1
|
Malakar P, Gholami S, Aarabi M, Rivalta I, Sheves M, Garavelli M, Ruhman S. Retinal photoisomerization versus counterion protonation in light and dark-adapted bacteriorhodopsin and its primary photoproduct. Nat Commun 2024; 15:2136. [PMID: 38459010 PMCID: PMC10923925 DOI: 10.1038/s41467-024-46061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/08/2024] [Indexed: 03/10/2024] Open
Abstract
Discovered over 50 years ago, bacteriorhodopsin is the first recognized and most widely studied microbial retinal protein. Serving as a light-activated proton pump, it represents the archetypal ion-pumping system. Here we compare the photochemical dynamics of bacteriorhodopsin light and dark-adapted forms with that of the first metastable photocycle intermediate known as "K". We observe that following thermal double isomerization of retinal in the dark from bio-active all-trans 15-anti to 13-cis, 15-syn, photochemistry proceeds even faster than the ~0.5 ps decay of the former, exhibiting ballistic wave packet curve crossing to the ground state. In contrast, photoexcitation of K containing a 13-cis, 15-anti chromophore leads to markedly multi-exponential excited state decay including much slower stages. QM/MM calculations, aimed to interpret these results, highlight the crucial role of protonation, showing that the classic quadrupole counterion model poorly reproduces spectral data and dynamics. Single protonation of ASP212 rectifies discrepancies and predicts triple ground state structural heterogeneity aligning with experimental observations. These findings prompt a reevaluation of counter ion protonation in bacteriorhodopsin and contribute to the broader understanding of its photochemical dynamics.
Collapse
Affiliation(s)
- Partha Malakar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Samira Gholami
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Mohammad Aarabi
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Ivan Rivalta
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364, Lyon, France
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Marco Garavelli
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy.
| | - Sanford Ruhman
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
2
|
Noodleman L, Götz AW, Han Du WG, Hunsicker-Wang L. Reaction pathways, proton transfer, and proton pumping in ba3 class cytochrome c oxidase: perspectives from DFT quantum chemistry and molecular dynamics. Front Chem 2023; 11:1186022. [PMID: 38188931 PMCID: PMC10766771 DOI: 10.3389/fchem.2023.1186022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
After drawing comparisons between the reaction pathways of cytochrome c oxidase (CcO, Complex 4) and the preceding complex cytochrome bc1 (Complex 3), both being proton pumping complexes along the electron transport chain, we provide an analysis of the reaction pathways in bacterial ba3 class CcO, comparing spectroscopic results and kinetics observations with results from DFT calculations. For an important arc of the catalytic cycle in CcO, we can trace the energy pathways for the chemical protons and show how these pathways drive proton pumping of the vectorial protons. We then explore the proton loading network above the Fe heme a3-CuB catalytic center, showing how protons are loaded in and then released by combining DFT-based reaction energies with molecular dynamics simulations over states of that cycle. We also propose some additional reaction pathways for the chemical and vector protons based on our recent work with spectroscopic support.
Collapse
Affiliation(s)
- Louis Noodleman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Andreas W. Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, United States
| | - Wen-Ge Han Du
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | | |
Collapse
|
3
|
Noji T, Ishikita H. Mechanism of Absorption Wavelength Shift of Bacteriorhodopsin During Photocycle. J Phys Chem B 2022; 126:9945-9955. [PMID: 36413506 DOI: 10.1021/acs.jpcb.2c04359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacteriorhodopsin, a light-driven proton pump, alters the absorption wavelengths in the range of 410-617 nm during the photocycle. Here, we report the absorption wavelengths, calculated using 12 bacteriorhodopsin crystal structures (including the BR, BR13-cis, J, K0, KE, KL, L, M, N, and O state structures) and a combined quantum mechanical/molecular mechanical/polarizable continuum model (QM/MM/PCM) approach. The QM/MM/PCM calculations reproduced the experimentally measured absorption wavelengths with a standard deviation of 4 nm. The shifts in the absorption wavelengths can be explained mainly by the following four factors: (i) retinal Schiff base deformation/twist induced by the protein environment, leading to a decrease in the electrostatic interaction between the protein environment and the retinal Schiff base; (ii) changes in the protonation state of the protein environment, directly altering the electrostatic interaction between the protein environment and the retinal Schiff base; (iii) changes in the protonation state; or (iv) isomerization of the retinal Schiff base, where the absorption wavelengths of the isomers originally differ.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan.,Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
| |
Collapse
|
4
|
Gokcan H, Isayev O. Prediction of protein p K a with representation learning. Chem Sci 2022; 13:2462-2474. [PMID: 35310485 PMCID: PMC8864681 DOI: 10.1039/d1sc05610g] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/29/2022] [Indexed: 11/21/2022] Open
Abstract
The behavior of proteins is closely related to the protonation states of the residues. Therefore, prediction and measurement of pK a are essential to understand the basic functions of proteins. In this work, we develop a new empirical scheme for protein pK a prediction that is based on deep representation learning. It combines machine learning with atomic environment vector (AEV) and learned quantum mechanical representation from ANI-2x neural network potential (J. Chem. Theory Comput. 2020, 16, 4192). The scheme requires only the coordinate information of a protein as the input and separately estimates the pK a for all five titratable amino acid types. The accuracy of the approach was analyzed with both cross-validation and an external test set of proteins. Obtained results were compared with the widely used empirical approach PROPKA. The new empirical model provides accuracy with MAEs below 0.5 for all amino acid types. It surpasses the accuracy of PROPKA and performs significantly better than the null model. Our model is also sensitive to the local conformational changes and molecular interactions.
Collapse
Affiliation(s)
- Hatice Gokcan
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University Pittsburgh PA USA
| | - Olexandr Isayev
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University Pittsburgh PA USA
| |
Collapse
|
5
|
Kaur D, Khaniya U, Zhang Y, Gunner MR. Protein Motifs for Proton Transfers That Build the Transmembrane Proton Gradient. Front Chem 2021; 9:660954. [PMID: 34211960 PMCID: PMC8239185 DOI: 10.3389/fchem.2021.660954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Biological membranes are barriers to polar molecules, so membrane embedded proteins control the transfers between cellular compartments. Protein controlled transport moves substrates and activates cellular signaling cascades. In addition, the electrochemical gradient across mitochondrial, bacterial and chloroplast membranes, is a key source of stored cellular energy. This is generated by electron, proton and ion transfers through proteins. The gradient is used to fuel ATP synthesis and to drive active transport. Here the mechanisms by which protons move into the buried active sites of Photosystem II (PSII), bacterial RCs (bRCs) and through the proton pumps, Bacteriorhodopsin (bR), Complex I and Cytochrome c oxidase (CcO), are reviewed. These proteins all use water filled proton transfer paths. The proton pumps, that move protons uphill from low to high concentration compartments, also utilize Proton Loading Sites (PLS), that transiently load and unload protons and gates, which block backflow of protons. PLS and gates should be synchronized so PLS proton affinity is high when the gate opens to the side with few protons and low when the path is open to the high concentration side. Proton transfer paths in the proteins we describe have different design features. Linear paths are seen with a unique entry and exit and a relatively straight path between them. Alternatively, paths can be complex with a tangle of possible routes. Likewise, PLS can be a single residue that changes protonation state or a cluster of residues with multiple charge and tautomer states.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - Yingying Zhang
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - M R Gunner
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
6
|
Chuon K, Kim SY, Meas S, Shim JG, Cho SG, Kang KW, Kim JH, Cho HS, Jung KH. Assembly of Natively Synthesized Dual Chromophores Into Functional Actinorhodopsin. Front Microbiol 2021; 12:652328. [PMID: 33995310 PMCID: PMC8113403 DOI: 10.3389/fmicb.2021.652328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Microbial rhodopsin is a simple solar energy-capturing molecule compared to the complex photosynthesis apparatus. Light-driven proton pumping across the cell membrane is a crucial mechanism underlying microbial energy production. Actinobacteria is one of the highly abundant bacterial phyla in freshwater habitats, and members of this lineage are considered to boost heterotrophic growth via phototrophy, as indicated by the presence of actino-opsin (ActR) genes in their genome. However, it is difficult to validate their function under laboratory settings because Actinobacteria are not consistently cultivable. Based on the published genome sequence of Candidatus aquiluna sp. strain IMCC13023, actinorhodopsin from the strain (ActR-13023) was isolated and characterized in this study. Notably, ActR-13023 assembled with natively synthesized carotenoid/retinal (used as a dual chromophore) and functioned as a light-driven outward proton pump. The ActR-13023 gene and putative genes involved in the chromophore (retinal/carotenoid) biosynthetic pathway were detected in the genome, indicating the functional expression ActR-13023 under natural conditions for the utilization of solar energy for proton translocation. Heterologous expressed ActR-13023 exhibited maximum absorption at 565 nm with practical proton pumping ability. Purified ActR-13023 could be reconstituted with actinobacterial carotenoids for additional light-harvesting. The existence of actinorhodopsin and its chromophore synthesis machinery in Actinobacteria indicates the inherent photo-energy conversion function of this microorganism. The assembly of ActR-13023 to its synthesized chromophores validated the microbial community's importance in the energy cycle.
Collapse
Affiliation(s)
- Kimleng Chuon
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - So Young Kim
- Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
| | - Seanghun Meas
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Jin-Gon Shim
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Shin-Gyu Cho
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Kun-Wook Kang
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Ji-Hyun Kim
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Hyun-Suk Cho
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, South Korea
| |
Collapse
|
7
|
Vectorial Proton Transport Mechanism of RxR, a Phylogenetically Distinct and Thermally Stable Microbial Rhodopsin. Sci Rep 2020; 10:282. [PMID: 31937866 PMCID: PMC6959264 DOI: 10.1038/s41598-019-57122-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/30/2019] [Indexed: 11/08/2022] Open
Abstract
Rubrobacter xylanophilus rhodopsin (RxR) is a phylogenetically distinct and thermally stable seven-transmembrane protein that functions as a light-driven proton (H+) pump with the chromophore retinal. To characterize its vectorial proton transport mechanism, mutational and theoretical investigations were performed for carboxylates in the transmembrane region of RxR and the sequential proton transport steps were revealed as follows: (i) a proton of the retinylidene Schiff base (Lys209) is transferred to the counterion Asp74 upon formation of the blue-shifted M-intermediate in collaboration with Asp205, and simultaneously, a respective proton is released from the proton releasing group (Glu187/Glu197) to the extracellular side, (ii) a proton of Asp85 is transferred to the Schiff base during M-decay, (iii) a proton is taken up from the intracellular side to Asp85 during decay of the red-shifted O-intermediate. This ion transport mechanism of RxR provides valuable information to understand other ion transporters since carboxylates are generally essential for their functions.
Collapse
|
8
|
Friedrich D, Brünig FN, Nieuwkoop AJ, Netz RR, Hegemann P, Oschkinat H. Collective exchange processes reveal an active site proton cage in bacteriorhodopsin. Commun Biol 2020; 3:4. [PMID: 31925324 PMCID: PMC6941954 DOI: 10.1038/s42003-019-0733-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/02/2019] [Indexed: 01/01/2023] Open
Abstract
Proton translocation across membranes is vital to all kingdoms of life. Mechanistically, it relies on characteristic proton flows and modifications of hydrogen bonding patterns, termed protonation dynamics, which can be directly observed by fast magic angle spinning (MAS) NMR. Here, we demonstrate that reversible proton displacement in the active site of bacteriorhodopsin already takes place in its equilibrated dark-state, providing new information on the underlying hydrogen exchange processes. In particular, MAS NMR reveals proton exchange at D85 and the retinal Schiff base, suggesting a tautomeric equilibrium and thus partial ionization of D85. We provide evidence for a proton cage and detect a preformed proton path between D85 and the proton shuttle R82. The protons at D96 and D85 exchange with water, in line with ab initio molecular dynamics simulations. We propose that retinal isomerization makes the observed proton exchange processes irreversible and delivers a proton towards the extracellular release site. Daniel Friedrich et al. show that reversible proton translocation occurs in the dark–state of bacteriorhodopsin, involving the retinal Schiff base and D85 exchanging protons with H2O. They find evidence of an active site proton cage and possible proton transfer via R82.
Collapse
Affiliation(s)
- Daniel Friedrich
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Freie Universität Berlin, Institut für Chemie und Biochemie, 14195, Berlin, Germany.,Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston, MA, 02215, USA
| | - Florian N Brünig
- Freie Universität Berlin, Fachbereich Physik, 14195, Berlin, Germany
| | - Andrew J Nieuwkoop
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Roland R Netz
- Freie Universität Berlin, Fachbereich Physik, 14195, Berlin, Germany
| | - Peter Hegemann
- Humboldt-Universität zu Berlin, Institut für Biologie, Invalidenstr. 42, 10115, Berlin, Germany
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany. .,Freie Universität Berlin, Institut für Chemie und Biochemie, 14195, Berlin, Germany.
| |
Collapse
|
9
|
Tripathi R, Forbert H, Marx D. Settling the Long-Standing Debate on the Proton Storage Site of the Prototype Light-Driven Proton Pump Bacteriorhodopsin. J Phys Chem B 2019; 123:9598-9608. [DOI: 10.1021/acs.jpcb.9b09608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Faramarzi S, Feng J, Mertz B. Allosteric Effects of the Proton Donor on the Microbial Proton Pump Proteorhodopsin. Biophys J 2018; 115:1240-1250. [PMID: 30219284 DOI: 10.1016/j.bpj.2018.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 11/17/2022] Open
Abstract
Proteorhodopsin (PR) is a microbial proton pump that is ubiquitous in marine environments and may play an important role in the oceanic carbon cycle. Photoisomerization of the retinal chromophore in PR leads to a series of proton transfers between specific acidic amino acid residues and the Schiff base of retinal, culminating in a proton motive force to facilitate ATP synthesis. The proton donor in a similar retinal protein, bacteriorhodopsin, acts as a latch to allow the influx of bulk water. However, it is unclear if the proton donor in PR, E108, utilizes the same latch mechanism to become internally hydrated. Here, we used molecular dynamics simulations to model the changes in internal hydration of the blue variant of PR during photoactivation with the proton donor in protonated and deprotonated states. We find that there is a stark contrast in the levels of internal hydration of the cytoplasmic half of PR based on the protonation state of E108. Instead of a latch mechanism, deprotonation of E108 acts as a gate, taking advantage of a nearby polar residue (S61) to promote the formation of a stable water wire from bulk cytoplasm to the retinal-binding pocket over hundreds of nanoseconds. No large-scale conformational changes occur in PR over the microsecond timescale. This subtle yet clear difference in the effect of deprotonation of the proton donor in PR may help explain why the photointermediates that involve the proton donor (i.e., M and N states) have timescales that are orders of magnitude different from the archaeal proton pump, bacteriorhodopsin. In general, our study highlights the importance of understanding how structural fluctuations lead to differences in the way that retinal proteins accomplish the same task.
Collapse
Affiliation(s)
- Sadegh Faramarzi
- C. Eugene Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Jun Feng
- C. Eugene Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Blake Mertz
- C. Eugene Department of Chemistry, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
11
|
Bombarda E, Ullmann GM. Continuum Electrostatic Calculation on Bovine Rhodopsin: Protonation and the Effect of the Membrane Potential. Photochem Photobiol 2017; 93:1388-1398. [DOI: 10.1111/php.12777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/15/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Elisa Bombarda
- Structural Biology/Bioinformatics; University of Bayreuth; Bayreuth Germany
| | | |
Collapse
|
12
|
Ge X, Gunner MR. Unraveling the mechanism of proton translocation in the extracellular half-channel of bacteriorhodopsin. Proteins 2016; 84:639-54. [DOI: 10.1002/prot.25013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/24/2016] [Accepted: 02/04/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaoxia Ge
- Physics Department; City College of New York; New York NY 10031
| | - M. R. Gunner
- Physics Department; City College of New York; New York NY 10031
| |
Collapse
|
13
|
Feng J, Mertz B. Proteorhodopsin Activation Is Modulated by Dynamic Changes in Internal Hydration. Biochemistry 2015; 54:7132-41. [PMID: 26562497 DOI: 10.1021/acs.biochem.5b00932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proteorhodopsin, a member of the microbial rhodopsin family, is a seven-transmembrane α-helical protein that functions as a light-driven proton pump. Understanding the proton-pumping mechanism of proteorhodopsin requires intimate knowledge of the proton transfer pathway via complex hydrogen-bonding networks formed by amino acid residues and internal water molecules. Here we conducted a series of microsecond time scale molecular dynamics simulations on both the dark state and the initial photoactivated state of blue proteorhodopsin to reveal the structural basis for proton transfer with respect to protein internal hydration. A complex series of dynamic hydrogen-bonding networks involving water molecules exists, facilitated by water channels and hydration sites within proteorhodopsin. High levels of hydration were discovered at each proton transfer site-the retinal binding pocket and proton uptake and release sites-underscoring the critical participation of water molecules in the proton-pumping mechanism. Water-bridged interactions and local water channels were also observed and can potentially mediate long-distance proton transfer between each site. The most significant phenomenon is after isomerization of retinal, an increase in water flux occurs that connects the proton release group, a conserved arginine residue, and the retinal binding pocket. Our results provide a detailed description of the internal hydration of the early photointermediates in the proteorhodopsin photocycle under alkaline pH conditions. These results lay the fundamental groundwork for understanding the intimate role that hydration plays in the structure-function relationship underlying the proteorhodopsin proton-pumping mechanism, as well as providing context for the relationship of hydration in proteorhodopsin to other microbial retinal proteins.
Collapse
Affiliation(s)
- Jun Feng
- The C. Eugene Bennett Department of Chemistry, West Virginia University , 217 Clark Hall, Morgantown, West Virginia 26506, United States
| | - Blake Mertz
- The C. Eugene Bennett Department of Chemistry, West Virginia University , 217 Clark Hall, Morgantown, West Virginia 26506, United States
| |
Collapse
|
14
|
Wang L, Li L, Alexov E. pKa predictions for proteins, RNAs, and DNAs with the Gaussian dielectric function using DelPhi pKa. Proteins 2015; 83:2186-97. [PMID: 26408449 DOI: 10.1002/prot.24935] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 11/08/2022]
Abstract
We developed a Poisson-Boltzmann based approach to calculate the pKa values of protein ionizable residues (Glu, Asp, His, Lys and Arg), nucleotides of RNA and single stranded DNA. Two novel features were utilized: the dielectric properties of the macromolecules and water phase were modeled via the smooth Gaussian-based dielectric function in DelPhi and the corresponding electrostatic energies were calculated without defining the molecular surface. We tested the algorithm by calculating pKa values for more than 300 residues from 32 proteins from the PPD dataset and achieved an overall RMSD of 0.77. Particularly, the RMSD of 0.55 was achieved for surface residues, while the RMSD of 1.1 for buried residues. The approach was also found capable of capturing the large pKa shifts of various single point mutations in staphylococcal nuclease (SNase) from pKa-cooperative dataset, resulting in an overall RMSD of 1.6 for this set of pKa's. Investigations showed that predictions for most of buried mutant residues of SNase could be improved by using higher dielectric constant values. Furthermore, an option to generate different hydrogen positions also improves pKa predictions for buried carboxyl residues. Finally, the pKa calculations on two RNAs demonstrated the capability of this approach for other types of biomolecules.
Collapse
Affiliation(s)
- Lin Wang
- Department of Physics, Computational Biophysics and Bioinformatics, Clemson University, Clemson, South Carolina, 29634
| | - Lin Li
- Department of Physics, Computational Biophysics and Bioinformatics, Clemson University, Clemson, South Carolina, 29634
| | - Emil Alexov
- Department of Physics, Computational Biophysics and Bioinformatics, Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|
15
|
Wolf S, Freier E, Gerwert K. A delocalized proton-binding site within a membrane protein. Biophys J 2015; 107:174-84. [PMID: 24988352 DOI: 10.1016/j.bpj.2014.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 11/26/2022] Open
Abstract
The role of protein-bound water molecules in protein function and catalysis is an emerging topic. Here, we studied the solvation of an excess proton by protein-bound water molecules and the contribution of the surrounding amino acid residues at the proton release site of the membrane protein bacteriorhodopsin. It hosts an excess proton within a protein-bound water cluster, which is hydrogen bonded to several surrounding amino acids. Indicative of delocalization is a broad continuum absorbance experimentally observed by time-resolved Fourier transform infrared spectroscopy. In combination with site-directed mutagenesis, the involvement of several amino acids (especially Glu-194 and Glu-204) in the delocalization was elaborated. Details regarding the contributions of the glutamates and water molecules to the delocalization mode in biomolecular simulations are controversial. We carried out quantum mechanics/molecular mechanics (QM/MM) self-consistent charge density functional tight-binding simulations for all amino acids that have been experimentally shown to be involved in solvation of the excess proton, and systematically investigated the influence of the quantum box size. We compared calculated theoretical infrared spectra with experimental ones as a measure for the correct description of excess proton delocalization. A continuum absorbance can only be observed for small quantum boxes containing few amino acids and/or water molecules. Larger quantum boxes, including all experimentally shown involved amino acids, resulted in narrow absorbance bands, indicating protonation of a single binding site in contradiction to experimental results. We conclude that small quantum boxes seem to reproduce representative extreme cases of proton delocalization modes: proton delocalization only on water molecules or only between Glu-194 and Glu-204. Extending the experimental spectral region to lower wave numbers, a water-delocalized proton reproduces the observed continuum absorbance better than a glutamate-shared delocalized proton. However, a full agreement between QM simulations and experimental results on the delocalized excess proton will require a larger quantum box as well as more sophisticated QM/MM methods.
Collapse
Affiliation(s)
- Steffen Wolf
- Department of Biophysics, Chinese Academy of Sciences-Max-Planck-Gesellschaft Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, P.R. China
| | - Erik Freier
- Department of Biophysics, University of Bochum, Bochum, Germany
| | - Klaus Gerwert
- Department of Biophysics, Chinese Academy of Sciences-Max-Planck-Gesellschaft Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, P.R. China; Department of Biophysics, University of Bochum, Bochum, Germany.
| |
Collapse
|
16
|
Halorhodopsin pumps Cl- and bacteriorhodopsin pumps protons by a common mechanism that uses conserved electrostatic interactions. Proc Natl Acad Sci U S A 2014; 111:16377-82. [PMID: 25362051 DOI: 10.1073/pnas.1411119111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Key mutations differentiate the functions of homologous proteins. One example compares the inward ion pump halorhodopsin (HR) and the outward proton pump bacteriorhodopsin (BR). Of the nine essential buried ionizable residues in BR, six are conserved in HR. However, HR changes three BR acids, D85 in a central cluster of ionizable residues, D96, nearer the intracellular, and E204, nearer the extracellular side of the membrane to the small, neutral amino acids T111, V122, and T230, respectively. In BR, acidic amino acids are stationary anions whose proton affinity is modulated by conformational changes, establishing a sequence of directed binding and release of protons. Multiconformation continuum electrostatics calculations of chloride affinity and residue protonation show that, in reaction intermediates where an acid is ionized in BR, a Cl(-) is bound to HR in a position near the deleted acid. In the HR ground state, Cl(-) binds tightly to the central cluster T111 site and weakly to the extracellular T230 site, recovering the charges on ionized BR-D85 and neutral E204 in BR. Imposing key conformational changes from the BR M intermediate into the HR structure results in the loss of Cl(-) from the central T111 site and the tight binding of Cl(-) to the extracellular T230 site, mirroring the changes that protonate BR-D85 and ionize E204 in BR. The use of a mobile chloride in place of D85 and E204 makes HR more susceptible to the environmental pH and salt concentrations than BR. These studies shed light on how ion transfer mechanisms are controlled through the interplay of protein and ion electrostatics.
Collapse
|
17
|
ProBLM web server: protein and membrane placement and orientation package. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:838259. [PMID: 25126110 PMCID: PMC4122144 DOI: 10.1155/2014/838259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/28/2014] [Accepted: 07/01/2014] [Indexed: 01/08/2023]
Abstract
The 3D structures of membrane proteins are typically determined without the presence of a lipid bilayer. For the purpose of studying the role of membranes on the wild type characteristics of the corresponding protein, determining the position and orientation of transmembrane proteins within a membrane environment is highly desirable. Here we report a geometry-based approach to automatically insert a membrane protein with a known 3D structure into pregenerated lipid bilayer membranes with various dimensions and lipid compositions or into a pseudomembrane. The pseudomembrane is built using the Protein Nano-Object Integrator which generates a parallelepiped of user-specified dimensions made up of pseudoatoms. The pseudomembrane allows for modeling the desolvation effects while avoiding plausible errors associated with wrongly assigned protein-lipid contacts. The method is implemented into a web server, the ProBLM server, which is freely available to the biophysical community. The web server allows the user to upload a protein coordinate file and any missing residues or heavy atoms are regenerated. ProBLM then creates a combined protein-membrane complex from the given membrane protein and bilayer lipid membrane or pseudomembrane. The user is given an option to manually refine the model by manipulating the position and orientation of the protein with respect to the membrane.
Collapse
|
18
|
Ran T, Ozorowski G, Gao Y, Sineshchekov OA, Wang W, Spudich JL, Luecke H. Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1965-80. [DOI: 10.1107/s0907444913017575] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 06/26/2013] [Indexed: 11/10/2022]
Abstract
Proteorhodopsins (PRs), members of the microbial rhodopsin superfamily of seven-transmembrane-helix proteins that use retinal chromophores, comprise the largest subfamily of rhodopsins, yet very little structural information is available. PRs are ubiquitous throughout the biosphere and their genes have been sequenced in numerous species of bacteria. They have been shown to exhibit ion-pumping activity like their archaeal homolog bacteriorhodopsin (BR). Here, the first crystal structure of a proteorhodopsin, that of a blue-light-absorbing proteorhodopsin (BPR) isolated from the Mediterranean Sea at a depth of 12 m (Med12BPR), is reported. Six molecules ofMed12BPR form a doughnut-shapedC6hexameric ring, unlike BR, which forms a trimer. Furthermore, the structures of two mutants of a related BPR isolated from the Pacific Ocean near Hawaii at a depth of 75 m (HOT75BPR), which show aC5pentameric arrangement, are reported. In all three structures the retinal polyene chain is shifted towards helixCwhen compared with other microbial rhodopsins, and the putative proton-release group in BPR differs significantly from those of BR and xanthorhodopsin (XR). The most striking feature of proteorhodopsin is the position of the conserved active-site histidine (His75, also found in XR), which forms a hydrogen bond to the proton acceptor from the same molecule (Asp97) and also to Trp34 of a neighboring protomer. Trp34 may function by stabilizing His75 in a conformation that favors a deprotonated Asp97 in the dark state, and suggests cooperative behavior between protomers when the protein is in an oligomeric form. Mutation-induced alterations in proton transfers in the BPR photocycle inEscherichia colicells provide evidence for a similar cross-protomer interaction of BPR in living cells and a functional role of the inter-protomer Trp34–His75 interaction in ion transport. Finally, Wat402, a key molecule responsible for proton translocation between the Schiff base and the proton acceptor in BR, appears to be absent in PR, suggesting that the ion-transfer mechanism may differ between PR and BR.
Collapse
|
19
|
Zhang XC, Sun K, Zhang L, Li X, Cao C. GPCR activation: protonation and membrane potential. Protein Cell 2013; 4:747-60. [PMID: 24057762 DOI: 10.1007/s13238-013-3073-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/11/2013] [Indexed: 12/22/2022] Open
Abstract
GPCR proteins represent the largest family of signaling membrane proteins in eukaryotic cells. Their importance to basic cell biology, human diseases, and pharmaceutical interventions is well established. Many crystal structures of GPCR proteins have been reported in both active and inactive conformations. These data indicate that agonist binding alone is not sufficient to trigger the conformational change of GPCRs necessary for binding of downstream G-proteins, yet other essential factors remain elusive. Based on analysis of available GPCR crystal structures, we identified a potential conformational switch around the conserved Asp2.50, which consistently shows distinct conformations between inactive and active states. Combining the structural information with the current literature, we propose an energy-coupling mechanism, in which the interaction between a charge change of the GPCR protein and the membrane potential of the living cell plays a key role for GPCR activation.
Collapse
Affiliation(s)
- Xuejun C Zhang
- National Laboratory of Macromolecules, National Center for Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China,
| | | | | | | | | |
Collapse
|
20
|
Gunner MR, Amin M, Zhu X, Lu J. Molecular mechanisms for generating transmembrane proton gradients. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:892-913. [PMID: 23507617 PMCID: PMC3714358 DOI: 10.1016/j.bbabio.2013.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 01/02/2023]
Abstract
Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side.
Collapse
Affiliation(s)
- M R Gunner
- Department of Physics, City College of New York, New York, NY 10031, USA.
| | | | | | | |
Collapse
|
21
|
Anandakrishnan R, Aguilar B, Onufriev AV. H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 2012; 40:W537-41. [PMID: 22570416 PMCID: PMC3394296 DOI: 10.1093/nar/gks375] [Citation(s) in RCA: 1291] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The accuracy of atomistic biomolecular modeling and simulation studies depend on the accuracy of the input structures. Preparing these structures for an atomistic modeling task, such as molecular dynamics (MD) simulation, can involve the use of a variety of different tools for: correcting errors, adding missing atoms, filling valences with hydrogens, predicting pK values for titratable amino acids, assigning predefined partial charges and radii to all atoms, and generating force field parameter/topology files for MD. Identifying, installing and effectively using the appropriate tools for each of these tasks can be difficult for novice and time-consuming for experienced users. H++ (http://biophysics.cs.vt.edu/) is a free open-source web server that automates the above key steps in the preparation of biomolecular structures for molecular modeling and simulations. H++ also performs extensive error and consistency checking, providing error/warning messages together with the suggested corrections. In addition to numerous minor improvements, the latest version of H++ includes several new capabilities and options: fix erroneous (flipped) side chain conformations for HIS, GLN and ASN, include a ligand in the input structure, process nucleic acid structures and generate a solvent box with specified number of common ions for explicit solvent MD.
Collapse
|
22
|
Riccardi D, Zhu X, Goyal P, Yang S, Hou G, Cui Q. Toward molecular models of proton pumping: Challenges, methods and relevant applications. Sci China Chem 2011. [DOI: 10.1007/s11426-011-4458-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Goyal P, Ghosh N, Phatak P, Clemens M, Gaus M, Elstner M, Cui Q. Proton storage site in bacteriorhodopsin: new insights from quantum mechanics/molecular mechanics simulations of microscopic pK(a) and infrared spectra. J Am Chem Soc 2011; 133:14981-97. [PMID: 21761868 PMCID: PMC3178665 DOI: 10.1021/ja201568s] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Identifying the group that acts as the proton storage/loading site is a challenging but important problem for understanding the mechanism of proton pumping in biomolecular proton pumps, such as bacteriorhodopsin (bR) and cytochrome c oxidase. Recent experimental studies of bR propelled the idea that the proton storage/release group (PRG) in bR is not an amino acid but a water cluster embedded in the protein. We argue that this idea is at odds with our knowledge of protein electrostatics, since invoking the water cluster as the PRG would require the protein to raise the pK(a) of a hydronium by almost 11 pK(a) units, which is difficult considering known cases of pK(a) shifts in proteins. Our recent quantum mechanics/molecular mechanics (QM/MM) simulations suggested an alternative "intermolecular proton bond" model in which the stored proton is shared between two conserved Glu residues (194 and 204). Here we show that this model leads to microscopic pK(a) values consistent with available experimental data and the functional requirement of a PRG. Extensive QM/MM simulations also show that, independent of a number of technical issues, such as the influence of QM region size, starting X-ray structure, and nuclear quantum effects, the "intermolecular proton bond" model is qualitatively consistent with available spectroscopic data. Potential of mean force calculations show explicitly that the stored proton strongly prefers the pair of Glu residues over the water cluster. The results and analyses help highlight the importance of considering protein electrostatics and provide arguments for why the "intermolecular proton bond" model is likely applicable to the PRG in biomolecular proton pumps in general.
Collapse
Affiliation(s)
- Puja Goyal
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, 1101 University Ave, Madison, WI 53706
| | - Nilanjan Ghosh
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, 1101 University Ave, Madison, WI 53706
| | - Prasad Phatak
- Department of Physical and Theoretical Chemistry, TU Braunschweig, Hans-Sommer-Straβe 10, D-38106 Braunschweig, Germany
| | - Maike Clemens
- Department of Physical and Theoretical Chemistry, TU Braunschweig, Hans-Sommer-Straβe 10, D-38106 Braunschweig, Germany
| | - Michael Gaus
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Department of Physical and Theoretical Chemistry, TU Braunschweig, Hans-Sommer-Straβe 10, D-38106 Braunschweig, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, 1101 University Ave, Madison, WI 53706
| |
Collapse
|
24
|
Fischer N, Kandt C. Three ways in, one way out: water dynamics in the trans-membrane domains of the inner membrane translocase AcrB. Proteins 2011; 79:2871-85. [PMID: 21905112 DOI: 10.1002/prot.23122] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 06/03/2011] [Accepted: 07/10/2011] [Indexed: 01/21/2023]
Abstract
Powered by proton-motive force, the inner membrane translocase AcrB is the engine of the AcrAB-TolC efflux pump in Escherichia coli. As proton conduction in proteins occurs along hydrogen-bonded networks of polar residues and water molecules, knowledge of the protein-internal water distribution and water-interacting residues allows drawing conclusions to possible pathways of proton conduction. Here, we report a series of 6× 50 ns independent molecular dynamics simulations of asymmetric AcrB embedded in a phospholipid/water environment. Simulating each monomer in its proposed protonation state, we calculated for each trans-membrane domain the average water distribution, identified residues interacting with these waters and quantified each residue's frequency of water hydrogen bond contact. Combining this information we find three possible routes of proton transfer connecting a continuously hydrated region of known key residues in the TMD interior to bulk water by one cytoplasmic and up to three periplasm water channels in monomer B and A. We find that water access of the trans-membrane domains is regulated by four groups of residues in a combination of side chain re-orientations and shifts of trans-membrane helices. Our findings support a proton release event via Arg971 during the C intermediate or in the transition to A, and proton uptake occurring in the A or B state or during a so far unknown intermediate in between B and C where cytoplasmic water access is still possible. Our simulations suggest experimentally testable hypotheses, which have not been investigated so far.
Collapse
Affiliation(s)
- Nadine Fischer
- Computational Structural Biology, Department of Life Science Informatics B-IT, Life & Medical Sciences (LIMES) Center, University of Bonn, Bonn, Germany
| | | |
Collapse
|
25
|
Xie F, Briggs JM, Dupureur CM. Nucleophile activation in PD...(D/E)xK metallonucleases: an experimental and computational pK(a) study. J Inorg Biochem 2010; 104:665-72. [PMID: 20347155 PMCID: PMC2913505 DOI: 10.1016/j.jinorgbio.2010.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 02/03/2010] [Accepted: 02/26/2010] [Indexed: 10/19/2022]
Abstract
Metallonucleases conduct metal-dependent nucleic acid hydrolysis. While metal ions serve in multiple mechanistic capacities in these enzymes, precisely how the attacking water is activated remains unclear for those lacking an obvious general base. All arguments hinge on appropriate pK(a)s for active site moieties very close to this species, and measurement of the pK(a) of a specific water molecule is difficult to access experimentally. Here we describe a computational approach for exploring the local electrostatic influences on the water-derived nucleophile in metallonucleases featuring the common PD...(D/E)xK motif. We utilized UHBD to predict the pK(a)s of active site groups, including that of a water molecule positioned to act as a nucleophile. The pK(a) of a Mg(II)-ligated water molecule hydrogen bonded to the conserved Lys70 in a Mg(II)-PvuII enzyme complex was calculated to be 6.5. The metal and the charge on the Lys group were removed in separate experiments; both resulted in the elevation of the pK(a) of this water molecule, consistent with contributions from both moieties to lowering this pK(a). This behavior is preserved among other PD...(D/E)xK metallonucleases. pK(a)s extracted from the pH dependence of the single turnover rate constant are compared to previous experimental data and the above predicted pK(a)s.
Collapse
|
26
|
Chu LK, El-Sayed MA. Kinetics of the M-Intermediate in the Photocycle of Bacteriorhodopsin upon Chemical Modification with Surfactants. Photochem Photobiol 2010; 86:316-23. [DOI: 10.1111/j.1751-1097.2009.00666.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Ranaghan KE, Mulholland AJ. Investigations of enzyme-catalysed reactions with combined quantum mechanics/molecular mechanics (QM/MM) methods. INT REV PHYS CHEM 2010. [DOI: 10.1080/01442350903495417] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Song Y, Mao J, Gunner MR. MCCE2: improving protein pKa calculations with extensive side chain rotamer sampling. J Comput Chem 2009; 30:2231-47. [PMID: 19274707 PMCID: PMC2735604 DOI: 10.1002/jcc.21222] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiconformation continuum electrostatics (MCCE) explores different conformational degrees of freedom in Monte Carlo calculations of protein residue and ligand pK(a)s. Explicit changes in side chain conformations throughout a titration create a position dependent, heterogeneous dielectric response giving a more accurate picture of coupled ionization and position changes. The MCCE2 methods for choosing a group of input heavy atom and proton positions are described. The pK(a)s calculated with different isosteric conformers, heavy atom rotamers and proton positions, with different degrees of optimization are tested against a curated group of 305 experimental pK(a)s in 33 proteins. QUICK calculations, with rotation around Asn and Gln termini, sampling His tautomers and torsion minimum hydroxyls yield an RMSD of 1.34 with 84% of the errors being <1.5 pH units. FULL calculations adding heavy atom rotamers and side chain optimization yield an RMSD of 0.90 with 90% of the errors <1.5 pH unit. Good results are also found for pK(a)s in the membrane protein bacteriorhodopsin. The inclusion of extra side chain positions distorts the dielectric boundary and also biases the calculated pK(a)s by creating more neutral than ionized conformers. Methods for correcting these errors are introduced. Calculations are compared with multiple X-ray and NMR derived structures in 36 soluble proteins. Calculations with X-ray structures give significantly better pK(a)s. Results with the default protein dielectric constant of 4 are as good as those using a value of 8. The MCCE2 program can be downloaded from http://www.sci.ccny.cuny.edu/~mcce.
Collapse
Affiliation(s)
- Yifan Song
- Department of Physics, J-419 City College of New York, 138th Street, Convent Avenue, New York, New York 10031, USA
| | | | | |
Collapse
|
29
|
Zheng Z, Gunner MR. Analysis of the electrochemistry of hemes with E(m)s spanning 800 mV. Proteins 2009; 75:719-34. [PMID: 19003997 DOI: 10.1002/prot.22282] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The free energy of heme reduction in different proteins is found to vary over more than 18 kcal/mol. It is a challenge to determine how proteins manage to achieve this enormous range of E(m)s with a single type of redox cofactor. Proteins containing 141 unique hemes of a-, b-, and c-type, with bis-His, His-Met, and aquo-His ligation were calculated using Multi-Conformation Continuum Electrostatics (MCCE). The experimental E(m)s range over 800 mV from -350 mV in cytochrome c(3) to 450 mV in cytochrome c peroxidase (vs. SHE). The quantitative analysis of the factors that modulate heme electrochemistry includes the interactions of the heme with its ligands, the solvent, the protein backbone, and sidechains. MCCE calculated E(m)s are in good agreement with measured values. Using no free parameters the slope of the line comparing calculated and experimental E(m)s is 0.73 (R(2) = 0.90), showing the method accounts for 73% of the observed E(m) range. Adding a +160 mV correction to the His-Met c-type hemes yields a slope of 0.97 (R(2) = 0.93). With the correction 65% of the hemes have an absolute error smaller than 60 mV and 92% are within 120 mV. The overview of heme proteins with known structures and E(m)s shows both the lowest and highest potential hemes are c-type, whereas the b-type hemes are found in the middle E(m) range. In solution, bis-His ligation lowers the E(m) by approximately 205 mV relative to hemes with His-Met ligands. The bis-His, aquo-His, and His-Met ligated b-type hemes all cluster about E(m)s which are approximately 200 mV more positive in protein than in water. In contrast, the low potential bis-His c-type hemes are shifted little from in solution, whereas the high potential His-Met c-type hemes are raised by approximately 300 mV from solution. The analysis shows that no single type of interaction can be identified as the most important in setting heme electrochemistry in proteins. For example, the loss of solvation (reaction field) energy, which raises the E(m), has been suggested to be a major factor in tuning in situ E(m)s. However, the calculated solvation energy vs. experimental E(m) shows a slope of 0.2 and R(2) of 0.5 thus correlates weakly with E(m)s. All other individual interactions show even less correlation with E(m). However the sum of these terms does reproduce the range of observed E(m)s. Therefore, different proteins use different aspects of their structures to modulate the in situ heme electrochemistry. This study also shows that the calculated E(m)s are relatively insensitive to different heme partial charges and to the protein dielectric constant used in the simulation.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Physics, The City College of New York, New York, NY, USA
| | | |
Collapse
|
30
|
Abstract
Recent advances in the crystallography of bacteriorhodopsin, the light-driven proton pump, have yielded structural models for all intermediates of the photochemical cycle. For seven of the species, X-ray diffraction data were collected from trapped photostationary states in crystals, and for the two remaining ones the structures of selected mutants are available. The changes of the retinal chromophore, protein and bound water describe, at an atomic level, how accommodation of the twisted photoisomerized retinal to its binding site causes de-protonation of the retinal Schiff base and initiates cascades of gradual conformational rearrangements of the protein. One cascade propagates in the extracellular direction and results in proton release, and the other in the cytoplasmic direction and results in side-chain and main-chain rearrangements, formation of a chain of hydrogen-bonded water, and proton uptake from the bulk. Such local-global conformational coupling, with gradual spreading of a local perturbation over the rest of the protein, might be the uniting principle of transporters and receptors.
Collapse
Affiliation(s)
- Janos K Lanyi
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
31
|
Babitzki G, Denschlag R, Tavan P. Polarization Effects Stabilize Bacteriorhodopsin’s Chromophore Binding Pocket: A Molecular Dynamics Study. J Phys Chem B 2009; 113:10483-95. [DOI: 10.1021/jp902428x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- G. Babitzki
- Theoretische Biophysik, Lehrstuhl für Biomolekulare Optik, Ludwig-Maximilians-Universität, Oettingenstr. 67, 80538 München, Germany
| | - R. Denschlag
- Theoretische Biophysik, Lehrstuhl für Biomolekulare Optik, Ludwig-Maximilians-Universität, Oettingenstr. 67, 80538 München, Germany
| | - P. Tavan
- Theoretische Biophysik, Lehrstuhl für Biomolekulare Optik, Ludwig-Maximilians-Universität, Oettingenstr. 67, 80538 München, Germany
| |
Collapse
|
32
|
Wassenaar TA, Daura X, Padrós E, Mark AE. Calcium binding to the purple membrane: A molecular dynamics study. Proteins 2009; 74:669-81. [PMID: 18704943 DOI: 10.1002/prot.22182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purple membrane (PM) is a specialized membrane patch found in halophilic archaea, containing the photoreceptor bacteriorhodopsin (bR). It is long known that calcium ions bind to the PM, but their position and role remain elusive to date. Molecular dynamics simulations in conjunction with a highly detailed model of the PM have been used to investigate the stability of calcium ions placed at three proposed cation binding sites within bR, one near the Schiff base, one in the region of the proton release group, and one near Glu9. The simulations suggest that, of the sites investigated, the binding of calcium ions was most likely at the proton release group. Binding in the region of the Schiff base, while possible, was associated with significant changes in local geometry. Calcium ions placed near Glu9 in the interior of bR (simultaneously to a Ca(2+) near the Schiff base and another one near the Glu194-Glu204 site) were not stable. The results obtained are discussed in relation to recent experimental observations and theoretical considerations.
Collapse
Affiliation(s)
- Tsjerk A Wassenaar
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
33
|
Amino acids with an intermolecular proton bond as proton storage site in bacteriorhodopsin. Proc Natl Acad Sci U S A 2008; 105:19672-7. [PMID: 19064907 DOI: 10.1073/pnas.0810712105] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The positions of protons are not available in most high-resolution structural data of biomolecules, thus the identity of proton storage sites in biomolecules that transport proton is generally difficult to determine unambiguously. Using combined quantum mechanical/molecular mechanical computations, we demonstrate that a pair of conserved glutamate residues (Glu 194/204) bonded by a delocalized proton is the proton release group that has been long sought in the proton pump, bacteriorhodopsin. This model is consistent with all available experimental structural and infrared data for both the wild-type bacteriorhodopsin and several mutants. In particular, the continuum infrared band in the 1,800- to 2,000-cm(-1) region is shown to arise due to the partially delocalized nature of the proton between the glutamates in the wild-type bacteriorhodopsin; alternations in the flexibility of the glutamates and electrostatic nature of nearby residues in various mutants modulate the degree of proton delocalization and therefore intensity of the continuum band. The strong hydrogen bond between Glu 194/204 also significantly shifts the carboxylate stretches of these residues well <1,700 cm(-1), which explains why carboxylate spectral shift was not observed experimentally in the typical >1,700-cm(-1) region upon proton release. By contrast, simulations with the proton restrained on the nearby water cluster, as proposed by several recent studies [see, for example, Garezarek K, Gerwert K (2006) Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439:109], led to significant structural deviations from available X-ray structures. This study establishes a biological function for strong, low-barrier hydrogen bonds.
Collapse
|
34
|
Morgan JE, Vakkasoglu AS, Lugtenburg J, Gennis RB, Maeda A. Structural changes due to the deprotonation of the proton release group in the M-photointermediate of bacteriorhodopsin as revealed by time-resolved FTIR spectroscopy. Biochemistry 2008; 47:11598-605. [PMID: 18837559 DOI: 10.1021/bi801405v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the steps in the proton pumping cycle of bacteriorhodopsin (BR) is the release of a proton from the proton-release group (PRG) on the extracellular side of the Schiff base. This proton release takes place shortly after deprotonation of the Schiff base (L-to-M transition) and results in an increase in the pKa of Asp85, which is a crucial mechanistic step for one-way proton transfer for the entire photocycle. Deprotonation of the PRG can also be brought about without photoactivation, by raising the pH of the enzyme (pKa of PRG; approximately 9). Thus, comparison of the FTIR difference spectrum for formation of the M intermediate (M minus initial unphotolyzed BR state) at pH 7 to the corresponding spectrum generated at pH 10 may reveal structural changes specifically associated with deprotonation of the PRG. Vibrational bands of BR that change upon M formation are distributed across a broad region between 2120 and 1685 cm(-1). This broad band is made up of two parts. The band above 1780 cm(-1), which is insensitive to C15-deuteration of the retinal, may be due to a proton delocalized in the PRG. The band between 1725 and 1685 cm(-1), on the lower frequency side of the broad band, is sensitive to C15-deuteration. This band may arise from transition dipole coupling of the vibrations of backbone carbonyl groups in helix G with the side chain of Tyr57 and with the C15H of the Schiff base. In M, these broad bands are abolished, and the 3657 cm(-1) band, which is due to the disruption of the hydrogen bonding of a water molecule, probably with Arg82, appears. Loss of the interaction of the backbone carbonyl groups in helix G with Tyr57 and the Schiff base, and separation of Tyr57 from Arg82, may be causes of these spectral changes, leading to the stabilization of the protonated Asp85 in M.
Collapse
Affiliation(s)
- Joel E Morgan
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Room 2137, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, USA
| | | | | | | | | |
Collapse
|
35
|
Nabedryk E, Breton J. Coupling of electron transfer to proton uptake at the QB site of the bacterial reaction center: A perspective from FTIR difference spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1229-48. [DOI: 10.1016/j.bbabio.2008.06.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/26/2008] [Accepted: 06/27/2008] [Indexed: 01/09/2023]
|
36
|
Abstract
We report a very fast and accurate physics-based method to calculate pH-dependent electrostatic effects in protein molecules and to predict the pK values of individual sites of titration. In addition, a CHARMm-based algorithm is included to construct and refine the spatial coordinates of all hydrogen atoms at a given pH. The present method combines electrostatic energy calculations based on the Generalized Born approximation with an iterative mobile clustering approach to calculate the equilibria of proton binding to multiple titration sites in protein molecules. The use of the GBIM (Generalized Born with Implicit Membrane) CHARMm module makes it possible to model not only water-soluble proteins but membrane proteins as well. The method includes a novel algorithm for preliminary refinement of hydrogen coordinates. Another difference from existing approaches is that, instead of monopeptides, a set of relaxed pentapeptide structures are used as model compounds. Tests on a set of 24 proteins demonstrate the high accuracy of the method. On average, the RMSD between predicted and experimental pK values is close to 0.5 pK units on this data set, and the accuracy is achieved at very low computational cost. The pH-dependent assignment of hydrogen atoms also shows very good agreement with protonation states and hydrogen-bond network observed in neutron-diffraction structures. The method is implemented as a computational protocol in Accelrys Discovery Studio and provides a fast and easy way to study the effect of pH on many important mechanisms such as enzyme catalysis, ligand binding, protein-protein interactions, and protein stability.
Collapse
|
37
|
Dynamics of voltage profile in enzymatic ion transporters, demonstrated in electrokinetics of proton pumping rhodopsin. Biophys J 2008; 95:5005-13. [PMID: 18621842 DOI: 10.1529/biophysj.107.125260] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
H(+)-pumping rhodopsins mediate a primordial conversion of light to metabolic energy. Bacteriorhodopsin from Halobacterium salinarium is the first identified and (biochemically) best-studied H(+)-pumping rhodopsin. The electrical properties of H(+)-pumping rhodopsins, however, are known in more detail for the homolog Acetabularia rhodopsin, isolated from the eukaryotic green alga Acetabularia acetabulum. Based on data from Acetabularia rhodopsin we present a general reaction kinetic model of H(+)-pumping rhodopsins with only seven independent parameters, which fits the kinetic properties of photocurrents as functions of light, transmembrane voltage, internal and external pH, and time. The model describes fast photoisomerization of retinal with simultaneous H(+) transfer to an H(+) acceptor, reprotonation of retinal from the intracellular face via an H(+) donor, and proton release to the extracellular space via an H(+) release complex. The voltage sensitivities of the individual reaction steps and their temporal changes are treated here by a novel approach, whereby--as in an Ohmic voltage divider--the effective portions of the total transmembrane voltage decrease with the relative velocities of the individual reaction steps. This analysis quantitatively infers dynamic changes of the voltage profile and of the pK values of the H(+)-binding sites involved.
Collapse
|
38
|
Ullmann GM, Kloppmann E, Essigke T, Krammer EM, Klingen AR, Becker T, Bombarda E. Investigating the mechanisms of photosynthetic proteins using continuum electrostatics. PHOTOSYNTHESIS RESEARCH 2008; 97:33-53. [PMID: 18478354 DOI: 10.1007/s11120-008-9306-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 04/10/2008] [Indexed: 05/26/2023]
Abstract
Computational methods based on continuum electrostatics are widely used in theoretical biochemistry to analyze the function of proteins. Continuum electrostatic methods in combination with quantum chemical and molecular mechanical methods can help to analyze even very complex biochemical systems. In this article, applications of these methods to proteins involved in photosynthesis are reviewed. After giving a short introduction to the basic concepts of the continuum electrostatic model based on the Poisson-Boltzmann equation, we describe the application of this approach to the docking of electron transfer proteins, to the comparison of isofunctional proteins, to the tuning of absorption spectra, to the analysis of the coupling of electron and proton transfer, to the analysis of the effect of membrane potentials on the energetics of membrane proteins, and to the kinetics of charge transfer reactions. Simulations as those reviewed in this article help to analyze molecular mechanisms on the basis of the structure of the protein, guide new experiments, and provide a better and deeper understanding of protein functions.
Collapse
Affiliation(s)
- G Matthias Ullmann
- Structural Biology/Bioinformatics, University of Bayreuth, Universitätsstr. 30, BGI, Bayreuth 95447, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Fitch CA, García-Moreno E B. Structure-based pKa calculations using continuum electrostatics methods. ACTA ACUST UNITED AC 2008; Chapter 8:Unit 8.11. [PMID: 18428794 DOI: 10.1002/0471250953.bi0811s16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electrostatic free energy is useful for correlating structure with function in proteins in which ionizable groups play essential functional roles. To this end, the pK(a) values of ionizable groups must be known and their molecular determinants must be understood. Structure-based calculations of electrostatic energies and pK(a) values are necessary for this purpose. This unit describes protocols for pK(a) calculations with continuum electrostatics methods based on the numerical solution of the linearized Poisson-Boltzmann equation by the method of finite differences. Critical discussion of key parameters, approximations, and shortcomings of these methods is included. Two protocols are described for calculations with methods modified empirically to maximize agreement between measured and calculated pK(a) values. Applied judiciously, these methods can contribute useful and novel insight into properties of surface ionizable groups in proteins.
Collapse
|
40
|
Braun-Sand S, Sharma PK, Chu ZT, Pisliakov AV, Warshel A. The energetics of the primary proton transfer in bacteriorhodopsin revisited: it is a sequential light-induced charge separation after all. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:441-52. [PMID: 18387356 PMCID: PMC2443747 DOI: 10.1016/j.bbabio.2008.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 02/29/2008] [Accepted: 03/03/2008] [Indexed: 11/26/2022]
Abstract
The light-induced proton transport in bacteriorhodopsin has been considered as a model for other light-induced proton pumps. However, the exact nature of this process is still unclear. For example, it is not entirely clear what the driving force of the initial proton transfer is and, in particular, whether it reflects electrostatic forces or other effects. The present work simulates the primary proton transfer (PT) by a specialized combination of the EVB and the QCFF/PI methods. This combination allows us to obtain sufficient sampling and a quantitative free energy profile for the PT at different protein configurations. The calculated profiles provide new insight about energetics of the primary PT and its coupling to the protein conformational changes. Our finding confirms the tentative analysis of an earlier work (A. Warshel, Conversion of light energy to electrostatic energy in the proton pump of Halobacterium halobium, Photochem. Photobiol. 30 (1979) 285-290) and determines that the overall PT process is driven by the energetics of the charge separation between the Schiff base and its counterion Asp85. Apparently, the light-induced relaxation of the steric energy of the chromophore leads to an increase in the ion-pair distance, and this drives the PT process. Our use of the linear response approximation allows us to estimate the change in the protein conformational energy and provides the first computational description of the coupling between the protein structural changes and the PT process. It is also found that the PT is not driven by twist-modulated changes of the Schiff base's pKa, changes in the hydrogen bond directionality, or other non-electrostatic effects. Overall, based on a consistent use of structural information as the starting point for converging free energy calculations, we conclude that the primary event should be described as a light-induced formation of an unstable ground state, whose relaxation leads to charge separation and to the destabilization of the ion-pair state. This provides the driving force for the subsequent PT steps.
Collapse
Affiliation(s)
- Sonja Braun-Sand
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
- Department of Chemistry, University of Colorado at Colorado Springs (UCCS), Colorado Springs, CO 80918
| | - Pankaz K. Sharma
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
| | - Zhen T. Chu
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
| | - Andrei V. Pisliakov
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
| |
Collapse
|
41
|
Sulpizi M, Sprik M. Acidity constants from vertical energy gaps: density functional theory based molecular dynamics implementation. Phys Chem Chem Phys 2008; 10:5238-49. [DOI: 10.1039/b802376j] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Affiliation(s)
- Philip Ball
- Nature, 4-6 Crinan Street, London N1 9XW, U.K
| |
Collapse
|
43
|
Marx D. Proton transfer 200 years after von Grotthuss: insights from ab initio simulations. Chemphyschem 2007; 7:1848-70. [PMID: 16929553 DOI: 10.1002/cphc.200600128] [Citation(s) in RCA: 628] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the last decade, ab initio simulations and especially Car-Parrinello molecular dynamics have significantly contributed to the improvement of our understanding of both the physical and chemical properties of water, ice, and hydrogen-bonded systems in general. At the heart of this family of in silico techniques lies the crucial idea of computing the many-body interactions by solving the electronic structure problem "on the fly" as the simulation proceeds, which circumvents the need for pre-parameterized potential models. In particular, the field of proton transfer in hydrogen-bonded networks greatly benefits from these technical advances. Here, several systems of seemingly quite different nature and of increasing complexity, such as Grotthuss diffusion in water, excited-state proton-transfer in solution, phase transitions in ice, and protonated water networks in the membrane protein bacteriorhodopsin, are discussed in the realms of a unifying viewpoint.
Collapse
Affiliation(s)
- Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
44
|
Bálint Z, Végh GA, Popescu A, Dima M, Ganea C, Varó G. Direct observation of protein motion during the photochemical reaction cycle of bacteriorhodopsin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:7225-8. [PMID: 17503866 DOI: 10.1021/la700666p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Platinum-coated, conductive atomic force microscope cantilevers were used to deposit electrophoretically purple membranes from Halobacterium salinarum on the bottom part of the cantilevers. By illuminating the bacteriorhodopsin-containing purple membranes, the protein goes through its photochemical reaction cycle, during which a conformational change happens in the protein, changing its shape and size. The size change of the protein acts upon the cantilever by causing its deflection, which can be monitored by the detection system of the atomic force microscope. The shape of the signal, the action spectrum of the deflection amplitude, and the blue light inhibition of the deflection all prove that the origin of the signal is the conformational change arising in the bacteriorhodopsin during the photocycle. From the size of the signal, the magnitude of the protein motion could be estimated. Using polarized light, the orientation of the motion was determined, relative to the transition moment of the retinal.
Collapse
Affiliation(s)
- Zoltán Bálint
- Institute of Biophysics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary H-6726
| | | | | | | | | | | |
Collapse
|
45
|
Mathias G, Marx D. Structures and spectral signatures of protonated water networks in bacteriorhodopsin. Proc Natl Acad Sci U S A 2007; 104:6980-5. [PMID: 17438299 PMCID: PMC1855365 DOI: 10.1073/pnas.0609229104] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Indexed: 11/18/2022] Open
Abstract
Networks of internal water molecules are thought to provide proton transfer pathways in many enzymatic and photosynthetic reactions. Extremely broad absorption continua observed in recent IR spectroscopic measurements on the photodriven proton pump bacteriorhodopsin (BR) suggest such networks may also serve as proton storage and release sites for these reactions. By combining electronic structure calculations with molecular mechanical force fields, we examine the dynamics and the resulting IR spectra of two protonated water networks, H+.(H2O)3 and H+.(H2O)4, in the release pocket of the initial state of BR, which possibly serve as proton donors to the extracellular surface. For both network sizes, topologically similar structures are found, which are anchored at residues E194 and E204 and stabilized by additional hydrogen bonds from neighboring protein side chains. These protonated water networks assume neither the classic Zundel nor Eigen motives but prefer wire-like topologies. Upon gauging calculated IR spectra of finite clusters with experimental gas-phase data, it is possible to link spectral features computed for these chain-like structures in the initial state of the BR photocycle to the measured absorption continua, in particular for the larger H+.(H2O)4 network. Furthermore, the free energy of proton dislocation along these chains is found to be within the range that is easily accessible at room temperature because of fluctuations.
Collapse
Affiliation(s)
- Gerald Mathias
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
46
|
Cheap H, Tandori J, Derrien V, Benoit M, de Oliveira P, Koepke J, Lavergne J, Maroti P, Sebban P. Evidence for Delocalized Anticooperative Flash Induced Proton Binding as Revealed by Mutants at the M266His Iron Ligand in Bacterial Reaction Centers. Biochemistry 2007; 46:4510-21. [PMID: 17378585 DOI: 10.1021/bi602416s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial reaction centers (RCs) convert light energy into chemical free energy via the double reduction and protonation of the secondary quinone electron acceptor, QB, to the dihydroquinone QBH2. Two RC mutants (M266His --> Leu and M266His --> Ala) with a modified ligand of the non-heme iron have been studied by flash-induced absorbance change spectroscopy. No important changes were observed for the rate constants of the first and second electron transfers between the first quinone electron acceptor, QA, and QB. However, in the M266HL mutant a destabilization of approximately 40 meV of the free energy level of QA- was observed, at variance with the M266HA mutant. The superposition of the three-dimensional X-ray structures of the three proteins in the QA region provides no obvious explanation for the energy modification in the M266HL mutant. The shift of the midpoint redox potential of QA/QA- in M266HL caused accelerated recombination of the charges in the P+ QA- state of the RCs where the native QA was replaced by a low potential anthraquinone (AQA). As previously reported for the native RCs, in the M266HL we observed a biphasicity of the P+ AQA- --> P AQA charge recombination. Interestingly, both phases present a similar acceleration in the M266HL mutant with respect to the wild type. The pH dependencies of the proton uptake upon QA- and QB- formations are superimposable in both mutants but very different from those of native RCs. The data measured in mutants are similar to those that we previously obtained on strains modified at various sites of the cytoplasmic region. The similarity of the response to these different mutations is puzzling, and we propose that it arises from a collective behavior of multiple acidic residues resulting in strongly anticooperative proton binding. The unspecific disappearance of the high pH band of proton uptake observed in all these mutants appears as the natural consequence of removing any member of an interactive proton cluster. This long range interaction also accounts for the similar responses to mutations of the proton uptake pattern induced by either QA- or QB-. We surmise that the presence of an extended protonated water H-bond network providing protons to QB is responsible for these effects.
Collapse
Affiliation(s)
- Hélène Cheap
- Laboratoire de Chimie Physique, CNRS, Faculté d'Orsay, Orsay/UMR 8000, University of Paris XI, 91405 Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Xu J, Sharpe MA, Qin L, Ferguson-Miller S, Voth GA. Storage of an excess proton in the hydrogen-bonded network of the d-pathway of cytochrome C oxidase: identification of a protonated water cluster. J Am Chem Soc 2007; 129:2910-3. [PMID: 17309257 PMCID: PMC2556150 DOI: 10.1021/ja067360s] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of proton transport in the D-pathway of cytochrome c oxidase (CcO) is further elucidated through examining a protonated water/hydroxyl cluster inside the channel. The second generation multi-state empirical valence bond (MS-EVB2) model was employed in a molecular dynamics study based on a high-resolution X-ray structure to simulate the interaction of the excess proton with the channel environment. Our results indicate that a hydrogen-bonded network consisting of about 5 water molecules surrounded by three side chains and two backbone groups (S197, S200, S201, F108) is involved in storage and translocation of an excess proton to the extracellular side of CcO.
Collapse
Affiliation(s)
- Jiancong Xu
- Department of Chemistry and Center for Biophysical Modeling and Simulation, 315 South 1400 East Room 2020, University of Utah, Salt Lake City, UT 84112-0850, USA
| | - Martyn A. Sharpe
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | - Ling Qin
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | - Gregory A. Voth
- Department of Chemistry and Center for Biophysical Modeling and Simulation, 315 South 1400 East Room 2020, University of Utah, Salt Lake City, UT 84112-0850, USA
| |
Collapse
|
48
|
Nabedryk E, Paddock ML, Okamura MY, Breton J. Monitoring the pH Dependence of IR Carboxylic Acid Signals upon QB- Formation in the Glu-L212 → Asp/Asp-L213 → Glu Swap Mutant Reaction Center from Rhodobacter sphaeroides. Biochemistry 2007; 46:1176-82. [PMID: 17260947 DOI: 10.1021/bi0619627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the photosynthetic reaction center (RC) from the purple bacterium Rhodobacter sphaeroides, proton-coupled electron-transfer reactions occur at the secondary quinone (QB) site. Involved in the proton uptake steps are carboxylic acids, which have characteristic infrared vibrations in the 1770-1700 cm-1 spectral range that are sensitive to 1H/2H isotopic exchange. With respect to the native RC, a novel protonation pattern for carboxylic acids upon QB photoreduction has been identified in the Glu-L212 --> Asp/Asp-L213 --> Glu mutant RC using light-induced FTIR difference spectroscopy (Nabedryk, E., Breton, J., Okamura, M. Y., and Paddock, M. L. (2004) Biochemistry 43, 7236-7243). These carboxylic acids are structurally close and have been implicated in proton transfer to reduced QB. In this work, we extend previous studies by measuring the pH dependence of the QB-/QB FTIR difference spectra of the mutant in 1H2O and 2H2O. Large pH dependent changes were observed in the 1770-1700 cm-1 spectral range between pH 8 and pH 4. The IR fingerprints of the protonating carboxylic acids upon QB- formation were obtained from the calculated double-difference spectra 1H2O minus 2H2O. These IR fingerprints are specific for each pH, indicative of the contribution of different titrating groups. In particular, the 1752 cm-1 signal indicates that Glu-L213 protonates upon QB- formation at pH >or= 5, whereas the 1746 cm-1 signal indicates protonation of Asp-L212 even at pH 4. An unidentified carboxylic acid absorbing at approximately 1765 cm-1 could be the proton donor between pH 8 and 5. The observation that in the swap mutant there are several uniquely behaving carboxylic acids shows that electrostatic interactions occurring between them are sufficiently modified from the native RC to reveal their IR signatures.
Collapse
Affiliation(s)
- Eliane Nabedryk
- Service de Bioénergetique, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | | | | | | |
Collapse
|
49
|
Ferreira AM, Bashford D. Model for Proton Transport Coupled to Protein Conformational Change: Application to Proton Pumping in the Bacteriorhodopsin Photocycle. J Am Chem Soc 2006; 128:16778-90. [PMID: 17177428 DOI: 10.1021/ja060742d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A modeling method is presented for protein systems in which proton transport is coupled to conformational change, as in proton pumps and in motors driven by the proton-motive force. Previously developed methods for calculating pKa values in proteins using a macroscopic dielectric model are extended beyond the equilibrium case to a master-equation model for the time evolution of the system through states defined by ionization microstate and a discrete set of conformers. The macroscopic dielectric model supplies free energy changes for changes of protonation microstate, while the method for obtaining the energetics of conformational change and the relaxation rates, the other ingredients needed for the master equation, are system dependent. The method is applied to the photoactivated proton pump, bacteriorhodopsin, using conformational free energy differences from experiment and treating relaxation rates through three adjustable parameters. The model is found to pump protons with an efficiency relatively insensitive to parameter choice over a wide range of parameter values, and most of the main features of the known photocycle from very early M to the return to the resting state are reproduced. The boundaries of these parameter ranges are such that short-range proton transfers are faster than longer-range ones, which in turn are faster than conformational changes. No relaxation rates depend on conformation. The results suggest that an "accessibility switch", while not ruled out, is not required and that vectorial proton transport can be achieved through the coupling of the energetics of ionization and conformational states.
Collapse
Affiliation(s)
- Antonio M Ferreira
- Department of Molecular Biotechnology, Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | |
Collapse
|
50
|
Magyari K, Bálint Z, Simon V, Váró G. The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2006; 85:140-4. [PMID: 16904334 DOI: 10.1016/j.jphotobiol.2006.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 05/08/2006] [Accepted: 05/20/2006] [Indexed: 11/20/2022]
Abstract
The function of three types of bacteriorhodopsins was compared: the wild-type, the bleached and retinal reconstituted and retinal deficient bacteriorhodopsin after retinal addition. The apparent pK(a) of the proton acceptor group for the bleached BR and retinal deficient BR shifted toward higher pH values compared to the wild-type BR. Fitting the photocycle model to the absorption kinetic signals for all three proteins showed the existence of the same intermediates, but the time-dependent concentration of the intermediates was different. Although measurements were made at pH 7, the absorption kinetics and photoelectric signals in both retinal reconstituted samples acted as wild-type bacteriorhodopsin at significantly higher pH. Below pH 3 the retinal deficient and reconstituted sample bleached. These results suggested that the added retinal was not able to rebind in the same position in the protein as in native bacteriorhodopsin. This points out that care should be taken, when bleached bacteriorhodopsin is reconstituted with different retinal analogs.
Collapse
Affiliation(s)
- Klára Magyari
- Department of Physics, University "Babes-Bolyai" Cluj-Napoca, Romania
| | | | | | | |
Collapse
|