1
|
Vermulst M, Paskvan SL, Chung CS, Franke K, Clegg N, Minot S, Madeoy J, Long AS, Gout JF, Bielas JH. MADDD-seq, a novel massively parallel sequencing tool for simultaneous detection of DNA damage and mutations. Nucleic Acids Res 2024; 52:e76. [PMID: 39149908 PMCID: PMC11381349 DOI: 10.1093/nar/gkae632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/20/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
Our genome is exposed to a wide variety of DNA-damaging agents. If left unrepaired, this damage can be converted into mutations that promote carcinogenesis or the development of genetically inherited diseases. As a result, researchers and clinicians require tools that can detect DNA damage and mutations with exceptional sensitivity. In this study, we describe a massively parallel sequencing tool termed Mutation And DNA Damage Detection-seq (MADDD-seq) that is capable of detecting O6-methyl guanine lesions and mutations simultaneously, with a single assay. To illustrate the dual capabilities of MADDD-seq, we treated WT and DNA repair deficient yeast cells with the DNA-damaging agent MNNG and tracked DNA lesions and mutations over a 24-h time period. This approach allowed us to identify thousands of DNA adducts and mutations in a single sequencing run and gain deep insight into the kinetics of DNA repair and mutagenesis.
Collapse
Affiliation(s)
- Marc Vermulst
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Samantha L Paskvan
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Claire S Chung
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Kathryn Franke
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nigel Clegg
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sam Minot
- Data Core, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jennifer Madeoy
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Annalyssa S Long
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jean-Francois Gout
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Jason H Bielas
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Hassanain H, Tseitline D, Hacohen T, Yifrach A, Kirshenbaum A, Lavi B, Parnas A, Adar S. A Practical Site-specific Method for the Detection of Bulky DNA Damages. J Mol Biol 2024; 436:168450. [PMID: 38246411 DOI: 10.1016/j.jmb.2024.168450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Helix-distorting DNA damages block RNA and DNA polymerase, compromising cell function and fate. In human cells, these damages are removed primarily by nucleotide excision repair (NER). Here, we describe damage-sensing PCR (dsPCR), a PCR-based method for the detection of these DNA damages. Exposure to DNA damaging agents results in lower PCR signal in comparison to non-damaged DNA, and repair is measured as the restoration of PCR signal over time. We show that the method successfully detects damages induced by ultraviolet (UV) radiation, by the carcinogenic component of cigarette smoke benzo[a]pyrene diol epoxide (BPDE) and by the chemotherapeutic drug cisplatin. Damage removal measured by dsPCR in a heterochromatic region is less efficient than in a transcribed and accessible region. Furthermore, lower repair is measured in repair-deficient knock-out cells. This straight-forward method could be applied by non-DNA repair experts to study the involvement of their gene-of-interest in repair. Furthermore, this method is fully amenable for high-throughput screening of DNA repair activity.
Collapse
Affiliation(s)
- Hiba Hassanain
- Department of Microbiology and Molecular Genetics, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Dana Tseitline
- Department of Microbiology and Molecular Genetics, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Tamar Hacohen
- Department of Microbiology and Molecular Genetics, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Adi Yifrach
- Department of Microbiology and Molecular Genetics, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ayala Kirshenbaum
- Department of Microbiology and Molecular Genetics, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Bar Lavi
- Department of Microbiology and Molecular Genetics, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Avital Parnas
- Department of Microbiology and Molecular Genetics, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| |
Collapse
|
3
|
Cohen Y, Adar S. Novel insights into bulky DNA damage formation and nucleotide excision repair from high-resolution genomics. DNA Repair (Amst) 2023; 130:103549. [PMID: 37566959 DOI: 10.1016/j.dnarep.2023.103549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
DNA damages compromise cell function and fate. Cells of all organisms activate a global DNA damage response that includes a signaling stress response, activation of checkpoints, and recruitment of repair enzymes. Especially deleterious are bulky, helix-distorting damages that block transcription and replication. Due to their miscoding nature, these damages lead to mutations and cancer. In human cells, bulky DNA damages are repaired by nucleotide excision repair (NER). To date, the basic mechanism of NER in naked DNA is well defined. Still, there is a fundamental gap in our understanding of how repair is orchestrated despite the packaging of DNA in chromatin, and how it is coordinated with active transcription and replication. The last decade has brought forth huge advances in our ability to detect and assay bulky DNA damages and their repair at single nucleotide resolution across the human genome. Here we review recent findings on the effect of chromatin and DNA-binding proteins on the formation of bulky DNA damages, and novel insights on NER, provided by the recent application of genomic methods.
Collapse
Affiliation(s)
- Yuval Cohen
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| |
Collapse
|
4
|
Genome-wide mapping of genomic DNA damage: methods and implications. Cell Mol Life Sci 2021; 78:6745-6762. [PMID: 34463773 PMCID: PMC8558167 DOI: 10.1007/s00018-021-03923-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022]
Abstract
Exposures from the external and internal environments lead to the modification of genomic DNA, which is implicated in the cause of numerous diseases, including cancer, cardiovascular, pulmonary and neurodegenerative diseases, together with ageing. However, the precise mechanism(s) linking the presence of damage, to impact upon cellular function and pathogenesis, is far from clear. Genomic location of specific forms of damage is likely to be highly informative in understanding this process, as the impact of downstream events (e.g. mutation, microsatellite instability, altered methylation and gene expression) on cellular function will be positional—events at key locations will have the greatest impact. However, until recently, methods for assessing DNA damage determined the totality of damage in the genomic location, with no positional information. The technique of “mapping DNA adductomics” describes the molecular approaches that map a variety of forms of DNA damage, to specific locations across the nuclear and mitochondrial genomes. We propose that integrated comparison of this information with other genome-wide data, such as mutational hotspots for specific genotoxins, tumour-specific mutation patterns and chromatin organisation and transcriptional activity in non-cancerous lesions (such as nevi), pre-cancerous conditions (such as polyps) and tumours, will improve our understanding of how environmental toxins lead to cancer. Adopting an analogous approach for non-cancer diseases, including the development of genome-wide assays for other cellular outcomes of DNA damage, will improve our understanding of the role of DNA damage in pathogenesis more generally.
Collapse
|
5
|
Xu Y, Manghrani A, Liu B, Shi H, Pham U, Liu A, Al-Hashimi HM. Hoogsteen base pairs increase the susceptibility of double-stranded DNA to cytotoxic damage. J Biol Chem 2020; 295:15933-15947. [PMID: 32913127 DOI: 10.1074/jbc.ra120.014530] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/24/2020] [Indexed: 11/06/2022] Open
Abstract
As the Watson-Crick faces of nucleobases are protected in dsDNA, it is commonly assumed that deleterious alkylation damage to the Watson-Crick faces of nucleobases predominantly occurs when DNA becomes single-stranded during replication and transcription. However, damage to the Watson-Crick faces of nucleobases has been reported in dsDNA in vitro through mechanisms that are not understood. In addition, the extent of protection from methylation damage conferred by dsDNA relative to ssDNA has not been quantified. Watson-Crick base pairs in dsDNA exist in dynamic equilibrium with Hoogsteen base pairs that expose the Watson-Crick faces of purine nucleobases to solvent. Whether this can influence the damage susceptibility of dsDNA remains unknown. Using dot-blot and primer extension assays, we measured the susceptibility of adenine-N1 to methylation by dimethyl sulfate (DMS) when in an A-T Watson-Crick versus Hoogsteen conformation. Relative to unpaired adenines in a bulge, Watson-Crick A-T base pairs in dsDNA only conferred ∼130-fold protection against adenine-N1 methylation, and this protection was reduced to ∼40-fold for A(syn)-T Hoogsteen base pairs embedded in a DNA-drug complex. Our results indicate that Watson-Crick faces of nucleobases are accessible to alkylating agents in canonical dsDNA and that Hoogsteen base pairs increase this accessibility. Given the higher abundance of dsDNA relative to ssDNA, these results suggest that dsDNA could be a substantial source of cytotoxic damage. The work establishes DMS probing as a method for characterizing A(syn)-T Hoogsteen base pairs in vitro and also lays the foundation for a sequencing approach to map A(syn)-T Hoogsteen and unpaired adenines genome-wide in vivo.
Collapse
Affiliation(s)
- Yu Xu
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Akanksha Manghrani
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Uyen Pham
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Amy Liu
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Hashim M Al-Hashimi
- Department of Chemistry, Duke University, Durham, North Carolina, USA; Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|
6
|
Li W, Sancar A. Methodologies for detecting environmentally induced DNA damage and repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:664-679. [PMID: 32083352 PMCID: PMC7442611 DOI: 10.1002/em.22365] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/08/2020] [Accepted: 02/16/2020] [Indexed: 05/07/2023]
Abstract
Environmental DNA damaging agents continuously challenge the integrity of the genome by introducing a variety of DNA lesions. The DNA damage caused by environmental factors will lead to mutagenesis and subsequent carcinogenesis if they are not removed efficiently by repair pathways. Methods for detection of DNA damage and repair can be applied to identify, visualize, and quantify the DNA damage formation and repair events, and they enable us to illustrate the molecular mechanisms of DNA damage formation, DNA repair pathways, mutagenesis, and carcinogenesis. Ever since the discovery of the double helical structure of DNA in 1953, a great number of methods have been developed to detect various types of DNA damage and repair. Rapid advances in sequencing technologies have facilitated the emergence of a variety of novel methods for detecting environmentally induced DNA damage and repair at the genome-wide scale during the last decade. In this review, we provide a historical overview of the development of various damage detection methods. We also highlight the current methodologies to detect DNA damage and repair, especially some next generation sequencing-based methods.
Collapse
Affiliation(s)
- Wentao Li
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Abstract
Nucleotide excision repair is a versatile mechanism to repair a variety of bulky DNA adducts. We developed excision repair sequencing (XR-seq) to study nucleotide excision repair of DNA adducts in humans, mice, Arabidopsis thaliana, yeast and Escherichia coli. In this protocol, the excised oligomers, generated in the nucleotide excision repair reaction, are isolated by cell lysis and fractionation, followed by immunoprecipitation with damage- or repair factor-specific antibodies from the non-chromatin fraction. The single-stranded excised oligomers are ligated to adapters and re-immunoprecipitated with damage-specific antibodies. The DNA damage in the excised oligomers is then reversed by enzymatic or chemical reactions before being converted into a sequencing library by PCR amplification. Alternatively, the excised oligomers containing DNA damage, especially those containing irreversible DNA damage such as benzo[a]pyrene-induced DNA adducts, can be converted to a double-stranded DNA (dsDNA) form by using appropriate translesion DNA synthesis (TLS) polymerases and then can be amplified by PCR. The current genome-wide approaches for studying repair measure the loss of damage signal with time, which limits their resolution. By contrast, an advantage of XR-seq is that the repair signal is directly detected above a background of zero. An XR-seq library using the protocol described here can be obtained in 7-9 d.
Collapse
|
8
|
Mao P, Brown AJ, Esaki S, Lockwood S, Poon GMK, Smerdon MJ, Roberts SA, Wyrick JJ. ETS transcription factors induce a unique UV damage signature that drives recurrent mutagenesis in melanoma. Nat Commun 2018; 9:2626. [PMID: 29980679 PMCID: PMC6035183 DOI: 10.1038/s41467-018-05064-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/07/2018] [Indexed: 11/12/2022] Open
Abstract
Recurrent mutations are frequently associated with transcription factor (TF) binding sites (TFBS) in melanoma, but the mechanism driving mutagenesis at TFBS is unclear. Here, we use a method called CPD-seq to map the distribution of UV-induced cyclobutane pyrimidine dimers (CPDs) across the human genome at single nucleotide resolution. Our results indicate that CPD lesions are elevated at active TFBS, an effect that is primarily due to E26 transformation-specific (ETS) TFs. We show that ETS TFs induce a unique signature of CPD hotspots that are highly correlated with recurrent mutations in melanomas, despite high repair activity at these sites. ETS1 protein renders its DNA binding targets extremely susceptible to UV damage in vitro, due to binding-induced perturbations in the DNA structure that favor CPD formation. These findings define a mechanism responsible for recurrent mutations in melanoma and reveal that DNA binding by ETS TFs is inherently mutagenic in UV-exposed cells. Many factors contribute to mutation hotspots in cancer cells. Here the authors map UV damage at single-nucleotide resolution across the human genome and find that binding sites of ETS transcription factors are especially prone to forming UV lesions, leading to mutation hotspots in melanoma.
Collapse
Affiliation(s)
- Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Alexander J Brown
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Shingo Esaki
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Svetlana Lockwood
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, 99164, USA
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Michael J Smerdon
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA. .,Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA. .,Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
9
|
Sloan DB, Broz AK, Sharbrough J, Wu Z. Detecting Rare Mutations and DNA Damage with Sequencing-Based Methods. Trends Biotechnol 2018; 36:729-740. [PMID: 29550161 PMCID: PMC6004327 DOI: 10.1016/j.tibtech.2018.02.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 12/18/2022]
Abstract
There is a great need in biomedical and genetic research to detect DNA damage and de novo mutations, but doing so is inherently challenging because of the rarity of these events. The enormous capacity of current DNA sequencing technologies has opened the door for quantifying sequence variants present at low frequencies in vivo, such as within cancerous tissues. However, these sequencing technologies are error prone, resulting in high noise thresholds. Most DNA sequencing methods are also generally incapable of identifying chemically modified bases arising from DNA damage. In recent years, numerous specialized modifications to sequencing methods have been developed to address these shortcomings. Here, we review this landscape of emerging techniques, highlighting their respective strengths, weaknesses, and target applications.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
10
|
Dynamic maps of UV damage formation and repair for the human genome. Proc Natl Acad Sci U S A 2017; 114:6758-6763. [PMID: 28607063 DOI: 10.1073/pnas.1706522114] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Formation and repair of UV-induced DNA damage in human cells are affected by cellular context. To study factors influencing damage formation and repair genome-wide, we developed a highly sensitive single-nucleotide resolution damage mapping method [high-sensitivity damage sequencing (HS-Damage-seq)]. Damage maps of both cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts [(6-4)PPs] from UV-irradiated cellular and naked DNA revealed that the effect of transcription factor binding on bulky adducts formation varies, depending on the specific transcription factor, damage type, and strand. We also generated time-resolved UV damage maps of both CPDs and (6-4)PPs by HS-Damage-seq and compared them to the complementary repair maps of the human genome obtained by excision repair sequencing to gain insight into factors that affect UV-induced DNA damage and repair and ultimately UV carcinogenesis. The combination of the two methods revealed that, whereas UV-induced damage is virtually uniform throughout the genome, repair is affected by chromatin states, transcription, and transcription factor binding, in a manner that depends on the type of DNA damage.
Collapse
|
11
|
Hu J, Adar S. The Cartography of UV-induced DNA Damage Formation and DNA Repair. Photochem Photobiol 2017; 93:199-206. [PMID: 27861959 DOI: 10.1111/php.12668] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/23/2016] [Indexed: 12/29/2022]
Abstract
DNA damage presents a barrier to DNA-templated biochemical processes, including gene expression and faithful DNA replication. Compromised DNA repair leads to mutations, enhancing the risk for genetic diseases and cancer development. Conventional experimental approaches to study DNA damage required a researcher to choose between measuring bulk damage over the entire genome, with little or no resolution regarding a specific location, and obtaining data specific to a locus of interest, without a global perspective. Recent advances in high-throughput genomic tools overcame these limitations and provide high-resolution measurements simultaneously across the genome. In this review, we discuss the available methods for measuring DNA damage and their repair, focusing on genomewide assays for pyrimidine photodimers, the major types of damage induced by ultraviolet irradiation. These new genomic assays will be a powerful tool in identifying key components of genome stability and carcinogenesis.
Collapse
Affiliation(s)
- Jinchuan Hu
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Sheera Adar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
12
|
Mao P, Wyrick JJ, Roberts SA, Smerdon MJ. UV-Induced DNA Damage and Mutagenesis in Chromatin. Photochem Photobiol 2016; 93:216-228. [PMID: 27716995 DOI: 10.1111/php.12646] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
UV radiation induces photolesions that distort the DNA double helix and, if not repaired, can cause severe biological consequences, including mutagenesis or cell death. In eukaryotes, both the formation and repair of UV damage occur in the context of chromatin, in which genomic DNA is packaged with histones into nucleosomes and higher order chromatin structures. Here, we review how chromatin impacts the formation of UV photoproducts in eukaryotic cells. We describe the initial discovery that nucleosomes and other DNA binding proteins induce characteristic "photofootprints" during the formation of UV photoproducts. We also describe recent progress in genomewide methods for mapping UV damage, which echoes early biochemical studies, and highlights the role of nucleosomes and transcription factors in UV damage formation and repair at unprecedented resolution. Finally, we discuss our current understanding of how the distribution and repair of UV-induced DNA damage influence mutagenesis in human skin cancers.
Collapse
Affiliation(s)
- Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA.,Center for Reproductive Biology, Washington State University, Pullman, WA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Michael J Smerdon
- School of Molecular Biosciences, Washington State University, Pullman, WA
| |
Collapse
|
13
|
Li W, Selvam K, Rahman SA, Li S. Sen1, the yeast homolog of human senataxin, plays a more direct role than Rad26 in transcription coupled DNA repair. Nucleic Acids Res 2016; 44:6794-802. [PMID: 27179024 PMCID: PMC5001595 DOI: 10.1093/nar/gkw428] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/05/2016] [Indexed: 11/13/2022] Open
Abstract
Rad26, a DNA dependent ATPase that is homologous to human CSB, has been well known to play an important role in transcription coupled DNA repair (TCR) in the yeast Saccharomyces cerevisiae Sen1, a DNA/RNA helicase that is essential for yeast cell viability and homologous to human senataxin, has been known to be required for transcriptional termination of short noncoding RNA genes and for a fail-safe transcriptional termination mechanism of protein-coding genes. Sen1 has also been shown to protect the yeast genome from transcription-associated recombination by resolving RNA:DNA hybrids naturally formed during transcription. Here, we show that the N-terminal non-essential region of Sen1 plays an important role in TCR, whereas the C-terminal nonessential region and the helicase activity of Sen1 are largely dispensable for the repair. Unlike Rad26, which becomes completely dispensable for TCR in cells lacking the TCR repressor Spt4, Sen1 is still required for efficient TCR in the absence of Spt4. Also unlike Rad26, which is important for repair at many but not all damaged sites in the transcribed strand of a gene, Sen1 is required for efficient repair at essentially all the damaged sites. Our results indicate that Sen1 plays a more direct role than Rad26 in TCR.
Collapse
Affiliation(s)
- Wentao Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kathiresan Selvam
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sheikh A Rahman
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
14
|
Li M, Ko T, Li S. High-resolution Digital Mapping of N-Methylpurines in Human Cells Reveals Modulation of Their Induction and Repair by Nearest-neighbor Nucleotides. J Biol Chem 2015; 290:23148-61. [PMID: 26240148 DOI: 10.1074/jbc.m115.676296] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Indexed: 11/06/2022] Open
Abstract
N-Methylpurines (NMPs), including N(7)-methylguanine (7MeG) and N(3)-methyladenine (3MeA), can be induced by environmental methylating agents, chemotherapeutics, and natural cellular methyl donors. In human cells, NMPs are repaired by the multi-step base excision repair pathway initiated by human alkyladenine glycosylase. Repair of NMPs has been shown to be affected by DNA sequence contexts. However, the nature of the sequence contexts has been poorly understood. We developed a sensitive method, LAF-Seq (Lesion-Adjoining Fragment Sequencing), which allows nucleotide-resolution digital mapping of DNA damage and repair in multiple genomic fragments of interest in human cells. We also developed a strategy that allows accurate measurement of the excision kinetics of NMP bases in vitro. We demonstrate that 3MeAs are induced to a much lower level by the SN2 methylating agent dimethyl sulfate and repaired much faster than 7MeGs in human fibroblasts. Induction of 7MeGs by dimethyl sulfate is affected by nearest-neighbor nucleotides, being enhanced at sites neighbored by a G or T on the 3' side, but impaired at sites neighbored by a G on the 5' side. Repair of 7MeGs is also affected by nearest-neighbor nucleotides, being slow if the lesions are between purines, especially Gs, and fast if the lesions are between pyrimidines, especially Ts. Excision of 7MeG bases from the DNA backbone by human alkyladenine glycosylase in vitro is similarly affected by nearest-neighbor nucleotides, suggesting that the effect of nearest-neighbor nucleotides on repair of 7MeGs in the cells is primarily achieved by modulating the initial step of the base excision repair process.
Collapse
Affiliation(s)
- Mingyang Li
- From the Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Tengyu Ko
- From the Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Shisheng Li
- From the Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803
| |
Collapse
|
15
|
Hu J, Adar S, Selby CP, Lieb JD, Sancar A. Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution. Genes Dev 2015; 29:948-60. [PMID: 25934506 PMCID: PMC4421983 DOI: 10.1101/gad.261271.115] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hu et al. developed a method for genome-wide mapping of DNA excision repair named XR-seq (excision repair sequencing) and used it to produce stranded, nucleotide-resolution maps of repair of two UV-induced DNA damages in human cells. XR-seq and the resulting repair maps will facilitate studies of the effects of genomic location, chromatin context, transcription, and replication on DNA repair in human cells. We developed a method for genome-wide mapping of DNA excision repair named XR-seq (excision repair sequencing). Human nucleotide excision repair generates two incisions surrounding the site of damage, creating an ∼30-mer. In XR-seq, this fragment is isolated and subjected to high-throughput sequencing. We used XR-seq to produce stranded, nucleotide-resolution maps of repair of two UV-induced DNA damages in human cells: cyclobutane pyrimidine dimers (CPDs) and (6-4) pyrimidine–pyrimidone photoproducts [(6-4)PPs]. In wild-type cells, CPD repair was highly associated with transcription, specifically with the template strand. Experiments in cells defective in either transcription-coupled excision repair or general excision repair isolated the contribution of each pathway to the overall repair pattern and showed that transcription-coupled repair of both photoproducts occurs exclusively on the template strand. XR-seq maps capture transcription-coupled repair at sites of divergent gene promoters and bidirectional enhancer RNA (eRNA) production at enhancers. XR-seq data also uncovered the repair characteristics and novel sequence preferences of CPDs and (6-4)PPs. XR-seq and the resulting repair maps will facilitate studies of the effects of genomic location, chromatin context, transcription, and replication on DNA repair in human cells.
Collapse
Affiliation(s)
- Jinchuan Hu
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Sheera Adar
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Jason D Lieb
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
16
|
Meas R, Smerdon MJ, Wyrick JJ. The amino-terminal tails of histones H2A and H3 coordinate efficient base excision repair, DNA damage signaling and postreplication repair in Saccharomyces cerevisiae. Nucleic Acids Res 2015; 43:4990-5001. [PMID: 25897129 PMCID: PMC4446432 DOI: 10.1093/nar/gkv372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/07/2015] [Indexed: 11/19/2022] Open
Abstract
Histone amino-terminal tails (N-tails) are required for cellular resistance to DNA damaging agents; therefore, we examined the role of histone N-tails in regulating DNA damage response pathways in Saccharomyces cerevisiae. Combinatorial deletions reveal that the H2A and H3 N-tails are important for the removal of MMS-induced DNA lesions due to their role in regulating the basal and MMS-induced expression of DNA glycosylase Mag1. Furthermore, overexpression of Mag1 in a mutant lacking the H2A and H3 N-tails rescues base excision repair (BER) activity but not MMS sensitivity. We further show that the H3 N-tail functions in the Rad9/Rad53 DNA damage signaling pathway, but this function does not appear to be the primary cause of MMS sensitivity of the double tailless mutants. Instead, epistasis analyses demonstrate that the tailless H2A/H3 phenotypes are in the RAD18 epistasis group, which regulates postreplication repair. We observed increased levels of ubiquitylated PCNA and significantly lower mutation frequency in the tailless H2A/H3 mutant, indicating a defect in postreplication repair. In summary, our data identify novel roles of the histone H2A and H3 N-tails in (i) regulating the expression of a critical BER enzyme (Mag1), (ii) supporting efficient DNA damage signaling and (iii) facilitating postreplication repair.
Collapse
Affiliation(s)
- Rithy Meas
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Michael J Smerdon
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| |
Collapse
|
17
|
Li W, Selvam K, Ko T, Li S. Transcription bypass of DNA lesions enhances cell survival but attenuates transcription coupled DNA repair. Nucleic Acids Res 2014; 42:13242-53. [PMID: 25389266 PMCID: PMC4245964 DOI: 10.1093/nar/gku1150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcription-coupled DNA repair (TCR) is a subpathway of nucleotide excision repair (NER) dedicated to rapid removal of DNA lesions in the transcribed strand of actively transcribed genes. The precise nature of the TCR signal and how the repair machinery gains access to lesions imbedded in stalled RNA polymerase II (RNAP II) complexes in eukaryotic cells are still enigmatic. RNAP II has an intrinsic capacity for transcription bypass of DNA lesions by incorporation or misincorporation of nucleotides across the lesions. It has been suggested that transcription bypass of lesions, which exposes the lesions, may be required for TCR. Here, we show that E1103G mutation of Rpb1, the largest subunit of RNAP II, which promotes transcription bypass of UV-induced cyclobutane pyrimidine dimers (CPDs), increases survival of UV irradiated yeast cells but attenuates TCR. The increased cell survival is independent of any NER subpathways. In contrast, G730D mutation of Rpb1, which impairs transcription bypass of CPDs, enhances TCR. Our results suggest that transcription bypass of lesions attenuates TCR but enhances cell tolerance to DNA lesions. Efficient stalling of RNAP II is essential for efficient TCR.
Collapse
Affiliation(s)
- Wentao Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kathiresan Selvam
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Tengyu Ko
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
18
|
UV damage-induced RNA polymerase II stalling stimulates H2B deubiquitylation. Proc Natl Acad Sci U S A 2014; 111:12811-6. [PMID: 25136098 DOI: 10.1073/pnas.1403901111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Histone H2B monoubiquitylation plays an important role in RNA polymerase II (RNAPII) elongation. Whether this modification responds to RNAPII stalling is not yet known. We report that both yeast and human cells undergo a rapid and significant H2B deubiquitylation after exposure to UV irradiation. This deubiquitylation occurs concurrently with UV-induced transcription arrest and is significantly reduced in a DNA damage-bypassing RNAPII yeast mutant. Consistent with these results, yeast deubiquitylases Ubp8 and Ubp10 are associated with the RNAPII complex. Moreover, simultaneous deletion of Ubp8 and Ubp10 leads to a lack of H2B deubiquitylation after UV exposure. Consequently, nucleotide excision repair at an actively transcribed gene locus is decreased, whereas UV-induced RNAPII degradation is increased in ubp8Δubp10Δ mutant cells. These results indicate that eukaryotic cells respond to RNAPII arrest by deubiquitylating H2B to coordinate DNA repair and RNAPII degradation.
Collapse
|
19
|
Li W, Giles C, Li S. Insights into how Spt5 functions in transcription elongation and repressing transcription coupled DNA repair. Nucleic Acids Res 2014; 42:7069-83. [PMID: 24813444 PMCID: PMC4066765 DOI: 10.1093/nar/gku333] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Spt5, a transcription elongation factor, and Rpb4, a subunit of RNA polymerase II (RNAP II) that forms a subcomplex with Rpb7, play important roles in transcription elongation and repression of transcription coupled DNA repair (TCR) in eukaryotic cells. How Spt5 physically interacts with RNAP II, and if and/or how Spt5 and Rpb4/7 coordinate to achieve the distinctive functions have been enigmatic. By site-specific incorporation of the unnatural amino acid p-benzoyl-L-phenylalanine, a photoreactive cross-linker, we mapped interactions between Spt5 and RNAP II in Saccharomyces cerevisiae. Through its KOW4-5 domains, Spt5 extensively interacts with Rpb4/7. Spt5 also interacts with Rpb1 and Rpb2, two largest subunits of RNAP II, at the clamp, protrusion and wall domains. These interactions may lock the clamp to the closed conformation and enclose the DNA being transcribed in the central cleft of RNAP II. Deletion of Spt5 KOW4-5 domains decreases transcription elongation and derepresses TCR. Our findings suggest that Spt5 is a key coordinator for holding the RNAP II complex in a closed conformation that is highly competent for transcription elongation but repressive to TCR.
Collapse
Affiliation(s)
- Wentao Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Cristina Giles
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
20
|
Czaja W, Mao P, Smerdon MJ. Chromatin remodelling complex RSC promotes base excision repair in chromatin of Saccharomyces cerevisiae. DNA Repair (Amst) 2014; 16:35-43. [PMID: 24674626 DOI: 10.1016/j.dnarep.2014.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/04/2013] [Accepted: 01/07/2014] [Indexed: 12/15/2022]
Abstract
The base excision repair (BER) pathway is a conserved DNA repair system required to maintain genomic integrity and prevent mutagenesis in all eukaryotic cells. Nevertheless, how BER operates in vivo (i.e. in the context of chromatin) is poorly understood. We have investigated the role of an essential ATP-dependent chromatin remodelling (ACR) complex RSC (Remodels the Structure of Chromatin) in BER of intact yeast cells. We show that depletion of STH1, the ATPase subunit of RSC, causes enhanced sensitivity to the DNA alkylating agent methyl methanesulfonate (MMS) and results in a substantial inhibition of BER, at the GAL1 locus and in the genome overall. Consistent with this observation, the DNA in chromatin is less accessible to micrococcal nuclease digestion in the absence of RSC. Quantitative PCR results indicate that repair deficiency in STH1 depleted cells is not due to changes in the expression of BER genes. Collectively, our data indicates the RSC complex promotes efficient BER in chromatin. These results provide, for the first time, a link between ATP-dependent chromatin remodelling and BER in living cells.
Collapse
Affiliation(s)
- Wioletta Czaja
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Peng Mao
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Michael J Smerdon
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA.
| |
Collapse
|
21
|
Duan MR, Smerdon MJ. Histone H3 lysine 14 (H3K14) acetylation facilitates DNA repair in a positioned nucleosome by stabilizing the binding of the chromatin Remodeler RSC (Remodels Structure of Chromatin). J Biol Chem 2014; 289:8353-63. [PMID: 24515106 DOI: 10.1074/jbc.m113.540732] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone H3 acetylation is induced by UV damage in yeast and may play an important role in regulating the repair of UV photolesions in nucleosome-loaded genomic loci. However, it remains elusive how H3 acetylation facilitates repair. We generated a strongly positioned nucleosome containing homogeneously acetylated H3 at Lys-14 (H3K14ac) and investigated possible mechanisms by which H3K14 acetylation modulates repair. We show that H3K14ac does not alter nucleosome unfolding dynamics or enhance the repair of UV-induced cyclobutane pyrimidine dimers by UV photolyase. Importantly, however, nucleosomes with H3K14ac have a higher affinity for purified chromatin remodeling complex RSC (Remodels the Structure of Chromatin) and show greater cyclobutane pyrimidine dimer repair compared with unacetylated nucleosomes. Our study indicates that, by anchoring RSC, H3K14 acetylation plays an important role in the unfolding of strongly positioned nucleosomes during repair of UV damage.
Collapse
Affiliation(s)
- Ming-Rui Duan
- From Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520
| | | |
Collapse
|
22
|
A role for SUMO in nucleotide excision repair. DNA Repair (Amst) 2011; 10:1243-51. [PMID: 21968059 DOI: 10.1016/j.dnarep.2011.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 01/01/2023]
Abstract
The two Siz/PIAS SUMO E3 ligases Siz1 and Siz2 are responsible for the vast majority of sumoylation in Saccharomyces cerevisiae. We found that siz1Δ siz2Δ mutants are sensitive to ultra-violet (UV) light. Epistasis analysis showed that the SIZ genes act in the nucleotide excision repair (NER) pathway, and suggested that they participate both in global genome repair (GGR) and in the Rpb9-dependent subpathway of transcription-coupled repair (TCR), but have minimal role in Rad26-dependent TCR. Quantitative analysis of NER at the single-nucleotide level showed that siz1Δ siz2Δ is deficient in repair of both the transcribed and non-transcribed strands of the DNA. These experiments confirmed that the SIZ genes participate in GGR. Their role in TCR remains unclear. It has been reported previously that mutants deficient for the SUMO conjugating enzyme Ubc9 contain reduced levels of Rad4, the yeast homolog of human XPC. However, our experiments do not support the conclusion that SUMO conjugation affects Rad4 levels. We found that several factors that participate in NER are sumoylated, including Rad4, Rad16, Rad7, Rad1, Rad10, Ssl2, Rad3, and Rpb4. Although Rad16 was heavily sumoylated, elimination of the major SUMO attachment sites in Rad16 had no detectable effect on UV resistance or removal of DNA lesions. SUMO attachment to most of these NER factors was significantly increased by DNA damage. Furthermore, SUMO-modified Rad4 accumulated in NER mutants that block the pathway downstream of Rad4, suggesting that SUMO becomes attached to Rad4 at a specific point during its functional cycle. Collectively, these results suggest that SIZ-dependent sumoylation may modulate the activity of multiple proteins to promote efficient NER.
Collapse
|
23
|
Tatum D, Li W, Placer M, Li S. Diverse roles of RNA polymerase II-associated factor 1 complex in different subpathways of nucleotide excision repair. J Biol Chem 2011; 286:30304-30313. [PMID: 21737840 DOI: 10.1074/jbc.m111.252981] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription-coupled repair (TCR) and global genomic repair (GGR) are two pathways of nucleotide excision repair (NER). In Saccharomyces cerevisiae, Rad26 is important but not absolutely required for TCR. Rpb4, a nonessential RNA polymerase II (Pol II) subunit that forms a subcomplex with Rpb7, and the Spt4-Spt5 complex, a transcription elongation factor, have been shown to suppress Rad26-independent TCR. The Pol II-associated factor 1 complex (Paf1C) has been shown to function in transcription elongation, 3'-processing of mRNAs, and posttranslational modification of histones. Here we show that Paf1C plays a marginal role in facilitating Rad26-dependent TCR but significantly suppresses Rad26-independent TCR. The suppression of Rad26-independent TCR is achieved by cooperating with Spt4-Spt5. We propose a model that, in the absence of Rad26, a lesion is "locked" in the active center of a Pol II elongation complex, which is stabilized by the coordinated interactions of Rpb4-Rpb7, Spt4-Spt5, and Paf1C with each other and with the core Pol II. We also found that Paf1C facilitates GGR, especially in internucleosomal linker regions. The facilitation of GGR is achieved through enabling monoubiquitination of histone H2B lysine 123 by Bre1, which in turn permits di- and trimethylation of histone H3 lysine 79 by Dot1. To our best knowledge, among the NER-modulating factors documented so far, Paf1C appears to have the most diverse functions in different NER pathways or subpathways.
Collapse
Affiliation(s)
- Danielle Tatum
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Wentao Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Margaret Placer
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803.
| |
Collapse
|
24
|
Tatum D, Li S. Evidence that the histone methyltransferase Dot1 mediates global genomic repair by methylating histone H3 on lysine 79. J Biol Chem 2011; 286:17530-5. [PMID: 21460225 DOI: 10.1074/jbc.m111.241570] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Global genomic repair (GGR) and transcription coupled repair (TCR) are two pathways of nucleotide excision repair (NER) that differ in the damage recognition step. How NER factors, especially GGR factors, access DNA damage in the chromatin of eukaryotic cells has been poorly understood. Dot1, a histone methyltransferase required for methylation of histone H3 lysine 79 (H3K79), has been shown to confer yeast cells with resistance to DNA-damaging agents and play a role in activation of DNA damage checkpoints. Here, we show that Dot1 and H3K79 methylation are required for GGR in both nucleosomal core regions and internucleosomal linker DNA, but play no role in TCR. H3K79 trimethylation contributes to but is not absolutely required for GGR, and lower levels of H3K79 methylation (mono- and dimethylation) also promote GGR. Our results also indicate that the roles of Dot1 and H3K79 methylation in GGR are not achieved by either activating DNA damage checkpoints or regulating the expression of the GGR-specific factor Rad16. Rather, the methylated H3K79 may serve as a docking site for the GGR machinery on the chromatin. Our studies identified a novel GGR-specific NER factor and unveiled the critical link between a covalent histone modification and GGR.
Collapse
Affiliation(s)
- Danielle Tatum
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | |
Collapse
|
25
|
Mao P, Smerdon MJ. Yeast deubiquitinase Ubp3 interacts with the 26 S proteasome to facilitate Rad4 degradation. J Biol Chem 2010; 285:37542-50. [PMID: 20876584 DOI: 10.1074/jbc.m110.170175] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Deubiquitinating enzymes (DUBs) function in a variety of cellular processes by removing ubiquitin moieties from substrates, but their role in DNA repair has not been elucidated. Yeast Rad4-Rad23 heterodimer is responsible for recognizing DNA damage in nucleotide excision repair (NER). Rad4 binds to UV damage directly while Rad23 stabilizes Rad4 from proteasomal degradation. Here, we show that disruption of yeast deubiquitinase UBP3 leads to enhanced UV resistance, increased repair of UV damage and Rad4 levels in rad23Δ cells, and elevated Rad4 stability. A catalytically inactive Ubp3 (Ubp3-C469A), however, is unable to affect NER or Rad4. Consistent with its role in down-regulating Rad4, Ubp3 physically interacts with Rad4 and the proteasome, both in vivo and in vitro, suggesting that Ubp3 associates with the proteasome to facilitate Rad4 degradation and thus suppresses NER.
Collapse
Affiliation(s)
- Peng Mao
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, USA
| | | |
Collapse
|
26
|
Ding B, LeJeune D, Li S. The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair. J Biol Chem 2009; 285:5317-26. [PMID: 20042611 DOI: 10.1074/jbc.m109.082818] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In eukaryotic cells, transcription coupled nucleotide excision repair (TCR) is believed to be initiated by RNA polymerase II (Pol II) stalled at a lesion in the transcribed strand of a gene. Rad26, the yeast homolog of the human Cockayne syndrome group B (CSB) protein, plays an important role in TCR. Spt4, a transcription elongation factor that forms a complex with Spt5, has been shown to suppress TCR in rad26Delta cells. Here we present evidence that Spt4 indirectly suppresses Rad26-independent TCR by protecting Spt5 from degradation and stabilizing the interaction of Spt5 with Pol II. We further found that the C-terminal repeat (CTR) domain of Spt5, which is dispensable for cell viability and is not involved in interactions with Spt4 and Pol II, plays an important role in the suppression. The Spt5 CTR is phosphorylated by the Bur kinase. Inactivation of the Bur kinase partially alleviates TCR in rad26Delta cells. We propose that the Spt5 CTR suppresses Rad26-independent TCR by serving as a platform for assembly of a multiple protein suppressor complex that is associated with Pol II. Phosphorylation of the Spt5 CTR by the Bur kinase may facilitate the assembly of the suppressor complex.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | |
Collapse
|
27
|
Chen X, Ding B, LeJeune D, Ruggiero C, Li S. Rpb1 sumoylation in response to UV radiation or transcriptional impairment in yeast. PLoS One 2009; 4:e5267. [PMID: 19384408 PMCID: PMC2668072 DOI: 10.1371/journal.pone.0005267] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 03/24/2009] [Indexed: 11/18/2022] Open
Abstract
Covalent modifications of proteins by ubiquitin and the Small Ubiquitin-like MOdifier (SUMO) have been revealed to be involved in a plethora of cellular processes, including transcription, DNA repair and DNA damage responses. It has been well known that in response to DNA damage that blocks transcription elongation, Rpb1, the largest subunit of RNA polymerase II (Pol II), is ubiquitylated and subsequently degraded in mammalian and yeast cells. However, it is still an enigma regarding how Pol II responds to damaged DNA and conveys signal(s) for DNA damage-related cellular processes. We found that Rpb1 is also sumoylated in yeast cells upon UV radiation or impairment of transcription elongation, and this modification is independent of DNA damage checkpoint activation. Ubc9, an E2 SUMO conjugase, and Siz1, an E3 SUMO ligase, play important roles in Rpb1 sumoylation. K1487, which is located in the acidic linker region between the C-terminal domain and the globular domain of Rpb1, is the major sumoylation site. Rpb1 sumoylation is not affected by its ubiquitylation, and vice versa, indicating that the two processes do not crosstalk. Abolishment of Rpb1 sumoylation at K1487 does not affect transcription elongation or transcription coupled repair (TCR) of UV-induced DNA damage. However, deficiency in TCR enhances UV-induced Rpb1 sumoylation, presumably due to the persistence of transcription-blocking DNA lesions in the transcribed strand of a gene. Remarkably, abolishment of Rpb1 sumoylation at K1487 causes enhanced and prolonged UV-induced phosphorylation of Rad53, especially in TCR-deficient cells, suggesting that the sumoylation plays a role in restraining the DNA damage checkpoint response caused by transcription-blocking lesions. Our results demonstrate a novel covalent modification of Rpb1 in response to UV induced DNA damage or transcriptional impairment, and unravel an important link between the modification and the DNA damage checkpoint response.
Collapse
Affiliation(s)
- Xuefeng Chen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Baojin Ding
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Danielle LeJeune
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Christine Ruggiero
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
28
|
Gaillard H, Wellinger RE, Aguilera A. Methods to study transcription-coupled repair in chromatin. Methods Mol Biol 2009; 523:141-59. [PMID: 19381941 DOI: 10.1007/978-1-59745-190-1_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transcription-coupled repair (TCR) is a sub-pathway of nucleotide excision repair that allows for the enhanced repair of the transcribed strand of active genes. A classical method to study DNA repair in vivo consists in the molecular analysis of UV-induced DNA damages at specific loci. Cells are irradiated with a defined dose of UV light leading to the formation of DNA lesions and incubated in the dark to allow repair. About 90% of the photoproducts consist of cyclobutane pyrimidine dimers, which can be cleaved by the DNA nicking activity of the T4 endonuclease V (T4endoV) repair enzyme. Strand-specific repair in a suitable restriction fragment is determined by alkaline gel electrophoresis followed by Southern blot transfer and indirect end-labeling using a single-stranded probe. Recent approaches have assessed the role of transcription factors in TCR by analyzing RNA polymerase II occupancy on a damaged template by chromatin immunoprecipitation (ChIP). Cells are treated with formaldehyde in vivo to cross-link proteins to DNA and enrichment of a protein of interest is done by subsequent immunoprecipitation. Upon reversal of the protein-DNA cross-links, the amount of coprecipitated DNA fragments can be detected by quantitative PCR. To perform ChIP on UV-damaged templates, we included an in vitro photoreactivation step prior to PCR analysis to ensure that all precipitated DNA fragments serve as substrates for the PCR reaction. Here, we provide a detailed protocol for both the DNA repair analysis and the ChIP approaches to study TCR in chromatin.
Collapse
|
29
|
LeJeune D, Chen X, Ruggiero C, Berryhill S, Ding B, Li S. Yeast Elc1 plays an important role in global genomic repair but not in transcription coupled repair. DNA Repair (Amst) 2009; 8:40-50. [DOI: 10.1016/j.dnarep.2008.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 08/28/2008] [Accepted: 08/28/2008] [Indexed: 11/16/2022]
|
30
|
Li S, Ding B, LeJeune D, Ruggiero C, Chen X, Smerdon MJ. The roles of Rad16 and Rad26 in repairing repressed and actively transcribed genes in yeast. DNA Repair (Amst) 2007; 6:1596-606. [PMID: 17611170 PMCID: PMC2095784 DOI: 10.1016/j.dnarep.2007.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/11/2007] [Accepted: 05/16/2007] [Indexed: 11/17/2022]
Abstract
Nucleotide excision repair (NER) is a conserved DNA repair mechanism capable of removing a variety of helix-distorting DNA lesions. Rad26, a member of the Swi2/Snf2 superfamily of proteins, has been shown to be involved in a specialized NER process called transcription coupled NER. Rad16, another member of the same protein superfamily, has been shown to be required for genome-wide NER. Here we show that Rad16 and Rad26 play different roles in repairing repressed and actively transcribed genes in yeast. Rad16 is partially dispensable, and Rad26 plays a significant role in repairing certain regions of the repressed GAL1-10, PHO5 and ADH2 genes, especially in the core DNA of well-positioned nucleosomes. Simultaneous elimination of Rad16 and Rad26 results in no detectable repair in these regions of the repressed genes. Transcriptional induction of the GAL1-10 genes abolishes the role of Rad26, but does not affect the role of Rad16 in repairing the nontranscribed strand of the genes. Interestingly, when the transcription activator Gal4 is eliminated from the cells, Rad16 becomes partially dispensable and Rad26 plays a significant role in repairing both strands of the GAL1-10 genes even under inducing conditions. Our results suggest that Rad16 and Rad26 play different and, to some extent, complementary roles in repairing both strands of repressed genes, although the relative contributions of the two proteins can be different from gene to gene, and from region to region of a gene. However, Rad16 is solely responsible for repairing the nontranscribed strand of actively transcribed genes.
Collapse
Affiliation(s)
- Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Ding B, Ruggiero C, Chen X, Li S. Tfb5 is partially dispensable for Rad26 mediated transcription coupled nucleotide excision repair in yeast. DNA Repair (Amst) 2007; 6:1661-9. [PMID: 17644494 PMCID: PMC2096704 DOI: 10.1016/j.dnarep.2007.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 06/08/2007] [Indexed: 11/18/2022]
Abstract
Nucleotide excision repair (NER) is a conserved DNA repair mechanism capable of removing a variety of helix-distorting DNA lesions. A specialized NER pathway, called transcription coupled NER (TC-NER), refers to preferential repair in the transcribed strand of an actively transcribed gene. To be distinguished from TCR-NER, the genome-wide NER process is termed as global genomic NER (GG-NER). In Saccharomyces cerevisiae, GG-NER is dependent on Rad7, whereas TC-NER is mediated by Rad26, the homolog of the human Cockayne syndrome group B protein, and by Rpb9, a non-essential subunit of RNA polymerase II. Tfb5, the tenth subunit of the transcription/repair factor TFIIH, is implicated in one group of the human syndrome trichothiodystrophy. Here, we show that Tfb5 plays different roles in different NER pathways in yeast. No repair takes place in the non-transcribed strand of a gene in tfb5 cells, or in both strands of a gene in rad26 rpb9 tfb5 cells, indicating that Tfb5 is essential for GG-NER. However, residual repair occurs in the transcribed strand of a gene in tfb5 cells, suggesting that Tfb5 is important, but not absolutely required for TC-NER. Interestingly, substantial repair occurs in the transcribed strand of a gene in rad7 tfb5 and rad7 rpb9 tfb5 cells, indicating that, in the absence of GG-NER, Tfb5 is largely dispensable for Rad26 mediated TC-NER. Furthermore, we show that no repair takes place in the transcribed strand of a gene in rad7 rad26 tfb5 cells, suggesting that Tfb5 is required for Rpb9 mediated TC-NER. Taken together, our results indicate that Tfb5 is partially dispensable for Rad26 mediated TC-NER, especially in GG-NER deficient cells. However, this TFIIH subunit is required for other NER pathways.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Christine Ruggiero
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Xuefeng Chen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
32
|
Nakanishi S, Prasad R, Wilson SH, Smerdon M. Different structural states in oligonucleosomes are required for early versus late steps of base excision repair. Nucleic Acids Res 2007; 35:4313-21. [PMID: 17576692 PMCID: PMC1934998 DOI: 10.1093/nar/gkm436] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chromatin in eukaryotic cells is folded into higher order structures of folded nucleosome filaments, and DNA damage occurs at all levels of this structural hierarchy. However, little is known about the impact of higher order folding on DNA repair enzymes. We examined the catalytic activities of purified human base excision repair (BER) enzymes on uracil-containing oligonucleosome arrays, which are folded primarily into 30 nm structures when incubated in repair reaction buffers. The catalytic activities of uracil DNA glycosylase (UDG) and apyrimidinic/apurinic endonuclease (APE) digest G:U mismatches to completion in the folded oligonucleosomes without requiring significant disruption. In contrast, DNA polymerase β (Pol β) synthesis is inhibited in a major fraction (∼80%) of the oligonucleosome array, suggesting that single strand nicks in linker DNA are far more accessible to Pol β in highly folded oligonucleosomes. Importantly, this barrier in folded oligonucleosomes is removed by purified chromatin remodeling complexes. Both ISW1 and ISW2 from yeast significantly enhance Pol β accessibility to the refractory nicked sites in oligonucleosomes. These results indicate that the initial steps of BER (UDG and APE) act efficiently on highly folded oligonucleosome arrays, and chromatin remodeling may be required for the latter steps of BER in intact chromatin.
Collapse
Affiliation(s)
- Shima Nakanishi
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660 and National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA
| | - Rajendra Prasad
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660 and National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA
| | - Samuel H. Wilson
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660 and National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA
| | - Michael Smerdon
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660 and National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA
- *To whom correspondence should be addressed. +509-335-6853+509-335-9688
| |
Collapse
|
33
|
Li S, Ding B, Chen R, Ruggiero C, Chen X. Evidence that the transcription elongation function of Rpb9 is involved in transcription-coupled DNA repair in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:9430-41. [PMID: 17030604 PMCID: PMC1698543 DOI: 10.1128/mcb.01656-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 09/25/2006] [Accepted: 10/02/2006] [Indexed: 11/20/2022] Open
Abstract
Rpb9, a small nonessential subunit of RNA polymerase II, has been shown to have multiple transcription-related functions in Saccharomyces cerevisiae. These functions include promoting transcription elongation and mediating a subpathway of transcription-coupled repair (TCR) that is independent of Rad26, the homologue of human Cockayne syndrome complementation group B protein. Rpb9 is composed of three distinct domains: the N-terminal Zn1, the C-terminal Zn2, and the central linker. Here we show that the Zn1 and linker domains are essential, whereas the Zn2 domain is almost dispensable, for both transcription elongation and TCR functions. Impairment of transcription elongation, which does not dramatically compromise Rad26-mediated TCR, completely abolishes Rpb9-mediated TCR. Furthermore, Rpb9 appears to be dispensable for TCR if its transcription elongation function is compensated for by removing a transcription repression/elongation factor. Our data suggest that the transcription elongation function of Rpb9 is involved in TCR.
Collapse
Affiliation(s)
- Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | |
Collapse
|
34
|
Li S, Chen X, Ruggiero C, Ding B, Smerdon MJ. Modulation of Rad26- and Rpb9-mediated DNA repair by different promoter elements. J Biol Chem 2006; 281:36643-51. [PMID: 17023424 PMCID: PMC1913475 DOI: 10.1074/jbc.m604885200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rad26, the yeast homologue of human Cockayne syndrome group B protein, and Rpb9, a nonessential subunit of RNA polymerase II, have been shown to mediate two subpathways of transcription-coupled DNA repair in yeast. Here we show that Rad26- and Rpb9-mediated repair in the yeast GAL1 gene is differently modulated by different promoter elements. The initiation site and efficiency of Rad26-mediated repair in the transcribed strand are determined by the upstream activating sequence (UAS) but not by the TATA or local sequences. The role of UAS in determining the Rad26-mediated repair is not through loading of RNA polymerase II or the transcriptional regulatory complex SAGA. However, both the UAS and the TATA sequences are essential for confining Rad26-mediated repair to the transcribed strand. Mutation of the TATA sequence, which greatly reduces transcription, or deletion of the TATA or mutation of the UAS, which completely abolishes transcription, causes Rad26-mediated repair to occur in both strands. Rpb9-mediated repair only occurs in the transcribed strand and is efficient only in the presence of both TATA and UAS sequences. Also, the efficiency of Rpb9-mediated repair is dependent on the SAGA complex. Our results suggest that Rad26-mediated repair can be either transcription-coupled, provided that a substantial level of transcription is present, or transcription-independent, if the transcription is too low or absent. In contrast, Rpb9-mediated repair is strictly transcription-coupled and is efficient only when the transcription level is high.
Collapse
Affiliation(s)
- Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | | | | | |
Collapse
|
35
|
Kwon Y, Smerdon MJ. DNA repair in a protein-DNA complex: searching for the key to get in. Mutat Res 2005; 577:118-30. [PMID: 15913668 DOI: 10.1016/j.mrfmmm.2005.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 02/12/2005] [Accepted: 02/12/2005] [Indexed: 11/20/2022]
Abstract
An obstacle encountered by nucleotide excision repair (NER) proteins during repair of the genome is the masking of bulky lesions by DNA binding proteins. For example, certain transcription factors are known to be impediments, and suppress damage removal at their recognition sequences. We have used well-defined protein-DNA complexes to study the molecular mechanism(s) used by repair proteins in gaining access to DNA lesions in chromatin. Using transcription factor IIIA (TFIIIA) and the 5S ribosomal RNA gene (5S rDNA), we previously measured position-dependent effects of cyclobutane pyrimidine dimers (CPDs) at five different sites within the internal control region (ICR) on complex formation [Y. Kwon, M.J. Smerdon, Binding of zinc finger protein transcription factor IIIA to its cognate DNA sequence with single UV photoproducts at specific sites and its effect on DNA repair, J. Biol. Chem. 278 (2003) 45451-45459]. We found that CPDs at two of these sites enhance the TFIIIA-rDNA dissociation rate, which correlates with enhanced repair at these two sites. Here, we used a novel approach to directly compare dissociation of randomly damaged rDNA with NER. We refined the relationship between dissociation and repair of the complex by examining all CPD sites in the transcribed strand. A 214 bp 5S rDNA fragment was irradiated with UV light to produce CPDs at dipyrimidine sites and approximately 1 CPD per fragment. Positions of CPDs that alter binding of TFIIIA were determined by T4 endonuclease V mapping of TFIIIA-bound and unbound fractions of UV-irradiated DNA. As expected, the results reveal that dissociation of TFIIIA from the complex is significantly enhanced by CPDs within the ICR. Moreover, the levels of dissociation induced by CPDs were quantitatively compared with their repair efficiency, and indicate that repair rates of most CPDs in the complex closely correlate with the dissociation rates. In addition, changes in dissociation rate are similar to changes in CPD frequency induced by TFIIIA binding. These findings indicate that structural compatibility of a DNA lesion within a protein-DNA complex can determine both lesion frequency and repair efficiency.
Collapse
Affiliation(s)
- Youngho Kwon
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, USA
| | | |
Collapse
|
36
|
Adair JE, Kwon Y, Dement GA, Smerdon MJ, Reeves R. Inhibition of nucleotide excision repair by high mobility group protein HMGA1. J Biol Chem 2005; 280:32184-92. [PMID: 16033759 DOI: 10.1074/jbc.m505600200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian non-histone "high mobility group" A (HMGA) proteins are the primary nuclear proteins that bind to the minor groove of AT-rich DNA. They may, therefore, influence the formation and/or repair of DNA lesions that occur in AT-rich DNA, such as cyclobutane pyrimidine dimers (CPDs) induced by UV radiation. Employing both stably transfected lines of human MCF7 cells containing tetracycline-regulated HMGA1 transgenes and primary Hs578T tumor cells, which naturally overexpress HMGA1 proteins, we have shown that cells overexpressing HMGA1a protein exhibit increased UV sensitivity. Moreover, we demonstrated that knockdown of intracellular HMGA1 concentrations via two independent methods abrogated this sensitivity. Most significantly, we observed that HMGA1a overexpression inhibited global genomic nucleotide excision repair of UV-induced CPD lesions in MCF-7 cells. Consistent with these findings in intact cells, DNA repair experiments employing Xenopus oocyte nuclear extracts and lesion-containing DNA substrates demonstrated that binding of HMGA1a markedly inhibits removal of CPDs in vitro. Furthermore, UV "photo-foot-printing" demonstrated that CPD formation within a long run of Ts (T(18)-tract) in a DNA substrate changes significantly when HMGA1 is bound prior to UV irradiation. Together, these results suggest that HMGA1 directly influences both the formation and repair of UV-induced DNA lesions in intact cells. These findings have important implications for the role that HMGA protein overexpression might play in the accumulation of mutations and genomic instabilities associated with many types of human cancers.
Collapse
Affiliation(s)
- Jennifer E Adair
- School of Molecular Biosciences, Biochemistry, and Biophysics, Washingston State University, Pullman, 99164-4660, USA
| | | | | | | | | |
Collapse
|
37
|
Li S, Smerdon MJ. Dissecting transcription-coupled and global genomic repair in the chromatin of yeast GAL1-10 genes. J Biol Chem 2004; 279:14418-26. [PMID: 14734564 PMCID: PMC1343541 DOI: 10.1074/jbc.m312004200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription-coupled repair (TCR) and global genomic repair (GGR) of UV-induced cyclobutane pyrimidine dimers were investigated in the yeast GAL1-10 genes. Both Rpb9- and Rad26-mediated TCR are confined to the transcribed strands, initiating at upstream sites approximately 100 nucleotides from the upstream activating sequence shared by the two genes. However, TCR initiation sites do not correlate with either transcription start sites or TATA boxes. Rad16-mediated GGR tightly correlates with nucleosome positioning when the genes are repressed and are slow in the nucleosome core and fast in linker DNA. Induction of transcription enhanced GGR in nucleosome core DNA, especially in the nucleosomes around and upstream of the transcription start sites. Furthermore, when the genes were induced, GGR was slower in the transcribed regions than in the upstream regions. Finally, simultaneous deletion of RAD16, RAD26, and RPB9 resulted in no detectable repair in all sites along the region analyzed. Our results suggest that (a). TCR may be initiated by a transcription activator, presumably through the loading of RNA polymerase II, rather than by transcription initiation or elongation per se; (b). TCR and nucleosome disruption-enhanced GGR are the major causes of rapid repair in regions around and upstream of transcription start sites; (c). transcription machinery may hinder access of NER factors to a DNA lesion in the absence of a transcription-repair coupling factor; and (d). other than GGR mediated by Rad16 and TCR mediated by Rad26 and Rpb9, no other nucleotide excision repair pathway exists in these RNA polymerase II-transcribed genes.
Collapse
Affiliation(s)
| | - Michael J. Smerdon
- ‡ To whom correspondence should be addressed. Tel.: 509-335-6853; Fax: 509-335-9688; E-mail:
| |
Collapse
|
38
|
Kwon Y, Smerdon MJ. Binding of zinc finger protein transcription factor IIIA to its cognate DNA sequence with single UV photoproducts at specific sites and its effect on DNA repair. J Biol Chem 2003; 278:45451-9. [PMID: 12963720 DOI: 10.1074/jbc.m308645200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The relationship between DNA repair efficiency at specific locations in the binding site of the nine-zinc finger protein transcription factor IIIA (TFIIIA) and binding of its individual zinc fingers was studied. Homogeneously damaged oligonucleotides, which contained a single cis-syn cyclobutane thymine dimer (CTD) at one of six different sites in the internal control region (ICR) of the 5 S rRNA gene to generate a series of damaged DNA substrates, were prepared by chemical synthesis. Binding of TFIIIA to the substrates was assayed by measurement of dissociation constants (Kd), dissociation rates (koff), and protein-DNA contacts. The results indicated that a single CTD in the ICR does not significantly affect the Kd of TFIIIA. In contrast, CTDs at positions +55 and +72 (from the transcription start site) in the ICR markedly enhanced koff of TFIIIA from the complex. In addition, CTDs in these two sites increased methylation of the N7 of guanines (by dimethyl sulfate) in the zinc finger contacts of the ICR-TFIIIA complex. Furthermore CTDs at +55 and +72 were more efficiently removed from the complex than CTDs at other sites in the ICR by Xenopus oocyte nuclear extracts. This suggests that repair of CTDs closely correlates with changes in the binding of individual zinc fingers of the ICR-TFIIIA complex. These results have implications for the mechanism of DNA damage recognition and repair in protein-DNA complexes.
Collapse
Affiliation(s)
- YoungHo Kwon
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4660, USA
| | | |
Collapse
|
39
|
Li S, Smerdon MJ. Rpb4 and Rpb9 mediate subpathways of transcription-coupled DNA repair in Saccharomyces cerevisiae. EMBO J 2002; 21:5921-9. [PMID: 12411509 PMCID: PMC131086 DOI: 10.1093/emboj/cdf589] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2002] [Revised: 09/17/2002] [Accepted: 09/18/2002] [Indexed: 11/13/2022] Open
Abstract
Rpb9, a non-essential subunit of RNA polymerase II, mediates a transcription-coupled repair (TCR) subpathway in Saccharomyces cerevisiae. This subpathway initiates at the same upstream site as the previously identified Rad26 subpathway. However, the Rpb9 subpathway operates more effectively in the coding region than in the region upstream of the transcription start site, whereas the Rad26 subpathway operates equally in the two regions. Rpb4, another non-essential subunit of RNA polymerase II, plays a dual role in regulating the two subpathways, suppressing the Rpb9 subpathway and facilitating the Rad26 subpathway. Simultaneous deletion of RPB9 and RAD26 genes completely abolishes TCR in both the coding and upstream regions, indicating that no other TCR subpathway exists in RNA polymerase II-transcribed genes.
Collapse
Affiliation(s)
- Shisheng Li
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman 99164-4660, USA
| | | |
Collapse
|
40
|
Li S, Smerdon MJ. Nucleosome structure and repair of N-methylpurines in the GAL1-10 genes of Saccharomyces cerevisiae. J Biol Chem 2002; 277:44651-9. [PMID: 12244104 DOI: 10.1074/jbc.m206623200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleosome structure and repair of N-methylpurines were analyzed at nucleotide resolution in the divergent GAL1-10 genes of intact yeast cells, encompassing their common upstream-activating sequence. In glucose cultures where genes are repressed, nucleosomes with fixed positions exist in regions adjacent to the upstream-activating sequence, and the variability of nucleosome positioning sharply increases with increasing distance from this sequence. Galactose induction causes nucleosome disruption throughout the region analyzed, with those nucleosomes close to the upstream-activating sequence being most striking. In glucose cultures, a strong correlation between N-methylpurine repair and nucleosome positioning was seen in nucleosomes with fixed positions, where slow and fast repair occurred in nucleosome core and linker DNA, respectively. Galactose induction enhanced N-methylpurine repair in both strands of nucleosome core DNA, being most dramatic in the clearly disrupted, fixed nucleosomes. Furthermore, N-methylpurines are repaired primarily by the Mag1-initiated base excision repair pathway, and nucleotide excision repair contributes little to repair of these lesions. Finally, N-methylpurine repair is significantly affected by nearest-neighbor nucleotides, where fast and slow repair occurred in sites between pyrimidines and purines, respectively. These results indicate that nucleosome positioning and DNA sequence significantly modulate Mag1-initiated base excision repair in intact yeast cells.
Collapse
Affiliation(s)
- Shisheng Li
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4660, USA
| | | |
Collapse
|