1
|
Song Y, Hu T, Liu C, Yang X. Role of amino groups in the structural assembly of β-lactoglobulin nanofibers. Int J Biol Macromol 2025; 309:143100. [PMID: 40222504 DOI: 10.1016/j.ijbiomac.2025.143100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/24/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
In recent years, protein fibrillation has attracted extensive attention because of self-assembly mechanism. The structure of β-lactoglobulin (β-Lg) nanofibers, with all residues visible in the fibril core, remains elusive, and the mechanisms of side-chain interactions are poorly understood, complicating our understanding of their formation. Here, we identified 31 core building blocks of the full-length structure of β-Lg nanofibers via enzymatic hydrolysis combined with proteomic methods. Notably, all core building blocks included essential nonsecondary structural residues were crucial for maintaining cross-β structure. Amino groups were the main groups that stabilized the interstrand and intersheet stacking in the cross-β structure, and their absence resulted in nanofibers exhibiting a preference for lateral growth and a looser cross-β structure with increased interstrand and intersheet distances. Meanwhile, the number of nanofibers decreased by approximately 20.39 %, the kinetic self-assembly rate decreased, and the thermodynamic assembly energy-barrier increased, particularly during the lag phase of fibrillation. The position and quantity of amino groups affected the core building blocks of β-Lg nanofibers: 27 core building blocks were changed, and 9 core building blocks were lost in the absence of amino groups, severely inhibiting the conversion of α-helices to β-strands during β-Lg fibrillation. These results may provide new approaches and important information for revealing the assembly mechanism of nanofibers at the molecular level.
Collapse
Affiliation(s)
- Yao Song
- Department of Daily Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Tao Hu
- School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Changyao Liu
- Department of Daily Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Xiaotong Yang
- School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
2
|
Guan C, Bing S, Yang X, Guo R, Chen Y, Xu H, Yu G. Homogeneous nuclei-induced, secondary nuclei-induced, and spontaneous whey protein concentrate nanofibril formation through different pathways. J Dairy Sci 2022; 105:5600-5609. [PMID: 35570048 DOI: 10.3168/jds.2021-21630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/15/2022] [Indexed: 11/19/2022]
Abstract
The addition of homogeneous nuclei (HN) or secondary nuclei (SN) could lead to different kinetics and thermodynamics as the nucleation energy barrier decreases and the lag time is shortened to different degrees compared with spontaneous fibrillation. To explain these differences, we monitored the formation and depletion of HN during fibril formation and found that both SN-induced fibrils and HN-induced fibrils follow the same nucleated growth pathway as spontaneously formed WPC fibrils. Moreover, there were also other paths, which were confirmed by X-ray diffraction, transmission electron microscopy, and atomic force microscopy. The surfaces of the SN could recruit monomers and resulted in stronger intersheet stacking and a larger fibril height and periodicity. The HN incorporation led to a propensity for hydrogen-bonding interactions and a longer fibril. Fibrillation by the addition HN and SN followed both common and distinct pathways, as spontaneous fibrillation and led to different capacities to induce fibrillation.
Collapse
Affiliation(s)
- Chen Guan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shaoqing Bing
- Beijing Shuangwa Dairy Co. Ltd., Beijing 100102, China
| | - Xiaotong Yang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Ruichi Guo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Ying Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Honghua Xu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Guoping Yu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE. A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol 2019; 19:755-773. [PMID: 30237470 DOI: 10.1038/s41580-018-0060-8] [Citation(s) in RCA: 648] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew G Iadanza
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Matthew P Jackson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Eric W Hewitt
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
4
|
Furkan M, Rizvi A, Alam MT, Naeem A. Peroxidase improves the activity of catalase by preventing aggregation during TFE-induced denaturation. J Biomol Struct Dyn 2017; 36:551-560. [DOI: 10.1080/07391102.2017.1287007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mohammad Furkan
- Faculty of Life Sciences, Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Asim Rizvi
- Faculty of Life Sciences, Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Md Tauqir Alam
- Faculty of Life Sciences, Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Aabgeena Naeem
- Faculty of Life Sciences, Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
5
|
Induction of amyloidogenicity in wild type HEWL by a dialdehyde: Analysis involving multi dimensional approach. Int J Biol Macromol 2014; 64:36-44. [DOI: 10.1016/j.ijbiomac.2013.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 11/23/2022]
|
6
|
Lara C, Adamcik J, Jordens S, Mezzenga R. General Self-Assembly Mechanism Converting Hydrolyzed Globular Proteins Into Giant Multistranded Amyloid Ribbons. Biomacromolecules 2011; 12:1868-75. [DOI: 10.1021/bm200216u] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Cécile Lara
- ETH Zurich, Food & Soft Materials Science, Institute of Food, Nutrition & Health Schmelzbergstrasse 9, LFO E23, 8092 Zürich, Switzerland
| | - Jozef Adamcik
- ETH Zurich, Food & Soft Materials Science, Institute of Food, Nutrition & Health Schmelzbergstrasse 9, LFO E23, 8092 Zürich, Switzerland
| | - Sophia Jordens
- ETH Zurich, Food & Soft Materials Science, Institute of Food, Nutrition & Health Schmelzbergstrasse 9, LFO E23, 8092 Zürich, Switzerland
| | - Raffaele Mezzenga
- ETH Zurich, Food & Soft Materials Science, Institute of Food, Nutrition & Health Schmelzbergstrasse 9, LFO E23, 8092 Zürich, Switzerland
| |
Collapse
|
7
|
van der Hilst JCH, Kluve-Beckerman B, van der Meer JWM, Simon A. Cathepsin D activity protects against development of type AA amyloid fibrils. Eur J Clin Invest 2009; 39:412-6. [PMID: 19740371 DOI: 10.1111/j.1365-2362.2009.02104.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The extracellular, fibrillar deposits of reactive (secondary) amyloidosis are composed of amyloid A (AA) protein, a proteolytically derived fragment of the acute phase protein serum amyloid A (SAA). While complete degradation of SAA precludes amyloid formation, limited cleavage which generates AA protein is considered part of the pathogenic mechanism. MATERIALS AND METHODS In this study, we investigated SAA degradation by lysosomal enzymes cathepsins B, D, and K, and assessed the impact of cathepsin activity on AA amyloid formation in a cell culture model using peripheral blood mononuclear cells from healthy volunteers. RESULTS Lysates of human mononuclear cells were capable of degrading SAA. Degradation was significantly reduced by inhibition of cathepsin D with pepstatin A. Inhibition of cathepsin B or cathepsin K, however, had no effect. The SAA fragment pattern generated by mononuclear cell lysates was similar to that produced by incubating SAA with purified human cathepsin D. Consistent with in vitro findings, amyloid formation in human monocyte cultures was increased by 43% when cathepsin D was inhibited, but remained unaffected by inhibition of cathepsin B or cathepsin K. CONCLUSION These data provide evidence that cathepsin D but not cathepsin B or cathepsin K is physiologically important in SAA degradation and hence in preventing SAA from accumulating and serving as precursor of AA amyloid fibrils.
Collapse
Affiliation(s)
- J C H van der Hilst
- Department of General Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
8
|
Liu Y, Cui D, Hoshii Y, Kawano H, Une Y, Gondo T, Ishihara T. Induction of Murine AA Amyloidosis by Various Homogeneous Amyloid Fibrils and Amyloid-like Synthetic Peptides. Scand J Immunol 2007; 66:495-500. [DOI: 10.1111/j.1365-3083.2007.02005.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Abstract
Alzheimer's disease and Creutzfeldt-Jakob disease are the best-known examples of a group of diseases known as the amyloidoses. They are characterized by the extracellular deposition of toxic, insoluble amyloid fibrils. Knowledge of the structure of these fibrils is essential for understanding the process of pathology of the amyloidoses and for the rational design of drugs to inhibit or reverse amyloid formation. Structural models have been built using information from a wide variety of techniques, including X-ray diffraction, electron microscopy, solid state NMR and EPR. Recent advances have been made in understanding the architecture of the amyloid fibril. Here, we describe and compare postulated structural models for the mature amyloid fibril and discuss how the ordered structure of amyloid contributes to its stability.
Collapse
Affiliation(s)
- O Sumner Makin
- Department of Biochemistry, John Maynard Smith Building, School of Life Sciences, University of Sussex, Falmer, East Sussex, UK
| | | |
Collapse
|
10
|
Wang L, Lashuel HA, Colón W. From hexamer to amyloid: marginal stability of apolipoprotein SAA2.2 leads to in vitro fibril formation at physiological temperature. Amyloid 2005; 12:139-48. [PMID: 16194868 DOI: 10.1080/13506120500223084] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Serum amyloid A (SAA) is a major acute phase reactant and a small apolipoprotein of high density lipoproteins (HDL) in the serum. In cases of prolonged inflammation, SAA may form amyloid fibrils, leading to the disease of amyloid A (AA) amyloidosis. Recently, we have shown that murine SAA2.2, a non-amyloidogenic isoform in vivo, forms a hexamer in vitro containing a putative central channel. It is reported herein that upon thermal denaturation, hexameric SAA2.2 irreversibly dissociates to a misfolded monomer at physiological temperature, formation of which coincides with a significant loss of alpha-helical and gain of beta-sheet structure. When SAA2.2 is incubated for several days at 37 degrees C, sedimentation analytical ultracentrifugation reveals the presence of soluble high molecular weight aggregates, which upon further incubation undergo subsequent self-assembly into amyloid fibrils. Limited proteolysis experiments suggest that the in vitro amyloidogenecity of SAA2.2 is related to structural alteration in its N-terminus. Our observation that SAA2.2 can form amyloid fibrils in vitro at physiological temperatures suggests that SAA2.2's inability to cause amyloidosis may be related to other factors, such as the stabilization of hexameric SAA2.2 (possibly through ligand binding), and/or the slow kinetics of aberrant misfolding and self-assembly.
Collapse
Affiliation(s)
- Limin Wang
- Memorial Sloan-Kettering Cancer Center, NY 10021, USA
| | | | | |
Collapse
|
11
|
Shinchuk LM, Sharma D, Blondelle SE, Reixach N, Inouye H, Kirschner DA. Poly-(L-alanine) expansions form core β-sheets that nucleate amyloid assembly. Proteins 2005; 61:579-89. [PMID: 16114037 DOI: 10.1002/prot.20536] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Expansion to a total of 11-17 sequential alanine residues from the normal number of 10 in the polyadenine-binding protein nuclear-1 (PABPN1) results in formation of intranuclear, fibrillar inclusions in skeletal muscle and hypothalamic neurons in adult-onset, dominantly inherited oculopharyngeal muscular dystrophy (OPMD). To understand the role that homopolymeric length may play in the protein misfolding that leads to the inclusions, we analyzed the self-assembly of synthetic poly-(L-alanine) peptides having 3-20 residues. We found that the conformational transition and structure of polyalanine (polyAla) assemblies in solution are not only length-dependent but also are determined by concentration, temperature, and incubation time. No beta-sheet complex was detected for those peptides characterized by n < 8, where n is number of alanine residues. A second group of peptides with 7 < n < 15 showed varying levels of complex formation, while for those peptides having n > 15, the interconversion process from the monomeric to the beta-sheet complex was complete under any of the tested experimental conditions. Unlike the typical tinctorial properties of amyloid fibrils, polyalanine fibrils did not show fluorescence with thioflavin T or apple-green birefringence with Congo red; however, like amyloid, X-ray diffraction showed that the peptide chains in these fibrils were oriented normal to the fibril axis (i.e., in the cross-beta arrangement). Neighboring beta-sheets are quarter-staggered in the hydrogen-bonding direction such that the alanine side-chains were closely packed in the intersheet space. Strong van der Waals contacts between side-chains in this arrangement likely account for the high stability of the macromolecular fibrillar complex in solution over a wide range of temperature (5-85 degrees C), and pH (2-10.5), and its resistance to denaturant (< 8 M urea) and to proteases (protease K, trypsin). We postulate that a similar stabilization of an expanded polyalanine stretch could form a core beta-sheet structure that mediates the intermolecular association of mutant proteins into fibrillar inclusions in human pathologies.
Collapse
Affiliation(s)
- Leonid M Shinchuk
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467-3811, USA
| | | | | | | | | | | |
Collapse
|
12
|
Relini A, Rolandi R, Bolognesi M, Aboudan M, Merlini G, Bellotti V, Gliozzi A. Ultrastructural organization of ex vivo amyloid fibrils formed by the apolipoprotein A-I Leu174Ser variant: an atomic force microscopy study. Biochim Biophys Acta Mol Basis Dis 2004; 1690:33-41. [PMID: 15337168 DOI: 10.1016/j.bbadis.2004.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 04/20/2004] [Accepted: 04/21/2004] [Indexed: 10/26/2022]
Abstract
Atomic force microscopy was employed to study ex vivo amyloid material isolated from the transplanted hearts of two patients affected by systemic amyloidosis caused by the Leu174Ser apolipoprotein A-I variant. The purified material consists of fibrils and globular aggregates. For both patients the same morphological patterns are observed; in addition, fibril diameters obtained for the two patients turn out to be compatible, both in air (2.00+/-0.02 and 2.04+/-0.04 nm) and under liquid (10.7+/-0.4 and 11.3+/-0.5 nm). Fibrils display heterogeneous morphologies, occasionally showing a left-handed twist. Inspection of fibril ends, the study of fibril contour shape and the analysis of partially unfolded fibrils yield independent evidences suggesting that most twisted fibrils are composed of three protofilaments. The size of globular aggregates is the same for both patients (4.4+/-0.4 and 5.1+/-0.5 nm, measured under liquid) and is compatible with the protofilament expected diameter, suggesting that globules may represent protofilament precursors.
Collapse
Affiliation(s)
- Annalisa Relini
- National Institute for the Physics of Matter and Department of Physics, University of Genoa, via Dodecaneso 33, I-16146, Genoa, Italy.
| | | | | | | | | | | | | |
Collapse
|
13
|
Jenko S, Skarabot M, Kenig M, Guncar G, Musevic I, Turk D, Zerovnik E. Different propensity to form amyloid fibrils by two homologous proteins-Human stefins A and B: searching for an explanation. Proteins 2004; 55:417-25. [PMID: 15048832 DOI: 10.1002/prot.20041] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
By using ThT fluorescence, X-ray diffraction, and atomic force microscopy (AFM), it has been shown that human stefins A and B (subfamily A of cystatins) form amyloid fibrils. Both protein fibrils show the 4.7 A and 10 A reflections characteristic for cross beta-structure. Similar height of approximately 3 nm and longitudinal repeat of 25-27 nm were observed by AFM for both protein fibrils. Fibrils with a double height of 5.6 nm were only observed with stefin A. The fibril's width for stefin A fibrils, as observed by transmission electron microscopy (TEM), was in the same range as previously reported for stefin B (Zerovnik et al., Biochem Biophys Acta 2002;1594:1-5). The conditions needed to undergo fibrillation differ, though. The amyloid fibrils start to form at pH 5 for stefin B, whereas in stefin A, preheated sample has to be acidified to pH < 2.5. In both cases, adding TFE, seeding, and alignment in a strong magnetic field accelerate the fibril growth. Visual analysis of the three-dimensional structures of monomers and domain-swapped dimers suggests that major differences in stability of both homologues stem from arrangement of specific salt bridges, which fix alpha-helix (and the alpha-loop) to beta-sheet in stefin A monomeric and dimeric forms.
Collapse
Affiliation(s)
- Sasa Jenko
- Department of Biochemistry and Molecular Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
14
|
Kayser V, Turton DA, Aggeli A, Beevers A, Reid GD, Beddard GS. Energy Migration in Novel pH-Triggered Self-Assembled β-Sheet Ribbons. J Am Chem Soc 2004; 126:336-43. [PMID: 14709100 DOI: 10.1021/ja035340+] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Energy migration between tryptophan residues has been experimentally demonstrated in self-assembled peptide tapes. Each peptide contains 11 amino acids with a Trp at position 6. The peptide self-assembly is pH-sensitive and forms amphiphilic tapes, which further stack in ribbons (double tapes) and fibrils in water depending on the concentration. Fluorescence spectra, quenching, and anisotropy experiments showed that when the pH is lowered from 9 to 2, the peptide self-assembly buries the tryptophan in a hydrophobic and restricted environment in the interior of stable ribbons as expected on the basis of the peptide design. These fluorescence data support directly and for the first time the presence of such ribbons which are characterized by a highly packed and stable hydrophobic interior. In common with Trp in many proteins, fluorescence lifetimes are nonexponential, but the average lifetime is shorter at low pH, possibly due to quenching with neighboring Phe residues. Unexpectedly, time-resolved fluorescence anisotropy does not change significantly with self-assembly when in water. In highly viscous sucrose-water mixtures, the anisotropy decay at low pH was largely unchanged compared to that in water, whereas at high pH, the anisotropy decay increased significantly. We concluded that depolarization at low pH was not due to rotational diffusion but mainly due to energy migration between adjacent tryptophan residues. This was supported by a master equation kinetic model of Trp-Trp energy migration, which showed that the simulated and experimental results are in good agreement, although on average only three Trp residues were visited before emission.
Collapse
Affiliation(s)
- Veysel Kayser
- Department of Chemistry and Centre for Chemical Dynamics, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
15
|
Lu K, Jacob J, Thiyagarajan P, Conticello VP, Lynn DG. Exploiting amyloid fibril lamination for nanotube self-assembly. J Am Chem Soc 2003; 125:6391-3. [PMID: 12785778 DOI: 10.1021/ja0341642] [Citation(s) in RCA: 275] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fundamental questions about the relative arrangement of the beta-sheet arrays within amyloid fibrils remain central to both its structure and the mechanism of self-assembly. Recent computational analyses suggested that sheet-to-sheet lamination was limited by the length of the strand. On the basis of this hypothesis, a short seven-residue segment of the Alzheimer's disease-related Abeta peptide, Abeta(16-22), was allowed to self-assemble under conditions that maintained the basic amphiphilic character of Abeta. Indeed, the number increased over 20-fold to 130 laminates, giving homogeneous bilayer structures that supercoil into long robust nanotubes. Small-angle neutron scattering and X-ray scattering defined the outer and inner radii of the nanotubes in solution to contain a 44-nm inner cavity with 4-nm-thick walls. Atomic force microscopy and transmission electron microscopy images further confirmed these homogeneous arrays of solvent-filled nanotubes arising from a flat rectangular bilayer, 130 nm wide x 4 nm thick, with each bilayer leaflet composed of laminated beta-sheets. The corresponding backbone H-bonds are along the long axis, and beta-sheet lamination defines the 130-nm bilayer width. This bilayer coils to give the final nanotube. Such robust and persistent self-assembling nanotubes with positively charged surfaces of very different inner and outer curvature now offer a unique, robust, and easily accessible scaffold for nanotechnology.
Collapse
Affiliation(s)
- Kun Lu
- Center for the Analysis of Supramolecular Self-assemblies, Departments of Chemistry and Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
16
|
Bond JP, Deverin SP, Inouye H, el-Agnaf OMA, Teeter MM, Kirschner DA. Assemblies of Alzheimer's peptides A beta 25-35 and A beta 31-35: reverse-turn conformation and side-chain interactions revealed by X-ray diffraction. J Struct Biol 2003; 141:156-70. [PMID: 12615542 DOI: 10.1016/s1047-8477(02)00625-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alzheimer's beta amyloid protein (A beta) is a 39 to 43 amino acid peptide that is a major component in the neuritic plaques of Alzheimer's disease (AD). The assemblies constituted from residues 25-35 (A beta 25-35), which is a sequence homologous to the tachykinin or neurokinin class of neuropeptides, are neurotoxic. We used X-ray diffraction and electron microscopy to investigate the structure of the assemblies formed by A beta 25-35 peptides and of various length sequences therein, and of tachykinin-like analogues. Most solubilized peptides after subsequent drying produced diffraction patterns characteristic of beta-sheet structure. Moreover, the peptides A beta 31-35 (Ile-Ile-Gly-Leu-Met) and tachykinin analogue A beta(Phe(31))31-35 (Phe-Ile-Gly-Leu-Met) gave powder diffraction patterns to 2.8A Bragg spacing. The observed reflections were indexed by an orthogonal unit cell having dimensions of a=9.36 A, b=15.83 A, and c=20.10 A for the native A beta 31-35 peptide, and a=9.46 A, b=16.22 A, and c=11.06 A for the peptide having the Ile31Phe substitution. The initial model was a beta strand where the hydrogen bonding, chain, and intersheet directions were placed along the a, b, and c axes. An atomic model was fit to the electron density distribution, and subsequent refinement resulted in R factors of 0.27 and 0.26, respectively. Both peptides showed a reverse turn at Gly33 which results in intramolecular hydrogen bonding between the antiparallel chains. Based on previous reports that antagonists for the tachykinin substance P require a reverse turn, and that A beta is cytotoxic when it is oligomeric or fibrillar, we propose that the tachykinin-like A beta 31-35 domain is a turn exposed at the A beta oligomer surface where it could interact with the ligand-binding site of the tachykinin G-protein-coupled receptor.
Collapse
Affiliation(s)
- Jeremy P Bond
- Department of Biology, Higgins Hall, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | | | |
Collapse
|
17
|
Wang L, Lashuel HA, Walz T, Colon W. Murine apolipoprotein serum amyloid A in solution forms a hexamer containing a central channel. Proc Natl Acad Sci U S A 2002; 99:15947-52. [PMID: 12456883 PMCID: PMC138545 DOI: 10.1073/pnas.252508399] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Serum amyloid A (SAA) is a small apolipoprotein that binds to high-density lipoproteins in the serum. Although SAA seems to play a role in host defense and lipid transport and metabolism, its specific functions have not been defined. Despite the growing implications that SAA plays a role in the pathology of various diseases, a high-resolution structure of SAA is lacking because of limited solubility in the high-density lipoprotein-free form. In this study, complementary methods including glutaraldehyde cross-linking, size-exclusion chromatography, and sedimentation-velocity analytical ultracentrifugation were used to show that murine SAA2.2 in aqueous solution exists in a monomer-hexamer equilibrium. Electron microscopy of hexameric SAA2.2 revealed that the subunits are arranged in a ring forming a putative central channel. Limited trypsin proteolysis and mass spectrometry analysis identified a significantly protease-resistant SAA2.2 region comprising residues 39-86. The isolated 39-86 SAA2.2 fragment did not hexamerize, suggesting that part of the N terminus is involved in SAA2.2 hexamer formation. Circular-dichroism spectrum deconvolution and secondary-structure prediction suggest that SAA2.2 contains approximately 50% of its residues in alpha-helical conformation and <10% in beta-structure. These findings are consistent with the recent discovery that human SAA1.1 forms a membrane channel and have important implications for understanding the 3D structure, multiple functions, and pathological roles of this highly conserved protein.
Collapse
Affiliation(s)
- Limin Wang
- Department of Chemistry, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | | | | | | |
Collapse
|
18
|
Fändrich M, Dobson CM. The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation. EMBO J 2002; 21:5682-90. [PMID: 12411486 PMCID: PMC131070 DOI: 10.1093/emboj/cdf573] [Citation(s) in RCA: 388] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Amyloid fibrils and prions are proteinaceous aggregates that are based on a unique form of polypeptide configuration, termed cross-beta structure. Using a group of chemically distinct polyamino acids, we show here that the existence of such a structure does not require the presence of specific side chain interactions or sequence patterns. These observations firmly establish that amyloid formation and protein folding represent two fundamentally different ways of organizing polypeptides into ordered conformations. Protein folding depends critically on the presence of distinctive side chain sequences and produces a unique globular fold. By contrast, the properties of different polyamino acids suggest that amyloid formation arises primarily from main chain interactions that are, in some environments, overruled by specific side chain contacts. This side chain effect can be thought of as the inverse of the one that characterizes protein folding. Conditions including Alzheimer's and Creutzfeldt-Jakob diseases represent, on this basis, pathological cases in which a natural polypeptide chain has aberrantly adopted the conformation that is primarily defined by main chain interactions and not the structure that is determined by specific side chain contacts that depend on the polypeptide sequence.
Collapse
Affiliation(s)
- Marcus Fändrich
- Oxford Centre for Molecular Sciences, Central Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QT, UK
Present address: Institut für Molekulare Biotechnologie (IMB), Beutenbergstraße 11, Postfach 100 813, D-07708 Jena, Germany Present address: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK Corresponding author e-mail:
| | - Christopher M. Dobson
- Oxford Centre for Molecular Sciences, Central Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QT, UK
Present address: Institut für Molekulare Biotechnologie (IMB), Beutenbergstraße 11, Postfach 100 813, D-07708 Jena, Germany Present address: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK Corresponding author e-mail:
| |
Collapse
|
19
|
Lundmark K, Westermark GT, Nyström S, Murphy CL, Solomon A, Westermark P. Transmissibility of systemic amyloidosis by a prion-like mechanism. Proc Natl Acad Sci U S A 2002; 99:6979-84. [PMID: 12011456 PMCID: PMC124514 DOI: 10.1073/pnas.092205999] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The generation of amyloid fibrils from an amyloidogenic polypeptide occurs by a nucleation-dependent process initiated in vitro by seeding the protein solution with preformed fibrils. This phenomenon is evidenced in vivo by the fact that amyloid protein A (AA) amyloidosis in mice is markedly accelerated when the animals are given, in addition to an inflammatory stimulus, an i.v. injection of protein extracted from AA amyloid-laden mouse tissue. Heretofore, the chemical nature of this "amyloid enhancing factor" (AEF) has not been definitively identified. Here we report that the active principle of AEF extracted from the spleen of mice with silver nitrate-induced AA amyloidosis was identified unequivocally as the AA fibril itself. Further, we demonstrated that this material was extremely potent, being active in doses <1 ng, and that it retained its biologic activity over a considerable length of time. Notably, the AEF was also effective when administered orally. Our studies have provided evidence that AA and perhaps other forms of amyloidosis are transmissible diseases, akin to the prion-associated disorders.
Collapse
Affiliation(s)
- Katarzyna Lundmark
- Division of Molecular and Immunological Pathology, Linköping University, 581 83 Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Aggeli A, Nyrkova IA, Bell M, Harding R, Carrick L, McLeish TC, Semenov AN, Boden N. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta -sheet tapes, ribbons, fibrils, and fibers. Proc Natl Acad Sci U S A 2001; 98:11857-62. [PMID: 11592996 PMCID: PMC59814 DOI: 10.1073/pnas.191250198] [Citation(s) in RCA: 796] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A generic statistical mechanical model is presented for the self-assembly of chiral rod-like units, such as beta-sheet-forming peptides, into helical tapes, which with increasing concentration associate into twisted ribbons (double tapes), fibrils (twisted stacks of ribbons), and fibers (entwined fibrils). The finite fibril width and helicity is shown to stem from a competition between the free energy gain from attraction between ribbons and the penalty because of elastic distortion of the intrinsically twisted ribbons on incorporation into a growing fibril. Fibers are stabilized similarly. The behavior of two rationally designed 11-aa residue peptides, P(11)-I and P(11)-II, is illustrative of the proposed scheme. P(11)-I and P(11)-II are designed to adopt the beta-strand conformation and to self-assemble in one dimension to form antiparallel beta-sheet tapes, ribbons, fibrils, and fibers in well-defined solution conditions. The energetic parameters governing self-assembly have been estimated from the experimental data using the model. The 8-nm-wide fibrils consist of eight tapes, are extremely robust (scission energy approximately 200 k(B)T), and sufficiently rigid (persistence length l(fibril) approximately 20-70 microm) to form nematic solutions at peptide concentration c approximately 0.9 mM (volume fraction approximately 0.0009 vol/vol), which convert to self-supporting nematic gels at c > 4 mM. More generally, these observations provide a new insight into the generic self-assembling properties of beta-sheet-forming peptides and shed new light on the factors governing the structures and stability of pathological amyloid fibrils in vivo. The model also provides a prescription of routes to novel macromolecules based on a variety of self-assembling chiral units, and protocols for extraction of the associated energy changes.
Collapse
Affiliation(s)
- A Aggeli
- Centre for Self-Organising Molecular Systems, Department of Applied Mathematics, University of Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sinha N, Tsai CJ, Nussinov R. A proposed structural model for amyloid fibril elongation: domain swapping forms an interdigitating beta-structure polymer. PROTEIN ENGINEERING 2001; 14:93-103. [PMID: 11297667 DOI: 10.1093/protein/14.2.93] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We propose a model illustrating how proteins, which differ in their overall sequences and structures, can form the propagating, twisted beta-sheet conformations, characteristic of amyloids. Some cases of amyloid formation can be explained through a "domain swapping" event, where the swapped segment is either a beta-hairpin or an unstable conformation which can partially unfold and assume a beta-hairpin structure. As in domain swapping, here the swapped beta-hairpin is at the edge of the structure, has few (if any) salt bridges and hydrogen bonds connecting it to the remainder of the structure and variable extents of buried non-polar surface areas. Additionally, in both cases the swapped piece constitutes a transient "building block" of the structure, with a high population time. Whereas in domain swapping the swapped fragment has been shown to be an alpha-helix, loop, strand or an entire domain, but so far not a beta-hairpin, despite the large number of cases in which it was already detected, here swapping may involve such a structural motif. We show how the swapping of beta-hairpins would form an interdigitated, twisted beta-sheet conformation, explaining the remarkable high stability of the protofibril in vitro. Such a swapping mechanism is attractive as it involves a universal mechanism in proteins, critical for their function, namely hinge-bending motions. Our proposal is consistent with structural superpositioning of mutational variants. While the overall r.m.s.d.s of the wild-type and mutants are small, the proposed hinge-bending region consistently shows larger deviations. These larger deviations illustrate that this region is more prone to respond to the mutational changes, regardless of their location in the sequence or in the structure. Nevertheless, above all, we stress that this proposition is hypothetical, since it is based on assumptions lacking definitive experimental support.
Collapse
Affiliation(s)
- N Sinha
- Intramural Research Support Program - SAIC, Laboratory of Experimental and Computational Biology, NCI-FCRDC, Frederick, MD 21702, USA
| | | | | |
Collapse
|
22
|
Chamberlain AK, MacPhee CE, Zurdo J, Morozova-Roche LA, Hill HA, Dobson CM, Davis JJ. Ultrastructural organization of amyloid fibrils by atomic force microscopy. Biophys J 2000; 79:3282-93. [PMID: 11106631 PMCID: PMC1301202 DOI: 10.1016/s0006-3495(00)76560-x] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Atomic force microscopy has been employed to investigate the structural organization of amyloid fibrils produced in vitro from three very different polypeptide sequences. The systems investigated are a 10-residue peptide derived from the sequence of transthyretin, the 90-residue SH3 domain of bovine phosphatidylinositol-3'-kinase, and human wild-type lysozyme, a 130-residue protein containing four disulfide bridges. The results demonstrate distinct similarities between the structures formed by the different classes of fibrils despite the contrasting nature of the polypeptide species involved. SH3 and lysozyme fibrils consist typically of four protofilaments, exhibiting a left-handed twist along the fibril axis. The substructure of TTR(10-19) fibrils is not resolved by atomic force microscopy and their uniform appearance is suggestive of a regular self-association of very thin filaments. We propose that the exact number and orientation of protofilaments within amyloid fibrils is dictated by packing of the regions of the polypeptide chains that are not directly involved in formation of the cross-beta core of the fibrils. The results obtained for these proteins, none of which is directly associated with any human disease, are closely similar to those of disease-related amyloid fibrils, supporting the concept that amyloid is a generic structure of polypeptide chains. The detailed architecture of an individual fibril, however, depends on the manner in which the protofilaments assemble into the fibrillar structure, which in turn is dependent on the sequence of the polypeptide and the conditions under which the fibril is formed.
Collapse
Affiliation(s)
- A K Chamberlain
- Oxford Centre for Molecular Sciences, New Chemistry Laboratory, Oxford OX1 3QT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
23
|
Bouchard M, Zurdo J, Nettleton EJ, Dobson CM, Robinson CV. Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy. Protein Sci 2000; 9:1960-7. [PMID: 11106169 PMCID: PMC2144465 DOI: 10.1110/ps.9.10.1960] [Citation(s) in RCA: 375] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), and electron microscopy (EM) have been used simultaneously to follow the temperature-induced formation of amyloid fibrils by bovine insulin at acidic pH. The FTIR and CD data confirm that, before heating, insulin molecules in solution at pH 2.3 have a predominantly native-like alpha-helical structure. On heating to 70 degrees C, partial unfolding occurs and results initially in aggregates that are shown by CD and FT-IR spectra to retain a predominantly helical structure. Following this step, changes in the CD and FTIR spectra occur that are indicative of the extensive conversion of the molecular conformation from alpha-helical to beta-sheet structure. At later stages, EM shows the development of fibrils with well-defined repetitive morphologies including structures with a periodic helical twist of approximately 450 A. The results indicate that formation of fibrils by insulin requires substantial unfolding of the native protein, and that the most highly ordered structures result from a slow evolution of the morphology of the initially formed fibrillar species.
Collapse
Affiliation(s)
- M Bouchard
- Oxford Centre for Molecular Sciences, New Chemistry Laboratory, University of Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Krebs MR, Wilkins DK, Chung EW, Pitkeathly MC, Chamberlain AK, Zurdo J, Robinson CV, Dobson CM. Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the beta-domain. J Mol Biol 2000; 300:541-9. [PMID: 10884350 DOI: 10.1006/jmbi.2000.3862] [Citation(s) in RCA: 324] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wild-type hen lysozyme has been converted from its soluble native state into highly organized amyloid fibrils. In order to achieve this conversion, conditions were chosen to promote partial unfolding of the native globular fold and included heating of low-pH solutions and addition of organic solvents. Two peptides derived from the beta-sheet region of hen lysozyme were also found to form fibrils very readily. The properties and morphologies of the amyloid fibrils formed by incubation either of the protein or the peptides are similar to those produced from the group of proteins associated with clinical amyloidoses. Fibril formation by hen lysozyme was substantially accelerated when aliquots of solutions in which fibrils of either one of the peptides or the full-length protein had previously formed were added to fresh solutions of the protein, revealing the importance of seeding in the kinetics of fibril formation. These findings support the proposition that the beta-domain is of particular significance in the formation of fibrils from the full-length protein and suggest similarities between the species giving rise to fibril formation and the intermediates formed during protein folding.
Collapse
Affiliation(s)
- M R Krebs
- Oxford Centre for Molecular Sciences, New Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lim A, Makhov AM, Bond J, Inouye H, Connors LH, Griffith JD, Erickson BW, Kirschner DA, Costello CE. Betabellins 15D and 16D, de Novo designed beta-sandwich proteins that have amyloidogenic properties. J Struct Biol 2000; 130:363-70. [PMID: 10940239 DOI: 10.1006/jsbi.2000.4272] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The betabellin structure is a de novo designed beta-sandwich protein consisting of two 32-residue beta-sheets packed against one another by hydrophobic interactions. d-Amino acid residues are used to energetically favor formation of type-I' beta turns. Air oxidation of betabellin 15S (B15S) (HSLTAKIpkLTFSIAphTYTCAVpkYTAKVSH, where p denotes d-Pro, h denotes d-His, and k denotes d-Lys) yields betabellin 15D (B15D), a 64-residue disulfide-bridged protein. The amino acid sequence of B15D contains a conformationally constrained d-Pro residue at the i + 1 position of each type-I' beta turn. To test whether d-Pro residues are necessary for folding at these positions, the six d-Pro residues of B15D are replaced by d-Ala residues in betabellin 16D (B16D). Previously, transmission electron microscopy showed that B15D forms unbranched, 35-A wide fibrils that associate into bundles in 5.0 mM 3-(N-morpholino)propanesulfonate and 250 mM NaCl at pH 7; under these conditions, B16D forms ribbon-like assemblies. The B15D fibrils resemble the protofilaments that constitute amyloid fibrils. The present studies show that both B15D and B16D have characteristics of amyloidogenic proteins: the unbranched fibrils and ribbons stained with Congo red and displayed a green birefringence, exhibited a cross-beta structure, and bound 1-anilino-8-naphthalenesulfonate. Thus, these de novo designed beta-sandwich proteins should provide useful models for studying the mechanism of amyloid protofilament formation and assembly into amyloid fibrils and for designing potential inhibitors of amyloidogenesis.
Collapse
Affiliation(s)
- A Lim
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bohrmann B, Adrian M, Dubochet J, Kuner P, Müller F, Huber W, Nordstedt C, Döbeli H. Self-assembly of beta-amyloid 42 is retarded by small molecular ligands at the stage of structural intermediates. J Struct Biol 2000; 130:232-46. [PMID: 10940228 DOI: 10.1006/jsbi.2000.4241] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Assemblyof the amyloid-beta peptide (Abeta) into fibrils and its deposition in distinct brain areas is considered responsible for the pathogenesis of Alzheimer's disease (AD). Thus, inhibition of fibril assembly is a potential strategy for therapeutic intervention. Electron cryomicroscopy was used to monitor the initial, native assembly structure of Abeta42. In addition to the known fibrillar intermediates, a nonfibrillar, polymeric sheet-like structure was identified. A temporary sequence of supramolecular structures was revealed with (i) polymeric Abeta42 sheets during the onset of assembly, inversely related to the appearance of (ii) fibril intermediates, which again are time-dependently replaced by (iii) mature fibrils. A cell-based primary screening assay was used to identify compounds that decrease Abeta42-induced toxicity. Hit compounds were further assayed for binding to Abeta42, radical scavenger activity, and their influence on the assembly structure of Abeta42. One compound, Ro 90-7501, was found to efficiently retard mature fibril formation, while extended polymeric Abeta42 sheets and fibrillar intermediates are accumulated. Ro 90-7501 may serve as a prototypic inhibitor for Abeta42 fibril formation and as a tool for studying the molecular mechanism of fibril assembly.
Collapse
Affiliation(s)
- B Bohrmann
- Pharma Division, F. Hoffmann-La Roche AG, Basel, CH-4070, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Recent progress has improved our knowledge of how proteins form amyloid fibrils. Both 'natively unfolded' and globular proteins have been shown to initiate fibrillization by adopting a partially structured conformation. Oligomeric prefibrillar intermediates have been extensively characterized with respect to their morphology and temporal evolution. Three-dimensional models obtained using biophysical and computational methods have provided information about fibril structure. All of these advances suggest common features of self-assembly pathways, with subtle variations accounting for differences among distinct amyloid fibrils.
Collapse
Affiliation(s)
- J C Rochet
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
28
|
Abstract
Improved specimen preparation methods, third generation synchrotron sources, new data processing algorithms and molecular dynamics refinement techniques are, together, allowing the high-resolution structure determination of larger and larger macromolecular complexes by fiber diffraction. New synchrotron sources are also making possible both time-resolved studies and studies of ordered fibers only a few microns in diameter.
Collapse
Affiliation(s)
- G Stubbs
- Department of Molecular Biology, Vanderbilt University, Box 1820, Station B, Nashville, TN 37235, USA.
| |
Collapse
|
29
|
Orpiszewski J, Benson MD. Induction of beta-sheet structure in amyloidogenic peptides by neutralization of aspartate: a model for amyloid nucleation. J Mol Biol 1999; 289:413-28. [PMID: 10366514 DOI: 10.1006/jmbi.1999.2768] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid fibril formation is widely accepted as a critical step in all types of amyloidosis. Amyloid fibrils derived from different amyloidogenic proteins share structural elements including beta-sheet secondary structure and similar tertiary structure. While some amyloidogenic proteins are rich in beta-sheet in their soluble form, others, like Alzheimer beta-amyloid peptide (Abeta) or serum amyloid A, must undergo significant structural transition to acquire a high beta-sheet content. We postulate that Abeta and other amyloidogenic proteins undergo a transition to beta-sheet as a result of aging-related chemical modifications of aspartyl residues to the form of succinimide or isoaspartyl methyl ester. We hypothesize that spontaneous cyclization of aspartate residues in amyloidogenic proteins can serve as a nucleation event in amyloidogenesis. To test this hypothesis, we synthesized a series of designed peptides having the sequence VTVKVXAVKVTV, where X represents aspartic acid or its derivatives. Studies using circular dichroism showed that neutralization of the aspartate residue through the formation of a methyl ester or an amide, or replacement of aspartate with glutamate led to an increased beta-sheet content at neutral and basic pH. A higher content of beta-sheet structure correlated with increased propensity for fibril formation and decreased solubility at neutral pH.
Collapse
Affiliation(s)
- J Orpiszewski
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | |
Collapse
|