tRNA genes of LAL14/1 are preferential targets for the integration of mobile elements but clusters of atypical genes (CAG) are also integrated elsewhere in the genome. LAL14/1 carries five CRISPR loci with 10 per cent of spacers matching perfectly or imperfectly the genomes of archaeal viruses and plasmids found in the Icelandic hot springs. Strikingly, the CRISPR_2 region of LAL14/1 carries an unusually long 1.9 kb spacer interspersed between two repeat regions and displays a high similarity to pING1-like conjugative plasmids. Finally, we have developed a genetic system for S. islandicus LAL14/1 and created ΔpyrEF and ΔCRISPR_1 mutants using double cross-over and pop-in/pop-out approaches, respectively. Thus, LAL14/1 is a promising model to study virus-host interactions and the CRISPR/Cas defence mechanism in Archaea.
Collapse
Affiliation(s)
- Carole Jaubert
- Département de Microbiologie, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Miniature inverted terminal repeat elements (MITEs) are nonautonomous mobile elements that have a significant impact on bacterial evolution. Here we characterize E622, a 611-bp virulence-associated MITE from Pseudomonas syringae, which contains no coding region but has almost perfect 168-bp inverted repeats. Using an antibiotic coupling assay, we show that E622 is transposable and can mobilize an antibiotic resistance gene contained between its borders. Its predicted parent element, designated TnE622, has a typical transposon structure with a three-gene operon, consisting of resolvase, integrase, and exeA-like genes, which is bounded by the same terminal inverted repeats as E622. A broader genome level survey of the E622/TnE622 inverted repeats identified homologs in Pseudomonas, Salmonella, Shewanella, Erwinia, Pantoea, and the cyanobacteria Nostoc and Cyanothece, many of which appear to encompass known virulence genes, including genes encoding toxins, enzymes, and type III secreted effectors. Its association with niche-specific genetic determinants, along with its persistence and evolutionary diversification, indicates that this mobile element family has played a prominent role in the evolution of many agriculturally and clinically relevant pathogenic bacteria.
Collapse
|
8
|
Functional curation of the Sulfolobus solfataricus P2 and S. acidocaldarius 98-3 complete genome sequences. Extremophiles 2011; 15:711-2. [DOI: 10.1007/s00792-011-0392-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
|
9
|
You XY, Liu C, Wang SY, Jiang CY, Shah SA, Prangishvili D, She Q, Liu SJ, Garrett RA. Genomic analysis of Acidianus hospitalis W1 a host for studying crenarchaeal virus and plasmid life cycles. Extremophiles 2011; 15:487-97. [PMID: 21607549 PMCID: PMC3119797 DOI: 10.1007/s00792-011-0379-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 04/26/2011] [Indexed: 11/29/2022]
Abstract
The Acidianus hospitalis W1 genome consists of a minimally sized chromosome of about 2.13 Mb and a conjugative plasmid pAH1 and it is a host for the model filamentous lipothrixvirus AFV1. The chromosome carries three putative replication origins in conserved genomic regions and two large regions where non-essential genes are clustered. Within these variable regions, a few orphan orfB and other elements of the IS200/607/605 family are concentrated with a novel class of MITE-like repeat elements. There are also 26 highly diverse vapBC antitoxin–toxin gene pairs proposed to facilitate maintenance of local chromosomal regions and to minimise the impact of environmental stress. Complex and partially defective CRISPR/Cas/Cmr immune systems are present and interspersed with five vapBC gene pairs. Remnants of integrated viral genomes and plasmids are located at five intron-less tRNA genes and several non-coding RNA genes are predicted that are conserved in other Sulfolobus genomes. The putative metabolic pathways for sulphur metabolism show some significant differences from those proposed for other Acidianus and Sulfolobus species. The small and relatively stable genome of A. hospitalis W1 renders it a promising candidate for developing the first Acidianus genetic systems.
Collapse
Affiliation(s)
- Xiao-Yan You
- State Key Laboratory of Microbial Resources and Center for Environmental Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Bei-Chen-Xi-Lu No. Chao-Yang District, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Genome analyses of Icelandic strains of Sulfolobus islandicus, model organisms for genetic and virus-host interaction studies. J Bacteriol 2011; 193:1672-80. [PMID: 21278296 DOI: 10.1128/jb.01487-10] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genomes of two Sulfolobus islandicus strains obtained from Icelandic solfataras were sequenced and analyzed. Strain REY15A is a host for a versatile genetic toolbox. It exhibits a genome of minimal size, is stable genetically, and is easy to grow and manipulate. Strain HVE10/4 shows a broad host range for exceptional crenarchaeal viruses and conjugative plasmids and was selected for studying their life cycles and host interactions. The genomes of strains REY15A and HVE10/4 are 2.5 and 2.7 Mb, respectively, and each genome carries a variable region of 0.5 to 0.7 Mb where major differences in gene content and gene order occur. These include gene clusters involved in specific metabolic pathways, multiple copies of VapBC antitoxin-toxin gene pairs, and in strain HVE10/4, a 50-kb region rich in glycosyl transferase genes. The variable region also contains most of the insertion sequence (IS) elements and high proportions of the orphan orfB elements and SMN1 miniature inverted-repeat transposable elements (MITEs), as well as the clustered regular interspaced short palindromic repeat (CRISPR)-based immune systems, which are complex and diverse in both strains, consistent with them having been mobilized both intra- and intercellularly. In contrast, the remainder of the genomes are highly conserved in their protein and RNA gene syntenies, closely resembling those of other S. islandicus and Sulfolobus solfataricus strains, and they exhibit only minor remnants of a few genetic elements, mainly conjugative plasmids, which have integrated at a few tRNA genes lacking introns. This provides a possible rationale for the presence of the introns.
Collapse
|
11
|
Zaparty M, Esser D, Gertig S, Haferkamp P, Kouril T, Manica A, Pham TK, Reimann J, Schreiber K, Sierocinski P, Teichmann D, van Wolferen M, von Jan M, Wieloch P, Albers SV, Driessen AJM, Klenk HP, Schleper C, Schomburg D, van der Oost J, Wright PC, Siebers B. "Hot standards" for the thermoacidophilic archaeon Sulfolobus solfataricus. Extremophiles 2009; 14:119-42. [PMID: 19802714 PMCID: PMC2797409 DOI: 10.1007/s00792-009-0280-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/08/2009] [Indexed: 11/24/2022]
Abstract
Within the archaea, the thermoacidophilic crenarchaeote Sulfolobus solfataricus has become an important model organism for physiology and biochemistry, comparative and functional genomics, as well as, more recently also for systems biology approaches. Within the Sulfolobus Systems Biology (“SulfoSYS”)-project the effect of changing growth temperatures on a metabolic network is investigated at the systems level by integrating genomic, transcriptomic, proteomic, metabolomic and enzymatic information for production of a silicon cell-model. The network under investigation is the central carbohydrate metabolism. The generation of high-quality quantitative data, which is critical for the investigation of biological systems and the successful integration of the different datasets, derived for example from high-throughput approaches (e.g., transcriptome or proteome analyses), requires the application and compliance of uniform standard protocols, e.g., for growth and handling of the organism as well as the “–omics” approaches. Here, we report on the establishment and implementation of standard operating procedures for the different wet-lab and in silico techniques that are applied within the SulfoSYS-project and that we believe can be useful for future projects on Sulfolobus or (hyper)thermophiles in general. Beside established techniques, it includes new methodologies like strain surveillance, the improved identification of membrane proteins and the application of crenarchaeal metabolomics.
Collapse
Affiliation(s)
- Melanie Zaparty
- Biofilm Centre, Molecular Enzyme Technology and Biochemistry, University of Duisburg-Essen, Lotharstrasse, 47057 Duisburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Small repeat sequences in bacterial genomes, which represent non-autonomous mobile elements, have close similarities to archaeon and eukaryotic miniature inverted repeat transposable elements. These repeat elements are found in both intergenic and intragenic chromosomal regions, and contain an array of diverse motifs. These can include DNA sequences containing an integration host factor binding site and a proposed DNA methyltransferase recognition site, transcribed RNA secondary structural motifs, which are involved in mRNA regulation, and translated open reading frames found fused to other open reading frames. Some bacterial mobile element fusions are in evolutionarily conserved protein and RNA genes. Others might represent or lead to creation of new protein genes. Here we review the remarkable properties of these small bacterial mobile elements in the context of possible beneficial roles resulting from random insertions into the genome.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Molecular Genetics and Microbiology, School of Medicine, SUNY, Stony Brook, NY 11794-5222, USA.
| |
Collapse
|
13
|
Brügger K, Chen L, Stark M, Zibat A, Redder P, Ruepp A, Awayez M, She Q, Garrett RA, Klenk HP. The genome of Hyperthermus butylicus: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 degrees C. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2007; 2:127-35. [PMID: 17350933 PMCID: PMC2686385 DOI: 10.1155/2007/745987] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hyperthermus butylicus, a hyperthermophilic neutrophile and anaerobe, is a member of the archaeal kingdom Crenarchaeota. Its genome consists of a single circular chromosome of 1,667,163 bp with a 53.7% G+C content. A total of 1672 genes were annotated, of which 1602 are protein-coding, and up to a third are specific to H. butylicus. In contrast to some other crenarchaeal genomes, a high level of GUG and UUG start codons are predicted. Two cdc6 genes are present, but neither could be linked unambiguously to an origin of replication. Many of the predicted metabolic gene products are associated with the fermentation of peptide mixtures including several peptidases with diverse specificities, and there are many encoded transporters. Most of the sulfur-reducing enzymes, hydrogenases and electron-transfer proteins were identified which are associated with energy production by reducing sulfur to H(2)S. Two large clusters of regularly interspaced repeats (CRISPRs) are present, one of which is associated with a crenarchaeal-type cas gene superoperon; none of the spacer sequences yielded good sequence matches with known archaeal chromosomal elements. The genome carries no detectable transposable or integrated elements, no inteins, and introns are exclusive to tRNA genes. This suggests that the genome structure is quite stable, possibly reflecting a constant, and relatively uncompetitive, natural environment.
Collapse
Affiliation(s)
- Kim Brügger
- Danish Archaea Centre, Institute of Molecular Biology, Copenhagen University, Sølvgade 83H, 1307 Copenhagen K, Denmark
- These authors contributed equally to the project
| | - Lanming Chen
- Danish Archaea Centre, Institute of Molecular Biology, Copenhagen University, Sølvgade 83H, 1307 Copenhagen K, Denmark
- These authors contributed equally to the project
| | - Markus Stark
- e.gene Biotechnologie GmbH, Poeckinger Fussweg 7a, 82340 Feldafing, Germany
- Formerly EPIDAUROS Biotechnologie AG, Genes and Genome Analysis Team
| | - Arne Zibat
- Formerly EPIDAUROS Biotechnologie AG, Genes and Genome Analysis Team
| | - Peter Redder
- Danish Archaea Centre, Institute of Molecular Biology, Copenhagen University, Sølvgade 83H, 1307 Copenhagen K, Denmark
| | - Andreas Ruepp
- Formerly EPIDAUROS Biotechnologie AG, Genes and Genome Analysis Team
- Present address: Institut für Bioinformatik, GSF-Forschungszentrum für Umwelt und Gesundheit, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Mariana Awayez
- Danish Archaea Centre, Institute of Molecular Biology, Copenhagen University, Sølvgade 83H, 1307 Copenhagen K, Denmark
| | - Qunxin She
- Danish Archaea Centre, Institute of Molecular Biology, Copenhagen University, Sølvgade 83H, 1307 Copenhagen K, Denmark
| | - Roger A. Garrett
- Danish Archaea Centre, Institute of Molecular Biology, Copenhagen University, Sølvgade 83H, 1307 Copenhagen K, Denmark
- Editing author
| | - Hans-Peter Klenk
- e.gene Biotechnologie GmbH, Poeckinger Fussweg 7a, 82340 Feldafing, Germany
- Formerly EPIDAUROS Biotechnologie AG, Genes and Genome Analysis Team
- Corresponding author ()
| |
Collapse
|
14
|
Abstract
Insertion sequences (ISs) can constitute an important component of prokaryotic (bacterial and archaeal) genomes. Over 1,500 individual ISs are included at present in the ISfinder database (www-is.biotoul.fr), and these represent only a small portion of those in the available prokaryotic genome sequences and those that are being discovered in ongoing sequencing projects. In spite of this diversity, the transposition mechanisms of only a few of these ubiquitous mobile genetic elements are known, and these are all restricted to those present in bacteria. This review presents an overview of ISs within the archaeal kingdom. We first provide a general historical summary of the known properties and behaviors of archaeal ISs. We then consider how transposition might be regulated in some cases by small antisense RNAs and by termination codon readthrough. This is followed by an extensive analysis of the IS content in the sequenced archaeal genomes present in the public databases as of June 2006, which provides an overview of their distribution among the major archaeal classes and species. We show that the diversity of archaeal ISs is very great and comparable to that of bacteria. We compare archaeal ISs to known bacterial ISs and find that most are clearly members of families first described for bacteria. Several cases of lateral gene transfer between bacteria and archaea are clearly documented, notably for methanogenic archaea. However, several archaeal ISs do not have bacterial equivalents but can be grouped into Archaea-specific groups or families. In addition to ISs, we identify and list nonautonomous IS-derived elements, such as miniature inverted-repeat transposable elements. Finally, we present a possible scenario for the evolutionary history of ISs in the Archaea.
Collapse
Affiliation(s)
- J Filée
- Laboratoire de Microbiologie et Génétique Moléculaires (UMR5100 CNRS), Campus Université Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse Cedex, France
| | | | | |
Collapse
|
15
|
Berkner S, Lipps G. An active nonautonomous mobile element in Sulfolobus islandicus REN1H1. J Bacteriol 2007; 189:2145-9. [PMID: 17158679 PMCID: PMC1855697 DOI: 10.1128/jb.01567-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 11/26/2006] [Indexed: 11/20/2022] Open
Abstract
In the crenarchaeote Sulfolobus islandicus REN1H1, a mobile element of 321 bp length has been shown to be active. It does not contain terminal inverted repeats and transposes by a replicative mechanism. This newly discovered element has been named SMN1 (for Sulfolobus miniature noninverted repeat transposable element).
Collapse
Affiliation(s)
- Silvia Berkner
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | | |
Collapse
|
16
|
Redder P, Garrett RA. Mutations and rearrangements in the genome of Sulfolobus solfataricus P2. J Bacteriol 2006; 188:4198-206. [PMID: 16740926 PMCID: PMC1482960 DOI: 10.1128/jb.00061-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The genome of Sulfolobus solfataricus P2 carries a larger number of transposable elements than any other sequenced genome from an archaeon or bacterium and, as a consequence, may be particularly susceptible to rearrangement and change. In order to gain more insight into the natures and frequencies of different types of mutation and possible rearrangements that can occur in the genome, the pyrEF locus was examined for mutations that were isolated after selection with 5-fluoroorotic acid. About two-thirds of the 130 mutations resulted from insertions of mobile elements, including insertion sequence (IS) elements and a single nonautonomous mobile element, SM2. For each of these, the element was identified and shown to be present at its original genomic position, consistent with a progressive increase in the copy numbers of the mobile elements. In addition, several base pair substitutions, as well as small deletions, insertions, and a duplication, were observed, and about one-fifth of the mutations occurred elsewhere in the genome, possibly in an orotate transporter gene. One mutant exhibited a 5-kb genomic rearrangement at the pyrEF locus involving a two-step IS element-dependent reaction, and its boundaries were defined using a specially developed "in vitro library" strategy. Moreover, while searching for the donor mobile elements, evidence was found for two major changes that had occurred in the genome of strain P2, one constituting a single deletion of about 4% of the total genome (124 kb), while the other involved the inversion of a 25-kb region. Both were bordered by IS elements and were inferred to have arisen through recombination events. The results underline the caution required in working experimentally with an organism such as S. solfataricus with a continually changing genome.
Collapse
Affiliation(s)
- Peter Redder
- Danish Archaea Centre, Institute for Molecular Biology and Physiology, Copenhagen University, Sølvgade 83H, DK-1307 Copenhagen K, Denmark .
| | | |
Collapse
|
17
|
De Gregorio E, Silvestro G, Petrillo M, Carlomagno MS, Di Nocera PP. Enterobacterial repetitive intergenic consensus sequence repeats in yersiniae: genomic organization and functional properties. J Bacteriol 2005; 187:7945-54. [PMID: 16291667 PMCID: PMC1291288 DOI: 10.1128/jb.187.23.7945-7954.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome-wide analyses carried out in silico revealed that the DNA repeats called enterobacterial repetitive intergenic consensus sequences (ERICs), which are present in several Enterobacteriaceae, are overrepresented in yersiniae. From the alignment of DNA regions from the wholly sequenced Yersinia enterocolitica 8081 and Yersinia pestis CO92 strains, we could establish that ERICs are miniature mobile elements whose insertion leads to duplication of the dinucleotide TA. ERICs feature long terminal inverted repeats (TIRs) and can fold as RNA into hairpin structures. The proximity to coding regions suggests that most Y. enterocolitica ERICs are cotranscribed with flanking genes. Elements which either overlap or are located next to stop codons are preferentially inserted in the same (or B) orientation. In contrast, ERICs located far apart from open reading frames are inserted in the opposite (or A) orientation. The expression of genes cotranscribed with A- and B-oriented ERICs has been monitored in vivo. In mRNAs spanning B-oriented ERICs, upstream gene transcripts accumulated at lower levels than downstream gene transcripts. This difference was abolished by treating cells with chloramphenicol. We hypothesize that folding of B-oriented elements is impeded by translating ribosomes. Consequently, upstream RNA degradation is triggered by the unmasking of a site for the RNase E located in the right-hand TIR of ERIC. A-oriented ERICs may act in contrast as upstream RNA stabilizers or may have other functions. The hypothesis that ERICs act as regulatory RNA elements is supported by analyses carried out in Yersinia strains which either lack ERIC sequences or carry alternatively oriented ERICs at specific loci.
Collapse
Affiliation(s)
- Eliana De Gregorio
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina, Università Federico II, Napoli, Italy
| | | | | | | | | |
Collapse
|
18
|
Suyama M, Lathe WC, Bork P. Palindromic repetitive DNA elements with coding potential in Methanocaldococcus jannaschii. FEBS Lett 2005; 579:5281-6. [PMID: 16182294 DOI: 10.1016/j.febslet.2005.08.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 08/02/2005] [Accepted: 08/18/2005] [Indexed: 11/26/2022]
Abstract
We have identified 141 novel palindromic repetitive elements in the genome of euryarchaeon Methanocaldococcus jannaschii. The total length of these elements is 14.3kb, which corresponds to 0.9% of the total genomic sequence and 6.3% of all extragenic regions. The elements can be divided into three groups (MJRE1-3) based on the sequence similarity. The low sequence identity within each of the groups suggests rather old origin of these elements in M. jannaschii. Three MJRE2 elements were located within the protein coding regions without disrupting the coding potential of the host genes, indicating that insertion of repeats might be a widespread mechanism to enhance sequence diversity in coding regions.
Collapse
|
19
|
Chen L, Brügger K, Skovgaard M, Redder P, She Q, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk HP, Garrett RA. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 2005; 187:4992-9. [PMID: 15995215 PMCID: PMC1169522 DOI: 10.1128/jb.187.14.4992-4999.2005] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfolobus acidocaldarius is an aerobic thermoacidophilic crenarchaeon which grows optimally at 80 degrees C and pH 2 in terrestrial solfataric springs. Here, we describe the genome sequence of strain DSM639, which has been used for many seminal studies on archaeal and crenarchaeal biology. The circular genome carries 2,225,959 bp (37% G+C) with 2,292 predicted protein-encoding genes. Many of the smaller genes were identified for the first time on the basis of comparison of three Sulfolobus genome sequences. Of the protein-coding genes, 305 are exclusive to S. acidocaldarius and 866 are specific to the Sulfolobus genus. Moreover, 82 genes for untranslated RNAs were identified and annotated. Owing to the probable absence of active autonomous and nonautonomous mobile elements, the genome stability and organization of S. acidocaldarius differ radically from those of Sulfolobus solfataricus and Sulfolobus tokodaii. The S. acidocaldarius genome contains an integrated, and probably encaptured, pARN-type conjugative plasmid which may facilitate intercellular chromosomal gene exchange in S. acidocaldarius. Moreover, it contains genes for a characteristic restriction modification system, a UV damage excision repair system, thermopsin, and an aromatic ring dioxygenase, all of which are absent from genomes of other Sulfolobus species. However, it lacks genes for some of their sugar transporters, consistent with it growing on a more limited range of carbon sources. These results, together with the many newly identified protein-coding genes for Sulfolobus, are incorporated into a public Sulfolobus database which can be accessed at http://dac.molbio.ku.dk/dbs/Sulfolobus.
Collapse
Affiliation(s)
- Lanming Chen
- Danish Archaea Centre, Institute of Molecular Biology, Copenhagen University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Blount ZD, Grogan DW. New insertion sequences of Sulfolobus: functional properties and implications for genome evolution in hyperthermophilic archaea. Mol Microbiol 2005; 55:312-25. [PMID: 15612937 DOI: 10.1111/j.1365-2958.2004.04391.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analyses of complete genomes indicate that insertion sequences (ISs) are abundant and widespread in hyperthermophilic archaea, but few experimental studies have measured their activities in these hosts. As a way to investigate the impact of ISs on Sulfolobus genomes, we identified seven transpositionally active ISs in a widely distributed Sulfolobus species, and measured their functional properties. Six of the seven were found to be distinct from previously described ISs of Sulfolobus, and one of the six could not be assigned to any known IS family. A type II 'Miniature Inverted-repeat Transposable Element' (MITE) related to one of the ISs was also recovered. Rates of transposition of the different ISs into the pyrEF region of their host strains varied over a 250-fold range. The Sulfolobus ISs also differed with respect to target-site selectivity, although several shared an apparent preference for the pyrEF promoter region. Despite the number of distinct ISs assayed and their molecular diversity, only one demonstrated precise excision from the chromosomal target region. The fact that this IS is the only one lacking inverted repeats and target-site duplication suggests that the observed precise excision may be promoted by the IS itself. Sequence searches revealed previously unidentified partial copies of the newly identified ISs in the Sulfolobus tokodaii and Sulfolobus solfataricus genomes. The structures of these fragmentary copies suggest several distinct molecular mechanisms which, in the absence of precise excision, inactivate ISs and gradually eliminate the defective copies from Sulfolobus genomes.
Collapse
Affiliation(s)
- Zachary D Blount
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | | |
Collapse
|
21
|
Tang TH, Polacek N, Zywicki M, Huber H, Brugger K, Garrett R, Bachellerie JP, Hüttenhofer A. Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus. Mol Microbiol 2005; 55:469-81. [PMID: 15659164 DOI: 10.1111/j.1365-2958.2004.04428.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
By generating a specialized cDNA library from the archaeon Sulfolobus solfataricus, we have identified 57 novel small non-coding RNA (ncRNA) candidates and confirmed their expression by Northern blot analysis. The majority was found to belong to one of two classes, either antisense or antisense-box RNAs, where the latter only exhibit partial complementarity to RNA targets. The most prominent group of antisense RNAs is transcribed in the opposite orientation to the transposase genes, encoded by insertion elements (transposons). Thus, these antisense RNAs may regulate transposition of insertion elements by inhibiting expression of the transposase mRNA. Surprisingly, the class of antisense RNAs also contained RNAs complementary to tRNAs or sRNAs (small-nucleolar-like RNAs). For the antisense-box ncRNAs, the majority could be assigned to the class of C/D sRNAs, which specify 2'-O-methylation sites on rRNAs or tRNAs. Five C/D sRNAs of this group are predicted to target methylation at six sites in 13 different tRNAs, thus pointing to the widespread role of these sRNA species in tRNA modification in Archaea. Another group of antisense-box RNAs, lacking typical C/D sRNA motifs, was predicted to target the 3'-untranslated regions of certain mRNAs. Furthermore, one of the ncRNAs that does not show antisense elements is transcribed from a repeat unit of a cluster of small regularly spaced repeats in S. solfataricus which is potentially involved in replicon partitioning. In conclusion, this is the first report of stably expressed antisense RNAs in an archaeal species and it raises the prospect that antisense-based mechanisms are also used widely in Archaea to regulate gene expression.
Collapse
Affiliation(s)
- Thean-Hock Tang
- Institute for Research in Molecular Medicine, University Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelatan, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Feschotte C, Osterlund MT, Peeler R, Wessler SR. DNA-binding specificity of rice mariner-like transposases and interactions with Stowaway MITEs. Nucleic Acids Res 2005; 33:2153-65. [PMID: 15831788 PMCID: PMC1079968 DOI: 10.1093/nar/gki509] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mariner-like elements (MLEs) are DNA transposons found throughout the plant and animal kingdoms. A previous computational survey of the rice (Oryza sativa) genome sequence revealed 34 full length MLEs (Osmars) belonging to 25 distinct families. This survey, which also identified sequence similarities between the Osmar elements and the Stowaway superfamily of MITEs, led to the formulation of a hypothesis whereby Stowaways are mobilized by OSMAR transposases. Here we investigate the DNA-binding activities and specificities of two OSMAR transposases, OSMAR5 and OSMAR10. Like other mariner-like transposases, the OSMARs bind specifically to the terminal inverted repeat (TIR) sequences of their encoding transposons. OSMAR5 binds DNA through a bipartite N-terminal domain containing two functionally separable helix-turn-helix motifs, resembling the paired domain of Tc1-like transposases and PAX transcription factors in metazoans. Furthermore, binding of the OSMARs is not limited to their own TIRs; OSMAR5 transposase can also interact in vitro with TIRs from closely related Osmar elements and with consensus TIRs of several Stowaway families mined from the rice genome sequence. These results provide the first biochemical evidence for a functional relationship between Osmar elements and Stowaway MITEs and lead us to suggest that there is extensive cross-talk among related but distinct transposon families co-existing in a single eukaryote genome.
Collapse
Affiliation(s)
- Cédric Feschotte
- Department of Plant Biology, University of GeorgiaAthens, GA 30602, USA
- Department of Biology, University of Texas at ArlingtonArlington, TX 76019, USA
| | - Mark T. Osterlund
- Department of Plant Biology, University of GeorgiaAthens, GA 30602, USA
| | - Ryan Peeler
- Department of Plant Biology, University of GeorgiaAthens, GA 30602, USA
| | - Susan R. Wessler
- Department of Plant Biology, University of GeorgiaAthens, GA 30602, USA
- To whom correspondence should be addressed. Tel: +1 706 542 1870; Fax: +1 706 542 1805;
| |
Collapse
|
23
|
Robertson AE, Wechter WP, Denny TP, Fortnum BA, Kluepfel DA. Relationship between avirulence gene (avrA) diversity in Ralstonia solanacearum and bacterial wilt incidence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1376-84. [PMID: 15597743 DOI: 10.1094/mpmi.2004.17.12.1376] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bacterial wilt, caused by Ralstonia solanacearum, is a serious disease of tobacco in North and South Carolina. In contrast, the disease rarely occurs on tobacco in Georgia and Florida, although bacterial wilt is a common problem on tomato. We investigated whether this difference in disease incidence could be explained by qualitative characteristics of avirulence gene avrA in the R. solanacearum population in the southeastern United States. Sequence analysis established that wild-type avrA has a 792-bp open reading frame. Polymerase chain reaction (PCR) amplification of avrA from 139 R. solanacearum strains generated either 792-bp or approximately 960-bp DNA fragments. Strains that elicited a hypersensitive reaction (HR) on tobacco contained the 792-bp allele, and were pathogenic on tomato and avirulent on tobacco. All HR-negative strains generated a approximately 960-bp DNA fragment, and wilted both tomato and tobacco. The DNA sequence of avrA in six HR-negative strains revealed the presence of one of two putative miniature inverted-repeat transposable elements (MITEs): a 152-bp MITE between nucleotides 542 and 543, or a 170-bp MITE between nucleotides 461 and 462 or 574 and 575. Southern analysis suggested that the 170-bp MITE is unique to strains from the southeastern United States and the Caribbean. Mutated avrA alleles were present in strains from 96 and 75% of North and South Carolina sites, respectively, and only in 13 and 0% of the sites in Georgia and Florida, respectively. Introduction of the wildtype allele on a plasmid into four HR-negative strains reduced their virulence on both tobacco and tomato. Inactivation of avrA in an HR-positive, avirulent strain, resulted in a mutant that was weakly virulent on tobacco. Thus, the incidence of bacterial wilt of tobacco in the southeastern United States is partially explained by which avrA allele dominates the local R. solanacearum population.
Collapse
Affiliation(s)
- Alison E Robertson
- Department of Entomology, Soils and Plant Sciences, Clemson University, Clemson, SC 29634-0377, USA
| | | | | | | | | |
Collapse
|
24
|
Bartolucci S, Rossi M, Cannio R. Characterization and functional complementation of a nonlethal deletion in the chromosome of a beta-glycosidase mutant of Sulfolobus solfataricus. J Bacteriol 2003; 185:3948-57. [PMID: 12813089 PMCID: PMC161586 DOI: 10.1128/jb.185.13.3948-3957.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LacS(-) mutants of Sulfolobus solfataricus defective in beta-glycosidase activity were isolated in order to explore genomic instability and exploit novel strategies for transformation and complementation. One of the mutants showed a stable phenotype with no reversion; analysis of its chromosome revealed the total absence of the beta-glycosidase gene (lacS). Fine mapping performed in comparison to the genomic sequence of S. solfataricus P2 indicated an extended deletion of approximately 13 kb. The sequence analysis also revealed that this chromosomal rearrangement was a nonconservative transposition event driven by the mobile insertion sequence element ISC1058. In order to complement the LacS(-) phenotype, an expression vector was constructed by inserting the lacS coding sequence with its 5' and 3' flanking regions into the pEXSs plasmid. Since no transformant could be recovered by selection on lactose as the sole nutrient, another plasmid construct containing a larger genomic fragment was tested for complementation; this region also comprised the lacTr (lactose transporter) gene encoding a putative membrane protein homologous to the major facilitator superfamily. Cells transformed with both genes were able to form colonies on lactose plates and to be stained with the beta-glycosidase chromogenic substrate X-Gal (5-bromo-4-chloro-3-indoyl-beta-D-galactopyranoside).
Collapse
Affiliation(s)
- Simonetta Bartolucci
- Dipartimento di Chimica Biologica, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | | |
Collapse
|
25
|
Stedman KM, She Q, Phan H, Arnold HP, Holz I, Garrett RA, Zillig W. Relationships between fuselloviruses infecting the extremely thermophilic archaeon Sulfolobus: SSV1 and SSV2. Res Microbiol 2003; 154:295-302. [PMID: 12798235 DOI: 10.1016/s0923-2508(03)00074-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The fusellovirus SSV2 from an Icelandic Sulfolobus strain was isolated, characterized and its complete genomic sequence determined. SSV2 is very similar in morphology, replication, genome size and number of open reading frames (ORFs) to the type virus of the family, SSV1 from Japan, except in its high level of uninduced virus production. The nucleotide sequences are, however, only 55% identical to each other, much less than related bacteriophage, related animal viruses and the rudiviruses of Sulfolobus, SIRV1 and SIRV2. Nevertheless the genome architecture is very similar between the two viruses, indicating that despite this genomic dissimilarity the virus genomes are mostly homologous. Unlike SSV1, the sequence of SSV2 indicates integration into a glycyl tRNA gene and is completely missing a DNA packaging gene. There is a unique, perfectly tandemly directly repeated sequence of 62 nucleotides in SSV2 that has no similarity to known sequences or structures. By comparison to the SSV2 genome, an integrated partial fusellovirus genome was found in the Sulfolobus solfataricus P2 genome further confirming the dynamism of the Sulfolobus genome. Clustering of cysteine codon containing ORFs both in SSV1 and SSV2 indicates that these Fuselloviridae arose from a genome fusion event.
Collapse
Affiliation(s)
- Kenneth M Stedman
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18A, 82152 Martinsried, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Brügger K, Redder P, She Q, Confalonieri F, Zivanovic Y, Garrett RA. Mobile elements in archaeal genomes. FEMS Microbiol Lett 2002; 206:131-41. [PMID: 11814653 DOI: 10.1111/j.1574-6968.2002.tb10999.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The recent availability of several archaeal genome sequences has provided a basis for detailed analyses of the frequency, location and phylogeny of archaeal mobile elements. All the known elements fall into two main types, autonomous insertion sequence (IS) elements and the non-autonomous miniature inverted repeat element (MITE)-like elements. Both classes are considered to be mobilized via transposases that are encoded by the IS elements, although mobility has only been demonstrated experimentally for a few elements. The number, and diversity, of the elements differs greatly between the genomes. At one extreme Sulfolobus solfataricus P2 and Halobacterium NRC-1 are very rich in elements while Methanobacterium thermoautotrophicum contains none. The former also show examples of complex clusters of interwoven elements. An analysis of the genomic distribution in S. solfataricus suggests that the putative oriC and terC regions act as barriers for the mobility of both IS and MITE-like elements. Moreover, the very high level of truncated IS elements in the genomes of S. solfataricus, Sulfolobus tokodaii and Thermoplasma volcanium suggests that there may be a cellular mechanism for selectively inactivating IS elements at a point when they become too numerous and disadvantageous for the cell. Phylogenetically, archaeal IS elements are confined to 11 of the 17 known families of bacterial and eukaryal IS elements where some generate distinct subgroups. Finally, DNA viruses, plasmids and DNA fragments can also be inserted into, and excised from, archaeal genomes by means of an integrase-mediated mechanism that has special archaeal characteristics.
Collapse
Affiliation(s)
- Kim Brügger
- Microbiology Genome group, Institute of Molecular Biology, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
27
|
She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PM, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J. The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci U S A 2001; 98:7835-40. [PMID: 11427726 PMCID: PMC35428 DOI: 10.1073/pnas.141222098] [Citation(s) in RCA: 636] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2001] [Accepted: 05/04/2001] [Indexed: 12/23/2022] Open
Abstract
The genome of the crenarchaeon Sulfolobus solfataricus P2 contains 2,992,245 bp on a single chromosome and encodes 2,977 proteins and many RNAs. One-third of the encoded proteins have no detectable homologs in other sequenced genomes. Moreover, 40% appear to be archaeal-specific, and only 12% and 2.3% are shared exclusively with bacteria and eukarya, respectively. The genome shows a high level of plasticity with 200 diverse insertion sequence elements, many putative nonautonomous mobile elements, and evidence of integrase-mediated insertion events. There are also long clusters of regularly spaced tandem repeats. Different transfer systems are used for the uptake of inorganic and organic solutes, and a wealth of intracellular and extracellular proteases, sugar, and sulfur metabolizing enzymes are encoded, as well as enzymes of the central metabolic pathways and motility proteins. The major metabolic electron carrier is not NADH as in bacteria and eukarya but probably ferredoxin. The essential components required for DNA replication, DNA repair and recombination, the cell cycle, transcriptional initiation and translation, but not DNA folding, show a strong eukaryal character with many archaeal-specific features. The results illustrate major differences between crenarchaea and euryarchaea, especially for their DNA replication mechanism and cell cycle processes and their translational apparatus.
Collapse
Affiliation(s)
- Q She
- Microbial Genome Group, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK-1307 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Organization, Replication, Transposition, and Repair of DNA. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|