1
|
Whipham JW, Sabba M, Dagys L, Moustafa G, Bengs C, Levitt MH. Cross-correlated relaxation in the NMR of near-equivalent spin pairs: Longitudinal relaxation and long-lived singlet order. J Chem Phys 2024; 161:014112. [PMID: 38953443 DOI: 10.1063/5.0213997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
The evolution of nuclear spin state populations is investigated for the case of a 13C2-labeled triyne in solution, for which the near-equivalent coupled pairs of 13C nuclei experience cross-correlated relaxation mechanisms. Inversion-recovery experiments reveal different recovery curves for the main peak amplitudes, especially when the conversion of population imbalances to observable coherences is induced by a radio frequency pulse with a small flip angle. Measurements are performed over a range of magnetic fields by using a sample shuttle apparatus. In some cases, the time constant TS for decay of nuclear singlet order is more than 100 times larger than the time constant T1 for the equilibration of longitudinal magnetization. The results are interpreted by a theoretical model incorporating cross-correlated relaxation mechanisms, anisotropic rotational diffusion, and an external random magnetic field. A Lindbladian formalism is used to describe the dissipative dynamics of the spin system in an environment of finite temperature. Good agreement is achieved between theory and experiment.
Collapse
Affiliation(s)
- James W Whipham
- School of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
| | - Mohamed Sabba
- School of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
| | - Laurynas Dagys
- School of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
- Institute of Chemical Physics, Vilnius University, Vilnius LT-10257, Lithuania
| | - Gamal Moustafa
- School of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
| | - Christian Bengs
- School of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Malcolm H Levitt
- School of Chemistry, Southampton University, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
2
|
Zalewski M, Janasik D, Wierzbicka A, Krawczyk T. Design Principles of Responsive Relaxometric 19F Contrast Agents: Evaluation from the Point of View of Relaxation Theory and Experimental Data. Inorg Chem 2022; 61:19524-19542. [DOI: 10.1021/acs.inorgchem.2c03451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Mariusz Zalewski
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100Gliwice, Poland
| | - Dawid Janasik
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100Gliwice, Poland
| | - Adrianna Wierzbicka
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100Gliwice, Poland
| | - Tomasz Krawczyk
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100Gliwice, Poland
| |
Collapse
|
3
|
Whipham JW, Moustafa GAI, Sabba M, Gong W, Bengs C, Levitt MH. Cross-correlation effects in the solution NMR spectra of near-equivalent spin-1/2 pairs. J Chem Phys 2022; 157:104112. [DOI: 10.1063/5.0107221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nuclear magnetic resonance (NMR) spectra of spin-1/2 pairs contain four peaks, with two inner peaks much stronger than the outer peaks in the near-equivalence regime. We have observed that the strong inner peaks have significantly different linewidths when measurements were performed on a 13C2-labelled triyne derivative. This linewidth difference may be attributed to strong cross-correlation effects. We develop the theory of cross-correlated relaxation in the case of near-equivalent homonuclear spin-1/2 pairs, in the case of a molecule exhibiting strongly anisotropic rotational diffusion. Good agreement is found with the experimental NMR lineshapes.
Collapse
Affiliation(s)
- James W. Whipham
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Gamal A. I. Moustafa
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Mohamed Sabba
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Weidong Gong
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Christian Bengs
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Malcolm H. Levitt
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
4
|
Negroni M, Guarin D, Che K, Epasto LM, Turhan E, Selimović A, Kozak F, Cousin S, Abergel D, Bodenhausen G, Kurzbach D. Inversion of Hyperpolarized 13C NMR Signals through Cross-Correlated Cross-Relaxation in Dissolution DNP Experiments. J Phys Chem B 2022; 126:4599-4610. [PMID: 35675502 PMCID: PMC9234958 DOI: 10.1021/acs.jpcb.2c03375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/25/2022] [Indexed: 11/29/2022]
Abstract
Dissolution dynamic nuclear polarization (DDNP) is a versatile tool to boost signal amplitudes in solution-state nuclear magnetic resonance (NMR) spectroscopy. For DDNP, nuclei are spin-hyperpolarized "ex situ" in a dedicated DNP device and then transferred to an NMR spectrometer for detection. Dramatic signal enhancements can be achieved, enabling shorter acquisition times, real-time monitoring of fast reactions, and reduced sample concentrations. Here, we show how the sample transfer in DDNP experiments can affect NMR spectra through cross-correlated cross-relaxation (CCR), especially in the case of low-field passages. Such processes can selectively invert signals of 13C spins in proton-carrying moieties. For their investigations, we use schemes for simultaneous or "parallel" detection of hyperpolarized 1H and 13C nuclei. We find that 1H → 13C CCR can invert signals of 13C spins if the proton polarization is close to 100%. We deduce that low-field passage in a DDNP experiment, a common occurrence due to the introduction of so-called "ultra-shielded" magnets, accelerates these effects due to field-dependent paramagnetic relaxation enhancements that can influence CCR. The reported effects are demonstrated for various molecules, laboratory layouts, and DDNP systems. As coupled 13C-1H spin systems are ubiquitous, we expect similar effects to be observed in various DDNP experiments. This might be exploited for selective spectroscopic labeling of hydrocarbons.
Collapse
Affiliation(s)
- Mattia Negroni
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - David Guarin
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Polarize
ApS, 1808 Frederiksberg, Denmark
| | - Kateryna Che
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Ludovica M. Epasto
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Ertan Turhan
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Albina Selimović
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Fanny Kozak
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Samuel Cousin
- Institut
de Chimie Radicalaire—UMR 7273, Saint-Jérôme
Campus, Av. Esc. Normandie Niemen, Aix-Marseille Université/CNRS, 13397 Marseille
Cedex 20, France
| | - Daniel Abergel
- Laboratoire
des Biomolécules, LBM, Département de chimie, École
Normale Supérieure, PSL University, Sorbonne Université,
CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Geoffrey Bodenhausen
- Laboratoire
des Biomolécules, LBM, Département de chimie, École
Normale Supérieure, PSL University, Sorbonne Université,
CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Dennis Kurzbach
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| |
Collapse
|
5
|
Eliav U, Shekar SC, Ling W, Navon G, Jerschow A. Magnetic alignment and quadrupolar/paramagnetic cross-correlation in complexes of Na with LnDOTP5-. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 216:114-120. [PMID: 22342118 DOI: 10.1016/j.jmr.2012.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/13/2012] [Accepted: 01/22/2012] [Indexed: 05/31/2023]
Abstract
The observation of a double-quantum filtered signal of quadrupolar nuclei (e.g. (23)Na) in solution has been traditionally interpreted as a sign for anisotropic reorientational motion. Ling and Jerschow (2007) have found that a (23)Na double-quantum signal is observed also in solutions of TmDOTPNa(5). Interference effects between the quadrupolar and the paramagnetic interactions have been reported to lead to the appearance of double-quantum coherences even in the absence of a residual quadrupolar interaction. In addition, such processes lead to differential linebroadening effects between the satellite transitions, akin to effects that are well known for dipolar-CSA cross-correlation. Here, we report experiments on sodium in the presence of LnDOTP compounds, where it is shown that these cross-correlation effects correlate well with the pseudo-contact shift. In addition, anisotropic g-values of the lanthanide compounds in question, can also lead to alignment within the magnetic field, and consequently to the appearance of line splitting and double-quantum coherences. The two competing effects are demonstrated and it is concluded that both cross-correlated relaxation and alignment in the magnetic field must be at work in the systems described here.
Collapse
Affiliation(s)
- Uzi Eliav
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
6
|
Ling W, Jerschow A. Relaxation-allowed nuclear magnetic resonance transitions by interference between the quadrupolar coupling and the paramagnetic interaction. J Chem Phys 2007; 126:064502. [PMID: 17313224 DOI: 10.1063/1.2435343] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Of the various ways in which nuclear spin systems can relax to their ground states, the processes involving an interference between different relaxation mechanisms, such as dipole-dipole coupling and chemical shift anisotropy, have become of great interest lately. The authors show here that the interference between the quadrupolar coupling and the paramagnetic interaction (cross-correlated relaxation) gives rise to nuclear spin transitions that would remain forbidden otherwise. In addition, frequency shifts arise. These would be reminiscent of residual anisotropic interactions when there are none. While interesting from a fundamental point of view, these processes may become relevant in magnetic resonance imaging experiments which involve quadrupolar spins, such as (23)Na, in the presence of contrast agents. Geometrical constraints in paramagnetic molecule structures may likewise be derived from these interference effects.
Collapse
Affiliation(s)
- Wen Ling
- Chemistry Department, New York University, New York, New York 10003, USA
| | | |
Collapse
|
7
|
Abstract
This article deals with the solution structure determination of paramagnetic metalloproteins by NMR spectroscopy. These proteins were believed not to be suitable for NMR investigations for structure determination until a decade ago, but eventually novel experiments and software protocols were developed, with the aim of making the approach suitable for the goal and as user-friendly and safe as possible. In the article, we also give hints for the optimization of experiments with respect to each particular metal ion, with the aim of also providing a handy tool for nonspecialists. Finally, a section is dedicated to the significant progress made on 13C direct detection, which reduces the negative effects of paramagnetism and may constitute a new chapter in the whole field of NMR spectroscopy.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | | | | | | |
Collapse
|
8
|
Bertini I, Jiménez B, Piccioli M. 13C direct detected experiments: optimization for paramagnetic signals. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 174:125-132. [PMID: 15809180 DOI: 10.1016/j.jmr.2005.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 01/12/2005] [Indexed: 05/24/2023]
Abstract
To optimize 13C direct detected experiments for the observation of signals close to a paramagnetic center, we have assessed the sensitivity of different sequences based on CO-Cali coherence transfer. Features of CACO experiments were tested for Calbindin D9k, in which one of the two native Ca2+ ions is replaced by the paramagnetic Ce3+ ion. We have studied the comparison of single vs multiple quantum coherence transfer evolution as well as the influence of in-phase vs anti-phase detection of 13CO signals and finally the comparison of a coherence transfer step based on a CyO in plane with respect to a Cy ali in plane. The acquisition of the anti-phase component of the signal, accomplished by the removal of the last refocusing steps, allowed the identification of some signals unobserved with other pathways. The structural dependency of paramagnetism-induced nuclear relaxation is such that the identification of the most suitable coherence transfer pathway is not known "a priori" but it is driven by the relative proximity of Cali and CO to the paramagnetic center.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.
| | | | | |
Collapse
|
9
|
Pervushin K, Vögeli B, Heinz TN, Hünenberger PH. Measuring 1H-1H and 1H-13C RDCs in methyl groups: example of pulse sequences with numerically optimized coherence transfer schemes. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 172:36-47. [PMID: 15589406 DOI: 10.1016/j.jmr.2004.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 08/27/2004] [Indexed: 05/24/2023]
Abstract
The optimization of coherence-transfer pulse-sequence elements (CTEs) is the most challenging step in the construction of heteronuclear correlation NMR experiments achieving sensitivity close to its theoretical maximum (in the absence of relaxation) in the shortest possible experimental time and featuring active suppression of undesired signals. As reported in the present article, this complex optimization problem in a space of high dimensionality turns out to be numerically tractable. Based on the application of molecular dynamics in the space of pulse-sequence variables, a general method is proposed for constructing optimized CTEs capable of transferring an arbitrary (generally non-Hermitian) spin operator encoding the chemical shift of heteronuclear spins to an arbitrary spin operator suitable for signal detection. The CTEs constructed in this way are evaluated against benchmarks provided by the theoretical unitary bound for coherence transfer and the minimal required transfer time (when available). This approach is used to design a set of NMR experiments enabling direct and selective observation of individual (1)H-transitions in (13)C-labeled methyl spin systems close to optimal sensitivity and using a minimal number of spectra. As an illustrative application of the method, optimized CTEs are used to quantitatively measure (1)H-(1)H and (1)H-(13)C residual dipolar couplings (RDCs) in a 17 kDa protein weakly aligned by means of Pf1 phages.
Collapse
Affiliation(s)
- Konstantin Pervushin
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland.
| | | | | | | |
Collapse
|
10
|
|