1
|
Bae YS, Yoon SH, Kim YS, Oh SP, Song WS, Cha JH, Kim MH. Suppression of exaggerated NMDAR activity by memantine treatment ameliorates neurological and behavioral deficits in aminopeptidase P1-deficient mice. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1109-1124. [PMID: 35922532 PMCID: PMC9440093 DOI: 10.1038/s12276-022-00818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022]
Abstract
Inborn errors of metabolism (IEMs) are common causes of neurodevelopmental disorders, including microcephaly, hyperactivity, and intellectual disability. However, the synaptic mechanisms of and pharmacological interventions for the neurological complications of most IEMs are unclear. Here, we report that metabolic dysfunction perturbs neuronal NMDA receptor (NMDAR) homeostasis and that the restoration of NMDAR signaling ameliorates neurodevelopmental and cognitive deficits in IEM model mice that lack aminopeptidase P1. Aminopeptidase P1-deficient (Xpnpep1–/–) mice, with a disruption of the proline-specific metalloprotease gene Xpnpep1, exhibit hippocampal neurodegeneration, behavioral hyperactivity, and impaired hippocampus-dependent learning. In this study, we found that GluN1 and GluN2A expression, NMDAR activity, and the NMDAR-dependent long-term potentiation (LTP) of excitatory synaptic transmission were markedly enhanced in the hippocampi of Xpnpep1–/– mice. The exaggerated NMDAR activity and NMDAR-dependent LTP were reversed by the NMDAR antagonist memantine. A single administration of memantine reversed hyperactivity in adult Xpnpep1–/– mice without improving learning and memory. Furthermore, chronic administration of memantine ameliorated hippocampal neurodegeneration, hyperactivity, and impaired learning and memory in Xpnpep1–/– mice. In addition, abnormally enhanced NMDAR-dependent LTP and NMDAR downstream signaling in the hippocampi of Xpnpep1–/– mice were reversed by chronic memantine treatment. These results suggest that the metabolic dysfunction caused by aminopeptidase P1 deficiency leads to synaptic dysfunction with excessive NMDAR activity, and the restoration of synaptic function may be a potential therapeutic strategy for the treatment of neurological complications related to IEMs. Addressing neurological symptoms may offer new treatments for inborn errors of metabolism (IEMs) affecting neurodevelopment. In such IEMs, mutation of an enzyme disrupts a metabolic pathway, causing buildup or lack of key molecules, with symptoms including hyperactivity, developmental delay, and intellectual disability. Because the detailed pathological mechanisms of most IEMs are unknown, there are no treatments for resulting neurological issues. Myoung-Hwan Kim at Seoul National University and co-workers investigated whether they could treat the neurological symptoms of the IEM, aminopeptidase P1 (APP1) deficiency. They found that APP1 deficiency in mice caused an increase in the neural receptor NMDAR. Suppressing NMDAR reduced both neurological and behavioral symptoms. These findings suggest potential treatments for APP1 deficiency, and indicate that neurodevelopmental disorders in IEMs may be treated by repairing the neural circuitry instead of the root metabolic cause.
Collapse
Affiliation(s)
- Young-Soo Bae
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sang Ho Yoon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea
| | - Young Sook Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sung Pyo Oh
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Woo Seok Song
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea
| | - Jin Hee Cha
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Myoung-Hwan Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Korea. .,Seoul National University Bundang Hospital, Seongnam, Gyeonggi, 13620, Korea.
| |
Collapse
|
2
|
Metabolomics Study Suggests the Mechanism of Different Types of Tieguanyin (Oolong) Tea in Alleviating Alzheimer’s Disease in APP/PS1 Transgenic Mice. Metabolites 2022; 12:metabo12050466. [PMID: 35629970 PMCID: PMC9142883 DOI: 10.3390/metabo12050466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Previously, we found that three types of Tieguanyin tea (Tgy-Q, Tgy-N and Tgy-C) extracts could alleviate Alzheimer’s disease (AD) in a mouse model among which Tgy-C was more effective. In this study, APP/PS1 transgenic mice were used to investigate the metabolomic changes in the feces of mice treated with Tieguanyin tea extracts. Results showed that the profile of fecal metabolites was obviously changed in AD mice. Metabolomics analysis found the effects of Tgy-C, especially its decreasing effect on the fecal metabolites in AD mice—132 of the 155 differential metabolites were decreased. KEGG enrichment revealed that differential metabolites could participate in functional pathways including protein digestion and absorption, biosynthesis of amino acids and ABC transporters. Further comparisons of the metabolites between groups showed that although Tgy-N and Tgy-Q exerted a decreasing effect on the fecal metabolites, Tgy-C was more effective. Moreover, correlation analysis found that the levels of the fecal metabolites were highly correlated with the contents of functional components in tea extracts. Finally, 16S rDNA sequencing presented that Tieguanyin extracts modified the gut microbiota by targeting diverse bacteria. In this study, we investigated the differences of three types of Tieguanyin tea extracts on the fecal metabolites as well as the bacterial community of the gut microbiota in AD mice. The identified differential metabolites and the changed intestinal bacteria might provide potential diagnostic biomarkers for the occurrence and progression of AD.
Collapse
|
3
|
A Great Catch for Investigating Inborn Errors of Metabolism-Insights Obtained from Zebrafish. Biomolecules 2020; 10:biom10091352. [PMID: 32971894 PMCID: PMC7564250 DOI: 10.3390/biom10091352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022] Open
Abstract
Inborn errors of metabolism cause abnormal synthesis, recycling, or breakdown of amino acids, neurotransmitters, and other various metabolites. This aberrant homeostasis commonly causes the accumulation of toxic compounds or depletion of vital metabolites, which has detrimental consequences for the patients. Efficient and rapid intervention is often key to survival. Therefore, it requires useful animal models to understand the pathomechanisms and identify promising therapeutic drug targets. Zebrafish are an effective tool to investigate developmental mechanisms and understanding the pathophysiology of disorders. In the past decades, zebrafish have proven their efficiency for studying genetic disorders owing to the high degree of conservation between human and zebrafish genes. Subsequently, several rare inherited metabolic disorders have been successfully investigated in zebrafish revealing underlying mechanisms and identifying novel therapeutic targets, including methylmalonic acidemia, Gaucher’s disease, maple urine disorder, hyperammonemia, TRAPPC11-CDGs, and others. This review summarizes the recent impact zebrafish have made in the field of inborn errors of metabolism.
Collapse
|
4
|
Abstract
Mitochondrial beta-oxidation of fatty acids is vital for energy production in periods of fasting and other metabolic stress. Human patients have been identified with inherited disorders of mitochondrial beta-oxidation of fatty acids with enzyme deficiencies identified at many of the steps in this pathway. Although these patients exhibit a range of disease processes, Reye-like illness (hypoketotic-hypoglycemia, hyperammonemia and fatty liver) and cardiomyopathy are common findings. There have been several mouse models developed to aid in the study of these disease conditions. The characterized mouse models include inherited deficiencies of very long-chain acyl-CoA dehydrogenase, long-chain acyl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase, mitochondrial trifunctional protein-alpha, and medium-/short-chain hydroxyacyl-CoA dehydrogenase. Mouse mutants developed, but presently incompletely characterized as models, include carnitine palmitoyltransferase-1a and medium-chain acyl-CoA dehydrogenase deficiencies. In general, the mouse models of disorders of mitochondrial fatty acid beta-oxidation have shown clinical signs that include Reye-like syndrome and cardiomyopathy, and many are cold intolerant. It is expected that these mouse models will provide vital contributions in understanding the mechanisms of disease pathogenesis of fatty acid oxidation disorders and the development of appropriate treatments and supportive care.
Collapse
Affiliation(s)
- A Michele Schuler
- Department of Genomics and Pathobiology, School of Medicine, University of Alabama at Birmingham, AL, USA
| | | |
Collapse
|