1
|
Abstract
Transposable phage Mu has played a major role in elucidating the mechanism of movement of mobile DNA elements. The high efficiency of Mu transposition has facilitated a detailed biochemical dissection of the reaction mechanism, as well as of protein and DNA elements that regulate transpososome assembly and function. The deduced phosphotransfer mechanism involves in-line orientation of metal ion-activated hydroxyl groups for nucleophilic attack on reactive diester bonds, a mechanism that appears to be used by all transposable elements examined to date. A crystal structure of the Mu transpososome is available. Mu differs from all other transposable elements in encoding unique adaptations that promote its viral lifestyle. These adaptations include multiple DNA (enhancer, SGS) and protein (MuB, HU, IHF) elements that enable efficient Mu end synapsis, efficient target capture, low target specificity, immunity to transposition near or into itself, and efficient mechanisms for recruiting host repair and replication machineries to resolve transposition intermediates. MuB has multiple functions, including target capture and immunity. The SGS element promotes gyrase-mediated Mu end synapsis, and the enhancer, aided by HU and IHF, participates in directing a unique topological architecture of the Mu synapse. The function of these DNA and protein elements is important during both lysogenic and lytic phases. Enhancer properties have been exploited in the design of mini-Mu vectors for genetic engineering. Mu ends assembled into active transpososomes have been delivered directly into bacterial, yeast, and human genomes, where they integrate efficiently, and may prove useful for gene therapy.
Collapse
|
2
|
Fogg PC, Hynes AP, Digby E, Lang AS, Beatty JT. Characterization of a newly discovered Mu-like bacteriophage, RcapMu, in Rhodobacter capsulatus strain SB1003. Virology 2011; 421:211-21. [DOI: 10.1016/j.virol.2011.09.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/25/2011] [Accepted: 09/28/2011] [Indexed: 10/16/2022]
|
3
|
Saariaho AH, Savilahti H. Characteristics of MuA transposase-catalyzed processing of model transposon end DNA hairpin substrates. Nucleic Acids Res 2006; 34:3139-49. [PMID: 16757579 PMCID: PMC1475752 DOI: 10.1093/nar/gkl405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacteriophage Mu uses non-replicative transposition for integration into the host's chromosome and replicative transposition for phage propagation. Biochemical and structural comparisons together with evolutionary considerations suggest that the Mu transposition machinery might share functional similarities with machineries of the systems that are known to employ a hairpin intermediate during the catalytic steps of transposition. Model transposon end DNA hairpin substrates were used in a minimal-component in vitro system to study their proficiency to promote Mu transpososome assembly and subsequent MuA-catalyzed chemical reactions leading to the strand transfer product. MuA indeed was able to assemble hairpin substrates into a catalytically competent transpososome, open the hairpin ends and accurately join the opened ends to the target DNA. The hairpin opening and transposon end cleavage reactions had identical metal ion preferences, indicating similar conformations within the catalytic center for these reactions. Hairpin length influenced transpososome assembly as well as catalysis: longer loops were more efficient in these respects. In general, MuA's proficiency to utilize different types of hairpin substrates indicates a certain degree of flexibility within the transposition machinery core. Overall, the results suggest that non-replicative and replicative transposition systems may structurally and evolutionarily be more closely linked than anticipated previously.
Collapse
Affiliation(s)
| | - Harri Savilahti
- To whom correspondence should be addressed. Tel: +358 9 19159516; Fax: +358 9 19159366;
| |
Collapse
|
4
|
Liu G, Aronovich EL, Cui Z, Whitley CB, Hackett PB. Excision of Sleeping Beauty transposons: parameters and applications to gene therapy. J Gene Med 2004; 6:574-83. [PMID: 15133768 PMCID: PMC1865527 DOI: 10.1002/jgm.486] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A major problem in gene therapy is the determination of the rates at which gene transfer has occurred. Our work has focused on applications of the Sleeping Beauty (SB) transposon system as a non-viral vector for gene therapy. Excision of a transposon from a donor molecule and its integration into a cellular chromosome are catalyzed by SB transposase. In this study, we used a plasmid-based excision assay to study the excision step of transposition. We used the excision assay to evaluate the importance of various sequences that border the sites of excision inside and outside the transposon in order to determine the most active sequences for transposition from a donor plasmid. These findings together with our previous results in transposase binding to the terminal repeats suggest that the sequences in the transposon-junction of SB are involved in steps subsequent to DNA binding but before excision, and that they may have a role in transposase-transposon interaction. We found that SB transposons leave characteristically different footprints at excision sites in different cell types, suggesting that alternative repair machineries operate in concert with transposition. Most importantly, we found that the rates of excision correlate with the rates of transposition. We used this finding to assess transposition in livers of mice that were injected with the SB transposon and transposase. The excision assay appears to be a relatively quick and easy method to optimize protocols for delivery of genes in SB transposons to mammalian chromosomes in living animals.
Collapse
Affiliation(s)
- Geyi Liu
- Department of Genetics, Cell Biology and Development and The Institute of Human Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
5
|
Goldhaber-Gordon I, Early MH, Baker TA. MuA transposase separates DNA sequence recognition from catalysis. Biochemistry 2004; 42:14633-42. [PMID: 14661976 DOI: 10.1021/bi035360o] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Confronted with thousands of potential DNA substrates, a site-specific enzyme must restrict itself to the correct DNA sequence. The MuA transposase protein performs site-specific DNA cleavage and joining reactions, resulting in DNA transposition-a specialized form of genetic recombination. To determine how sequence information is used to restrict transposition to the proper DNA sites, we performed kinetic analyses of transposition with DNA substrates containing either wild-type transposon sequences or sequences carrying mutations in specific DNA recognition modules. As expected, mutations near the DNA cleavage site reduce the rate of cleavage; the observed effect is about 10-fold. In contrast, mutations within the MuA recognition sequences do not directly affect the DNA cleavage or joining steps of transposition. It is well established that the recognition sequences are necessary for assembly of stable, multimeric MuA-DNA complexes, and we find that recognition site mutations severely reduce both the extent and the rate of this assembly process. Yet if the MuA-DNA complexes are preassembled, the first-order rate constants for both DNA cleavage and DNA strand transfer (the joining reaction) are unaffected by the mutations. Furthermore, most of the mutant DNA molecules that are cleaved also complete DNA strand transfer. We conclude that the sequence-specific contacts within the recognition sites contribute energetically to complex assembly, but not directly to catalysis. These results contrast with studies of more orthodox enzymes, such as EcoRI and some other type II restriction enzymes. We propose that the strategy employed by MuA may serve as an example for how recombinases and modular restriction enzymes solve the DNA specificity problem, in that they, too, may separate substrate recognition from catalysis.
Collapse
Affiliation(s)
- Ilana Goldhaber-Gordon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
6
|
Coros CJ, Sekino Y, Baker TA, Chaconas G. Effect of mutations in the C-terminal domain of Mu B on DNA binding and interactions with Mu A transposase. J Biol Chem 2003; 278:31210-7. [PMID: 12791691 DOI: 10.1074/jbc.m303693200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage Mu transposition requires two phage-encoded proteins, the transposase, Mu A, and an accessory protein, Mu B. Mu B is an ATP-dependent DNA-binding protein that is required for target capture and target immunity and is an allosteric activator of transpososome function. The recent NMR structure of the C-terminal domain of Mu B (Mu B223-312) revealed that there is a patch of positively charged residues on the solvent-exposed surface. This patch may be responsible for the nonspecific DNA binding activity displayed by the purified Mu B223-312 peptide. We show that mutations of three lysine residues within this patch completely abolish nonspecific DNA binding of the C-terminal peptide (Mu B223- 312). To determine how this DNA binding activity affects transposition we mutated these lysine residues in the full-length protein. The full-length protein carrying all three mutations was deficient in both strand transfer and allosteric activation of transpososome function but retained ATPase activity. Peptide binding studies also revealed that this patch of basic residues within the C-terminal domain of Mu B is within a region of the protein that interacts directly with Mu A. Thus, we conclude that this protein segment contributes to both DNA binding and protein-protein contacts with the Mu transposase.
Collapse
Affiliation(s)
- Colin J Coros
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
7
|
Lee I, Harshey RM. Patterns of sequence conservation at termini of long terminal repeat (LTR) retrotransposons and DNA transposons in the human genome: lessons from phage Mu. Nucleic Acids Res 2003; 31:4531-40. [PMID: 12888514 PMCID: PMC169890 DOI: 10.1093/nar/gkg499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long terminal repeat (LTR) retrotransposons and DNA transposons are transposable elements (TEs) that perform cleavage and transfer at precise DNA positions. Here, we present statistical analyses of sequences found at the termini of precise TEs in the human genome. The results show that the terminal di- and trinucleotides of these TEs are highly conserved. 5'TG...CA3' occurs most frequently at the termini of LTR retrotransposons, while 5'CAG...CTG3' occurs most frequently in DNA transposons. Interestingly, these sequences are the most flexible base pair steps in DNA. Both the sequence preference and the degree of conservation of each position within the human LTR dinucleotide termini are remarkably similar to those experimentally demonstrated in transposable phage Mu. We discuss the significance of these observations and their implication for the function of terminal residues in the transposition of precise TEs.
Collapse
Affiliation(s)
- Insuk Lee
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
8
|
Abstract
The dinucleotide CA/TG found at the termini of transposable phage Mu occurs also at the termini of a large class of transposable elements, including HIV, all retroviruses and many retrotransposons. It was shown recently that mutations of this sequence block transpososome assembly, that A/T is more critical for activity than C/G, and that the hierarchy of reactivity of mutant termini follows closely the reported hierarchy of flexibility of their dinucleotide steps. In order to test the hypothesis that the terminal dinucleotide plays an essential structural role during "open termini" formation accompanying assembly, we have examined the activity of substrates carrying 100 different pairs of mismatched termini. Consistent with the flexibility hypothesis, we find that mismatched substrates are extremely efficient at assembly. A wild-type T residue on the bottom strand is essential for stable assembly, but the identity of the dinucleotide on the top strand is irrelevant for transposition chemistry. In addition, we have found a new rule for suppression of terminal defects by MuB protein, as well as a role for metal ions in DNA opening at the termini.
Collapse
Affiliation(s)
- Insuk Lee
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
9
|
Goldhaber-Gordon I, Early MH, Baker TA. The terminal nucleotide of the Mu genome controls catalysis of DNA strand transfer. Proc Natl Acad Sci U S A 2003; 100:7509-14. [PMID: 12796508 PMCID: PMC164617 DOI: 10.1073/pnas.0832468100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Indexed: 11/18/2022] Open
Abstract
Members of the transposase/retroviral-integrase superfamily use a single active site to perform at least two reactions during transposition of a DNA transposon or a retroviral cDNA. They hydrolyze a DNA sequence at the end of the mobile DNA and then join this DNA end to a target DNA (a reaction called DNA strand transfer). Critical to understanding the mechanism of recombination is elucidating how these distinct reactions are orchestrated by the same active site. Here we find that DNA substrates terminating in a dideoxynucleotide allow Mu transposase to hydrolyze a target DNA, combining aspects of both natural reactions. Analyses of the sequence preferences for target hydrolysis and of the structure of the cleaved product indicate that this reaction is promoted by the active site in the conformation that normally promotes DNA strand transfer. Dissecting the DNA requirements for target hydrolysis reveals that the ribose of the last nucleotide of the Mu DNA activates transposase's catalytic potential, even when this residue is not a direct chemical participant. These findings provide insight into the molecular mechanism insuring that DNA strand transfer ordinarily occurs rather than inappropriate DNA cleavage. The required presence of the terminal nucleotide in the transposase active site creates a great advantage for the attached 3'OH to serve as nucleophile.
Collapse
Affiliation(s)
- Ilana Goldhaber-Gordon
- Department of Biology, Massachusetts Institute of Technology, and Howard Hughes Medical Institute, 77 Massachusetts Avenue, 68-523, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
10
|
Dawson A, Finnegan DJ. Excision of the Drosophila mariner transposon Mos1. Comparison with bacterial transposition and V(D)J recombination. Mol Cell 2003; 11:225-35. [PMID: 12535535 DOI: 10.1016/s1097-2765(02)00798-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been proposed that the modern immune system has evolved from a transposon in an ancient vertebrate. While much is known about the mechanism by which bacterial transposable elements catalyze double-strand breaks at their ends, less is known about how eukaryotic transposable elements carry out these reactions. We have examined the mechanism by which mariner, a eukaryotic transposable element, performs DNA cleavage. We show that the nontransferred strand is cleaved initially, unlike prokaryotic transposons which cleave the transferred strand first. First strand cleavage is not tightly coupled to second strand cleavage and can occur independently of synapsis, as happens in V(D)J recombination but not in transposition of prokaryotic transposons. Unlike V(D)J recombination, however, second strand cleavage of mariner does not occur via a hairpin intermediate.
Collapse
Affiliation(s)
- Angela Dawson
- Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JR, United Kingdom.
| | | |
Collapse
|
11
|
Kobryn K, Watson MA, Allison RG, Chaconas G. The Mu three-site synapse: a strained assembly platform in which delivery of the L1 transposase binding site triggers catalytic commitment. Mol Cell 2002; 10:659-69. [PMID: 12408832 DOI: 10.1016/s1097-2765(02)00596-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Mu DNA transposition reaction proceeds through a three-site synaptic complex (LER), including the two Mu ends and the transpositional enhancer. We show that the LER contains highly stressed DNA regions in the enhancer and in the L1 transposase binding site. We propose that the L1 site acts as the keystone for assembly of a catalytically competent transpososome. Delivery of L1 through HU-mediated bending completes LER assembly, provides the trigger for necessary conformational transitions in transpososome formation, and allows target capture to occur. Relief of the stress at L1 and the enhancer may help drive Mu A tetramerization and engagement of the Mu ends by the transposase active site.
Collapse
Affiliation(s)
- Kerri Kobryn
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
12
|
Abstract
Tn10/IS10 transposition involves assembly of a synaptic complex (or transpososome) in which two transposon ends are paired, followed by four distinct chemical steps at each transposon end. The chemical steps are dependent on the presence of a suitable divalent metal cation (Me(2+)). Transpososome assembly and structure are also affected by Me(2+). To gain further insight into the mechanisms of Me(2+) action in Tn10/IS10 transposition we have investigated the effects of substituting Mn(2+) for Mg(2+), the physiologic Me(2+), in transposition. We have also investigated the significance of an Me(2+)-assisted conformational change in transpososome structure. We show that Mn(2+) has two previously unrecognized effects on the Tn10 donor cleavage reaction. It accelerates the rates of hairpin formation and hairpin resolution without significantly affecting the rate of the first chemical step, first strand nicking. Mn(2+) also relaxes the specificity of first strand nicking. We also show that Me(2+)-assisted transpososome unfolding coincides with a structural transition in the transposon-donor junction that may be necessary for hairpin formation. Possible mechanisms for these observations are considered.
Collapse
Affiliation(s)
- John S Allingham
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | |
Collapse
|
13
|
Goldhaber-Gordon I, Early MH, Gray MK, Baker TA. Sequence and positional requirements for DNA sites in a mu transpososome. J Biol Chem 2002; 277:7703-12. [PMID: 11756424 DOI: 10.1074/jbc.m110342200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transposition of bacteriophage Mu uses two DNA cleavage sites and six transposase recognition sites, with each recognition site divided into two half-sites. The recognition sites can activate transposition of non-Mu DNA sequences if a complete set of Mu sequences is not available. We have analyzed 18 sequences from a non-Mu DNA molecule, selected in a functional assay for the ability to be transposed by MuA transposase. These sequences are remarkably diverse. Nonetheless, when viewed as a group they resemble a Mu DNA end, with a cleavage site and a single recognition site. Analysis of these "pseudo-Mu ends" indicates that most positions in the cleavage and recognition sites contribute sequence-specific information that helps drive transposition, though only the strongest contributors are apparent from mutagenesis data. The sequence analysis also suggests variability in the alignment of recognition half-sites. Transposition assays of specifically designed DNA substrates support the conclusion that the transposition machinery is flexible enough to permit variability in half-site spacing and also perhaps variability in the placement of the recognition site with respect to the cleavage site. This variability causes only local perturbations in the protein-DNA complex, as indicated by experiments in which altered and unaltered DNA substrates are paired.
Collapse
Affiliation(s)
- Ilana Goldhaber-Gordon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
14
|
Goldhaber-Gordon I, Williams TL, Baker TA. DNA recognition sites activate MuA transposase to perform transposition of non-Mu DNA. J Biol Chem 2002; 277:7694-702. [PMID: 11756423 DOI: 10.1074/jbc.m110341200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mu transposition occurs within a large protein-DNA complex called a transpososome. This stable complex includes four subunits of MuA transposase, each contacting a 22-base pair recognition site located near an end of the transposon DNA. These MuA recognition sites are critical for assembling the transpososome. Here we report that when concentrations of Mu DNA are limited, the MuA recognition sites permit assembly of transpososomes in which non-Mu DNA substitutes for some of the Mu sequences. These "hybrid" transpososomes are stable to competitor DNA, actively transpose the non-Mu DNA, and produce transposition products that had been previously observed but not explained. The strongest activator of non-Mu transposition is a DNA fragment containing two MuA recognition sites and no cleavage site, but a shorter fragment with just one recognition site is sufficient. Based on our results, we propose that MuA recognition sites drive assembly of functional transpososomes in two complementary ways. Multiple recognition sites help physically position MuA subunits in the transpososome plus each individual site allosterically activates transposase.
Collapse
Affiliation(s)
- Ilana Goldhaber-Gordon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
15
|
Abstract
The dinucleotide CA found at the termini of transposable phage Mu also occurs at the termini of a large class of transposable elements, including HIV, all retroviruses and many retrotransposons. In order to understand the importance of this sequence conservation, the activity of all 16 dinucleotide permutations of the termini was first examined using a sensitive plasmid-based in vivo transposition assay. The reactivity of these substrates varied over several orders of magnitude in vivo, with substitutions at the A position being more severely impaired than those at the C position. The same general hierarchy of reactivity was observed in vitro using mutant oligonucleotide substrates. These experiments revealed that CA was not important for the chemistry of strand transfer, and that the block in the activity of the mutant substrates was at the stage of assembly of a stable transpososome. Given that DNA at the Mu-host junctions is melted/distorted concomitantly with transpososome assembly, we consider the hypothesis that the CA dinucleotide has been selected at transposon termini primarily for its significant conformational mobility.
Collapse
Affiliation(s)
- I Lee
- Section of Molecular Genetics & Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|