1
|
Notti RQ, Walz T. Native-like environments afford novel mechanistic insights into membrane proteins. Trends Biochem Sci 2022; 47:561-569. [PMID: 35331611 PMCID: PMC9847468 DOI: 10.1016/j.tibs.2022.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 01/21/2023]
Abstract
Advances in cryogenic electron microscopy (cryo-EM) enabled routine near-atomic structure determination of membrane proteins, while nanodisc technology has provided a way to provide membrane proteins with a native or native-like lipid environment. After giving a brief history of membrane mimetics, we present example structures of membrane proteins in nanodiscs that revealed information not provided by structures obtained in detergent. We describe how the lipid environment surrounding the membrane protein can be custom designed during nanodisc assembly and how it can be modified after assembly to test functional hypotheses. Because nanodiscs most closely replicate the physiologic environment of membrane proteins and often afford novel mechanistic insights, we propose that nanodiscs ought to become the standard for structural studies on membrane proteins.
Collapse
Affiliation(s)
- Ryan Q. Notti
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, New York, NY 10065,Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, New York, NY 10065,Correspondence: (Walz, T.)
| |
Collapse
|
2
|
Kacher YG, Karlova MG, Glukhov GS, Zhang H, Zaklyazminskaya EV, Loussouarn G, Sokolova OS. The Integrative Approach to Study of the Structure and Functions of Cardiac Voltage-Dependent Ion Channels. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521050072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Abstract
Potassium channels are present in every living cell and essential to setting up a stable, non-zero transmembrane electrostatic potential which manifests the off-equilibrium livelihood of the cell. They are involved in other cellular activities and regulation, such as the controlled release of hormones, the activation of T-cells for immune response, the firing of action potential in muscle cells and neurons, etc. Pharmacological reagents targeting potassium channels are important for treating various human diseases linked to dysfunction of the channels. High-resolution structures of these channels are very useful tools for delineating the detailed chemical basis underlying channel functions and for structure-based design and optimization of their pharmacological and pharmaceutical agents. Structural studies of potassium channels have revolutionized biophysical understandings of key concepts in the field - ion selectivity, conduction, channel gating, and modulation, making them multi-modality targets of pharmacological regulation. In this chapter, I will select a few high-resolution structures to illustrate key structural insights, proposed allostery behind channel functions, disagreements still open to debate, and channel-lipid interactions and co-evolution. The known structural consensus allows the inference of conserved molecular mechanisms shared among subfamilies of K+ channels and makes it possible to develop channel-specific pharmaceutical agents.
Collapse
Affiliation(s)
- Qiu-Xing Jiang
- Laboratory of Molecular Physiology and Biophysics and the Cryo-EM Center, Hauptmann-Woodward Medical Research Institute, Buffalo, NY, USA.
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA.
- Departments of Materials Design and Invention and Physiology and Biophysics, University of Buffalo (SUNY), Buffalo, NY, USA.
| |
Collapse
|
4
|
Chorev DS, Robinson CV. The importance of the membrane for biophysical measurements. Nat Chem Biol 2020; 16:1285-1292. [PMID: 33199903 PMCID: PMC7116504 DOI: 10.1038/s41589-020-0574-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/22/2020] [Indexed: 11/09/2022]
Abstract
Within cell membranes numerous protein assemblies reside. Among their many functions, these assemblies regulate the movement of molecules between membranes, facilitate signaling into and out of cells, allow movement of cells by cell-matrix attachment, and regulate the electric potential of the membrane. With such critical roles, membrane protein complexes are of considerable interest for human health, yet they pose an enduring challenge for structural biologists because it is difficult to study these protein structures at atomic resolution in in situ environments. To advance structural and functional insights for these protein assemblies, membrane mimetics are typically employed to recapitulate some of the physical and chemical properties of the lipid bilayer membrane. However, extraction from native membranes can sometimes change the structure and lipid-binding properties of these complexes, leading to conflicting results and fueling a drive to study complexes directly from native membranes. Here we consider the co-development of membrane mimetics with technological breakthroughs in both cryo-electron microscopy (cryo-EM) and native mass spectrometry (nMS). Together, these developments are leading to a plethora of high-resolution protein structures, as well as new knowledge of their lipid interactions, from different membrane-like environments.
Collapse
Affiliation(s)
- Dror S Chorev
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Zheng H, Lee S, Llaguno MC, Jiang QX. bSUM: A bead-supported unilamellar membrane system facilitating unidirectional insertion of membrane proteins into giant vesicles. ACTA ACUST UNITED AC 2016; 147:77-93. [PMID: 26712851 PMCID: PMC4692488 DOI: 10.1085/jgp.201511448] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
KvAP conjugated to beads via a C-terminal His-tag seeds formation of a supported bilayer with unidirectional channel orientation for functional studies. Fused or giant vesicles, planar lipid bilayers, a droplet membrane system, and planar-supported membranes have been developed to incorporate membrane proteins for the electrical and biophysical analysis of such proteins or the bilayer properties. However, it remains difficult to incorporate membrane proteins, including ion channels, into reconstituted membrane systems that allow easy control of operational dimensions, incorporation orientation of the membrane proteins, and lipid composition of membranes. Here, using a newly developed chemical engineering procedure, we report on a bead-supported unilamellar membrane (bSUM) system that allows good control over membrane dimension, protein orientation, and lipid composition. Our new system uses specific ligands to facilitate the unidirectional incorporation of membrane proteins into lipid bilayers. Cryo–electron microscopic imaging demonstrates the unilamellar nature of the bSUMs. Electrical recordings from voltage-gated ion channels in bSUMs of varying diameters demonstrate the versatility of the new system. Using KvAP as a model system, we show that compared with other in vitro membrane systems, the bSUMs have the following advantages: (a) a major fraction of channels are orientated in a controlled way; (b) the channels mediate the formation of the lipid bilayer; (c) there is one and only one bilayer membrane on each bead; (d) the lipid composition can be controlled and the bSUM size is also under experimental control over a range of 0.2–20 µm; (e) the channel activity can be recorded by patch clamp using a planar electrode; and (f) the voltage-clamp speed (0.2–0.5 ms) of the bSUM on a planar electrode is fast, making it suitable to study ion channels with fast gating kinetics. Our observations suggest that the chemically engineered bSUMs afford a novel platform for studying lipid–protein interactions in membranes of varying lipid composition and may be useful for other applications, such as targeted delivery and single-molecule imaging.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sungsoo Lee
- Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Marc C Llaguno
- Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Cell Biology, Yale University, New Haven, CT 06510
| | - Qiu-Xing Jiang
- Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611
| |
Collapse
|
6
|
Kumar RB, Zhu L, Idborg H, Rådmark O, Jakobsson PJ, Rinaldo-Matthis A, Hebert H, Jegerschöld C. Structural and Functional Analysis of Calcium Ion Mediated Binding of 5-Lipoxygenase to Nanodiscs. PLoS One 2016; 11:e0152116. [PMID: 27010627 PMCID: PMC4806843 DOI: 10.1371/journal.pone.0152116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/09/2016] [Indexed: 12/04/2022] Open
Abstract
An important step in the production of inflammatory mediators of the leukotriene family is the Ca2+ mediated recruitment of 5 Lipoxygenase (5LO) to nuclear membranes. To study this reaction in vitro, the natural membrane mimicking environment of nanodiscs was used. Nanodiscs with 10.5 nm inner diameter were made with the lipid POPC and membrane scaffolding protein MSP1E3D1. Monomeric and dimeric 5LO were investigated. Monomeric 5LO mixed with Ca2+ and nanodiscs are shown to form stable complexes that 1) produce the expected leukotriene products from arachidonic acid and 2) can be, for the first time, visualised by native gel electrophoresis and negative stain transmission electron microscopy and 3) show a highest ratio of two 5LO per nanodisc. We interpret this as one 5LO on each side of the disc. The dimer of 5LO is visualised by negative stain transmission electron microscopy and is shown to not bind to nanodiscs. This study shows the advantages of nanodiscs to obtain basic structural information as well as functional information of a complex between a monotopic membrane protein and the membrane.
Collapse
Affiliation(s)
- Ramakrishnan B. Kumar
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
- School of Technology and Health, KTH Royal Institute of Technology, 14183 Huddinge, Sweden
| | - Lin Zhu
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
- School of Technology and Health, KTH Royal Institute of Technology, 14183 Huddinge, Sweden
| | - Helena Idborg
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Olof Rådmark
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Agnes Rinaldo-Matthis
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Hans Hebert
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
- School of Technology and Health, KTH Royal Institute of Technology, 14183 Huddinge, Sweden
| | - Caroline Jegerschöld
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
- School of Technology and Health, KTH Royal Institute of Technology, 14183 Huddinge, Sweden
- * E-mail:
| |
Collapse
|
7
|
Automatic cryo-EM particle selection for membrane proteins in spherical liposomes. J Struct Biol 2014; 185:295-302. [PMID: 24468290 DOI: 10.1016/j.jsb.2014.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/10/2014] [Accepted: 01/11/2014] [Indexed: 11/20/2022]
Abstract
Random spherically constrained (RSC) single particle reconstruction is a method to obtain structures of membrane proteins embedded in lipid vesicles (liposomes). As in all single-particle cryo-EM methods, structure determination is greatly aided by reliable detection of protein "particles" in micrographs. After fitting and subtraction of the membrane density from a micrograph, normalized cross-correlation (NCC) and estimates of the particle signal amplitude are used to detect particles, using as references the projections of a 3D model. At each pixel position, the NCC is computed with only those references that are allowed by the geometric constraint of the particle's embedding in the spherical vesicle membrane. We describe an efficient algorithm for computing this position-dependent correlation, and demonstrate its application to selection of membrane-protein particles, GluA2 glutamate receptors, which present very different views from different projection directions.
Collapse
|
8
|
Barthel AC, Tagare H, Sigworth FJ. Surface-Constrained 3D Reconstruction in Cryo-EM. CONFERENCE RECORD. ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS 2011:1026-1030. [PMID: 24477184 DOI: 10.1109/acssc.2011.6190167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Random spherically-constrained (RSC) reconstruction is a new form of single particle reconstruction (SPR) using cryo-EM images of membrane proteins embedded in spherical lipid vesicles to generate a 3D protein structure. The method has many advantages over conventional SPR, including a more native environment for protein particles and an initial estimate of the particle's angular orientation. These advances allow us to determine structures of membrane proteins such as ion channels and derive more reliable structure estimates. We present an algorithm that relates conventional SPR to the RSC model, and generally, to projection images of particles embedded with an axis parallel to the local normal of a general 2D manifold. We illustrate the performance of this algorithm in the spherical system using synthetic data.
Collapse
Affiliation(s)
- Andrew C Barthel
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, 06520
| | - Hemant Tagare
- Department of Biomedical Engineering, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut, 06520
| | - Fred J Sigworth
- Department of Biomedical Engineering, Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, 06520
| |
Collapse
|
9
|
Wang L, Sigworth FJ. Liposomes on a streptavidin crystal: a system to study membrane proteins by cryo-EM. Methods Enzymol 2010; 481:147-64. [PMID: 20887857 PMCID: PMC3903115 DOI: 10.1016/s0076-6879(10)81007-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this chapter, we describe the preparation of cryo-EM specimens for random spherically constrained (RSC) single-particle reconstruction of membrane proteins. The specimen consists of liposomes into which the purified membrane protein is reconstituted at low density. The substrate is a 2D streptavidin crystal, which serves as an affinity surface that tethers the liposomes, which are doped with biotinylated lipids; the crystal can also serve as an image-quality and image-calibration reference. After subtraction of the crystal and lipid membrane contributions to the image, the remaining particle images can be used for 3D reconstruction.
Collapse
|
10
|
Zhang L, Song J, Newhouse Y, Zhang S, Weisgraber KH, Ren G. An optimized negative-staining protocol of electron microscopy for apoE4 POPC lipoprotein. J Lipid Res 2009; 51:1228-36. [PMID: 19965615 PMCID: PMC2853450 DOI: 10.1194/jlr.d002493] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein E (apoE), one of the major protein components of lipoproteins in the peripheral and central nervous systems, regulates cholesterol metabolism through its interaction with members of the low density lipoprotein receptor family. One key to understanding apoE function is determining the structure of lipid-bound forms of apoE. Negative-staining (NS) electron microscopy (EM) is an easy and rapid approach for studying the structure and morphology of lipid-bound forms of apoE. However, an artifact of using the conventional NS protocol is that the apoE•phospholipid particles form rouleaux. In this study, we used cryo-electron microscopy (cryo-EM) to examine apoE4•palmitoyl-oleoylphosphatidylcholine (POPC) particles in a frozen-hydrated native state. By comparing the particle sizes and shapes produced by different NS protocols to those produced by cryo-EM, we propose an optimized protocol to examine apoE4•POPC particles. Statistical analysis demonstrated that the particle sizes differ by less than 5% between the optimized protocol and the cryo-EM method, with similar shapes. The high contrast and fine detail of particle images produced using this optimized protocol lend themselves to the structural study of lipid-bound forms of apoE.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Applied Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | | | | | | | | | | |
Collapse
|
11
|
Wang L, Sigworth FJ. Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy. Nature 2009; 461:292-5. [PMID: 19718020 PMCID: PMC2797367 DOI: 10.1038/nature08291] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 07/17/2009] [Indexed: 01/17/2023]
Affiliation(s)
- Liguo Wang
- Department of Cellular and Molecular Physiology, Yale University, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
12
|
Partha R, Mitchell LR, Lyon JL, Joshi PP, Conyers JL. Buckysomes: fullerene-based nanocarriers for hydrophobic molecule delivery. ACS NANO 2008; 2:1950-1958. [PMID: 19206436 DOI: 10.1021/nn800422k] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report the preparation and preliminary in vitro studies of nanocarriers termed "buckysomes," which are self-assembled, spherical nanostructures composed of the amphiphilic fullerene AF-1. By inducing AF-1 self-assembly at an elevated temperature of 70 degrees C, dense spherical buckysomes with diameters of 100-200 nm were formed, as observed by electron microscopy and dynamic light scattering. The amphiphilic nature of AF-1 results in the formation of many hydrophobic regions within the buckysomes, making them ideal for embedding hydrophobic molecules to be tested in a drug delivery scheme. After confirming the cellular internalization of buckysomes embedded with the hydrophobic fluorescent dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate, we embedded paclitaxel, a highly hydrophobic anticancer drug. The in vitro therapeutic efficacy of the paclitaxel-embedded buckysomes toward suppression of MCF-7 breast cancer cell growth was compared to that of Abraxane, a commercially available, nanoparticle-albumin-bound formulation of paclitaxel. Notably, the paclitaxel-embedded buckysomes demonstrated a similar efficacy to that observed with Abraxane in cell viability studies; these results were confirmed microscopically. Moreover, negative control studies of MCF-7 viability using empty buckysomes demonstrated that the buckysomes were not cytotoxic. The results of our studies suggest that buckysomes prepared from self-assembly of AF-1 at 70 degrees C are promising nanomaterials for the delivery of hydrophobic molecules.
Collapse
Affiliation(s)
- Ranga Partha
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
13
|
Streptavidin crystals as nanostructured supports and image-calibration references for cryo-EM data collection. J Struct Biol 2008; 164:190-8. [PMID: 18707004 DOI: 10.1016/j.jsb.2008.07.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/14/2008] [Accepted: 07/18/2008] [Indexed: 11/22/2022]
Abstract
For cryo-EM structural studies, we seek to image membrane proteins as single particles embedded in proteoliposomes. One technical difficulty has been the low density of liposomes that can be trapped in the approximately 100nm ice layer that spans holes in the perforated carbon support film of EM grids. Inspired by the use of two-dimensional (2D) streptavidin crystals as an affinity surface for biotinylated DNA (Crucifix et al., 2004), we propose to use the crystals to tether liposomes doped with biotinylated lipids. The 2D crystal image also serves as a calibration of the image formation process, providing an absolute conversion from electrostatic potentials in the specimen to the EM image intensity, and serving as a quality control of acquired cryo-EM images. We were able to grow streptavidin crystals covering more than 90% of the holes in an EM grid, and which remained stable even under negative stain. The liposome density in the resulting cryo-EM sample was uniform and high due to the high-affinity binding of biotin to streptavidin. Using computational methods, the 2D crystal background can be removed from images without noticeable effect on image properties.
Collapse
|
14
|
Abstract
Cryoelectronmicroscopy is a method for the imaging of macromolecules in the electron microscope. It was originally developed to determine membrane protein structures from two-dimensional crystals, but more recently "single-particle" techniques have become powerful and popular. Three-dimensional reconstructions are obtained from sets of single-particle images by extensive computer processing; the methods are being applied to many macromolecular assemblies.
Collapse
Affiliation(s)
- Liguo Wang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
15
|
Förster F, Medalia O, Zauberman N, Baumeister W, Fass D. Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. Proc Natl Acad Sci U S A 2005; 102:4729-34. [PMID: 15774580 PMCID: PMC555690 DOI: 10.1073/pnas.0409178102] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We used cryo-electron tomography in conjunction with single-particle averaging techniques to study the structures of frozen-hydrated envelope glycoprotein (Env) complexes on intact Moloney murine leukemia retrovirus particles. Cryo-electron tomography allows 3D imaging of viruses in toto at a resolution sufficient to locate individual macromolecules, and local averaging of abundant complexes substantially improves the resolution. The averaging of repetitive features in electron tomograms is hampered by a low signal-to-noise ratio and anisotropic resolution, which results from the "missing-wedge" effect. We developed an iterative 3D averaging algorithm that compensates for this effect and used it to determine the trimeric structure of Env to a resolution of 2.7 nm, at which individual domains can be resolved. Strikingly, the 3D reconstruction is shaped like a tripod in which the trimer penetrates the membrane at three distinct locations approximately 4.5 nm apart from one another. The Env reconstruction allows tentative docking of the x-ray crystal structure of the receptor-binding domain. This study thus provides 3D structural information regarding the prefusion conformation of an intact unstained retrovirus surface protein.
Collapse
Affiliation(s)
- Friedrich Förster
- Abteilung für Molekulare Strukturbiologie, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| | | | | | | | | |
Collapse
|
16
|
Jiang QX, Thrower EC, Chester DW, Ehrlich BE, Sigworth FJ. Three-dimensional structure of the type 1 inositol 1,4,5-trisphosphate receptor at 24 A resolution. EMBO J 2002; 21:3575-81. [PMID: 12110570 PMCID: PMC126125 DOI: 10.1093/emboj/cdf380] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report here the first three-dimensional structure of the type 1 inositol 1,4,5-trisphosphate receptor (IP(3)R). From cryo-electron microscopic images of purified receptors embedded in vitreous ice, a three-dimensional structure was determined by use of standard single particle reconstruction techniques. The structure is strikingly different from that of the ryanodine receptor at similar resolution despite molecular similarities between these two calcium release channels. The 24 A resolution structure of the IP(3)R takes the shape of an uneven dumbbell, and is approximately 170 A tall. Its larger end is bulky, with four arms protruding laterally by approximately 50 A and, in comparison with the receptor topology, probably corresponds to the cytoplasmic domain of the receptor. The lateral dimension at the height of the protruding arms is approximately 155 A. The smaller end, whose lateral dimension is approximately 100 A, has structural features indicative of the membrane-spanning domain. A central opening in this domain, which is occluded on the cytoplasmic half, outlines a pathway for calcium flow in the open state of the channel.
Collapse
Affiliation(s)
- Qiu-Xing Jiang
- Departments of
Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA Corresponding author e-mail:
| | - Edwin C. Thrower
- Departments of
Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA Corresponding author e-mail:
| | - David W. Chester
- Departments of
Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA Corresponding author e-mail:
| | - Barbara E. Ehrlich
- Departments of
Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA Corresponding author e-mail:
| | - Fred J. Sigworth
- Departments of
Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA Corresponding author e-mail:
| |
Collapse
|