2
|
Chen Y, Huang Y, Liang B, Dong H, Yao S, Xie Y, Long Y, Zhong H, Yang Y, Zhu B, Gong S, Zhou Z. Inverse relationship between toxic shock syndrome toxin-1 antibodies and interferon-γ and interleukin-6 in peripheral blood mononuclear cells from patients with pediatric tonsillitis caused by Staphylococcus aureus. Int J Pediatr Otorhinolaryngol 2017; 97:211-217. [PMID: 28483238 DOI: 10.1016/j.ijporl.2017.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Pediatric tonsillitis is frequently caused by Staphylococcus aureus, which is the most common pathogen that causes serious pyogenic infections in humans and endangers human health. S. aureus produces numerous potent virulence factors that play a critical role in the pathogenesis of the infection caused by this bacterium, and one of the most important toxins produced by S. aureus is toxic shock syndrome toxin-1 (TSST-1). The aim of this study is to investigate the first time the levels of IFN-γ and interleukin IL-6 in TSST-1-stimulated PBMCs from pediatric tonsillitis patients and the correlation of these cytokine levels with TSST-1-specific IgG in serum. METHODS TSST-1 gene of S. aureus was cloned and expressed in a prokaryotic expression system, and purified recombinant TSST-1 protein was used for measuring TSST-1-specific antibodies in the serum of patients with pediatric tonsillitis caused by S. aureus. Moreover, the levels of interferon (IFN)-γ and interleukin (IL)-6 in TSST-1-stimulated peripheral blood mononuclear cells (PBMCs) from pediatric tonsillitis patients were investigated. RESULTS In patients with pediatric tonsillitis caused by S. aureus, significantly higher levels of serum TSST-1-specific IgG (P < 0.05) and IgG1 (P < 0.05) were detected than in healthy children. Moreover, PBMCs from the patients exhibited higher IFN-γ (P < 0.05) production in response to TSST-1 than did PBMCs from healthy children. In patients with pediatric tonsillitis caused by S. aureus, the positive rate of TSST-1-specific IgG was 70%, and the patients who tested negative for TSST-1-specific IgG exhibited significantly higher levels of IFN-γ (P < 0.05) and IL-6 (P < 0.05) than did the IgG-positive patients, in accord, the levels of TSST-1-specific IgG correlated inversely with the levels of IFN-γ and IL-6 in patients PBMCs stimulated with TSST-1. CONCLUSIONS TSST-1 induces humoral and cellular immunity in pediatric tonsillitis caused by S. aureus, which suggests that TSST-1 may play an important role in the pathogenesis of pediatric tonsillitis.
Collapse
Affiliation(s)
- Yinshuang Chen
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China; The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Yanmei Huang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| | - Bingshao Liang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| | - Hui Dong
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| | - Shuwen Yao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| | - Yongqiang Xie
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| | - Yan Long
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| | - Huamin Zhong
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| | - Yiyu Yang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| | - Bing Zhu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| | - Sitang Gong
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| | - Zhenwen Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No.318 Renminzhong Road, Yuexiu, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
3
|
Lazarevic V, Beaume M, Corvaglia A, Hernandez D, Schrenzel J, François P. Epidemiology and virulence insights from MRSA and MSSA genome analysis. Future Microbiol 2011; 6:513-32. [DOI: 10.2217/fmb.11.38] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen responsible for a wide diversity of infections ranging from localized to life threatening diseases. From 1961 and the emergence of methicillin-resistant S. aureus (MRSA), this bacterium has shown a particular capacity to survive and adapt to drastic environmental changes and since the beginning of the 1990s it has spread worldwide. Until recently, S. aureus was considered as the prototype of a nosocomial pathogen but it has now been recognized as an agent responsible for outbreaks in the community. Several recent reports suggest that the epidemiology of MRSA is changing. Understanding of pathogenicity, virulence and emergence of epidemic clones within MRSA populations is not clearly defined, despite several attempts to identify common molecular features between strains that share similar epidemiological and/or virulence behavior. These studies included: pattern profiling of bacterial adhesins, analysis of clonal complex groups, molecular genotyping and enterotoxin content analysis. To date, all approaches failed to find a correlation between molecular determinants and clinical outcomes. We hypothesize that the capacity of the bacterium to become more invasive or virulent is determined by genetics. The utilization of massively parallel methods of analysis is therefore ideal to study the contribution of genetics. Therefore, this article focuses on the entire genome including coding sequences as well as noncoding sequences. This high resolution approach allows the monitoring micro- and macroevolution of MRSA and identification of specific genomic markers of evolution of invasive or highly virulent phenotypes.
Collapse
Affiliation(s)
- Vladimir Lazarevic
- Genomic Research Laboratory, Geneva University Hospitals, CH-1211 Geneva 14, Switzerland
| | - Marie Beaume
- Genomic Research Laboratory, Geneva University Hospitals, CH-1211 Geneva 14, Switzerland
| | - Anna Corvaglia
- Department of Microbiology & Molecular Medicine, University Medical Centre, University of Geneva, 1211 Geneva 4, Switzerland
| | - David Hernandez
- Genomic Research Laboratory, Geneva University Hospitals, CH-1211 Geneva 14, Switzerland
| | - Jacques Schrenzel
- Genomic Research Laboratory, Geneva University Hospitals, CH-1211 Geneva 14, Switzerland
| | | |
Collapse
|
6
|
A global view of Staphylococcus aureus whole genome expression upon internalization in human epithelial cells. BMC Genomics 2007; 8:171. [PMID: 17570841 PMCID: PMC1924023 DOI: 10.1186/1471-2164-8-171] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 06/14/2007] [Indexed: 12/25/2022] Open
Abstract
Background Staphylococcus aureus, a leading cause of chronic or acute infections, is traditionally considered an extracellular pathogen despite repeated reports of S. aureus internalization by a variety of non-myeloid cells in vitro. This property potentially contributes to bacterial persistence, protection from antibiotics and evasion of immune defenses. Mechanisms contributing to internalization have been partly elucidated, but bacterial processes triggered intracellularly are largely unknown. Results We have developed an in vitro model using human lung epithelial cells that shows intracellular bacterial persistence for up to 2 weeks. Using an original approach we successfully collected and amplified low amounts of bacterial RNA recovered from infected eukaryotic cells. Transcriptomic analysis using an oligoarray covering the whole S. aureus genome was performed at two post-internalization times and compared to gene expression of non-internalized bacteria. No signs of cellular death were observed after prolonged internalization of Staphylococcus aureus 6850 in epithelial cells. Following internalization, extensive alterations of bacterial gene expression were observed. Whereas major metabolic pathways including cell division, nutrient transport and regulatory processes were drastically down-regulated, numerous genes involved in iron scavenging and virulence were up-regulated. This initial adaptation was followed by a transcriptional increase in several metabolic functions. However, expression of several toxin genes known to affect host cell integrity appeared strictly limited. Conclusion These molecular insights correlated with phenotypic observations and demonstrated that S. aureus modulates gene expression at early times post infection to promote survival. Staphylococcus aureus appears adapted to intracellular survival in non-phagocytic cells.
Collapse
|
7
|
Francois P, Hernandez D, Schrenzel J. Genome content determination in methicillin-resistant Staphylococcus aureus. Future Microbiol 2007; 2:187-98. [PMID: 17661655 DOI: 10.2217/17460913.2.2.187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Staphylococcus aureus is a major pathogen responsible for both nosocomial and community-acquired infections. While the first S. aureus isolates displaying resistance to methicillin were reported in the early 1960s, endemic strains of methicillin-resistant S. aureus (MRSA) carrying multiple resistance determinants only became a worldwide nosocomial problem in the early 1980s, carrying a threefold attributable cost and a threefold excess length of hospital stay when compared with methicillin-susceptible S. aureus bacteremia. Recent efforts in the field of high-throughput sequencing resulted in the release of several MRSA genome sequences enabling the development of massively parallel tools to study clinical isolates of MRSA at the organism scale. Microarrays covering whole genomes and high-throughput sequencing devices are the two main techniques currently utilizable for whole-genome characterization. These tools not only provide information for the development of genotyping assays but also allow evaluation of potential virulence of the strains, by enumerating genetic-encoded resistance markers and toxin content. This appears particularly attractive for understanding the epidemiology of MRSA and the relationship between genome content on one side and virulence potential or epidemicity on the other side. In addition, sequence information is mandatory for the development of molecular tests allowing the rapid identification, genotyping and characterization of clinical isolates.
Collapse
Affiliation(s)
- Patrice Francois
- Service of Infectious Diseases, Genomic Research Laboratory, Department of Internal Medicine, Geneva 14, Switzerland.
| | | | | |
Collapse
|
8
|
Kim JS, Song W, Kim HS, Cho HC, Lee KM, Choi MS, Kim EC. Association between the methicillin resistance of clinical isolates of Staphylococcus aureus, their staphylococcal cassette chromosome mec (SCCmec) subtype classification, and their toxin gene profiles. Diagn Microbiol Infect Dis 2006; 56:289-95. [PMID: 16854552 DOI: 10.1016/j.diagmicrobio.2006.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 05/08/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
Virulence and antimicrobial resistance are important determinators of the clinical manifestations and of the treatments of bacterial infections. Here, we studied the associations between the methicillin resistance of clinical Staphylococcus aureus isolates, their classifications as particular staphylococcal cassette chromosome mec (SCCmec) subtypes, and their toxin gene profiles. In total, 252 S. aureus isolates were collected from 13 healthcare facilities in 6 Korean provinces. The overall prevalence of methicillin-resistant S. aureus (MRSA) was 63%. SCCmec typing and toxin gene analysis were performed by multiplex polymerase chain reaction. One or more staphylococcal toxin genes were found in 190 (75.4%) strains. Methicillin-resistant S. aureus strains carried toxin genes more frequently than methicillin-susceptible S. aureus strains (85.5% versus 53.8%). SCCmec subtypes differed in terms of their frequencies of toxin gene carriage (95.9% in SCCmec II, 74.4% in SCCmec III, and 68.8% in SCCmec IV). Specific SCCmec subtypes frequently harbored particular toxin gene combinations: 77.3% of SCCmec II strains carried sec and tst genes, 48.8% of SCCmec III strains carried sea and see genes, and 46.9% of SCCmec IV carried sea and seb genes. Indeed, the most prevalent combination in MRSA strains, that of sec and tst, was only observed in SCCmec II strains, and these strains failed to show the coexistence of sea and see or sea and seb genes. Thus, the SCCmec subtypes of S. aureus revealed specific staphylococcal toxin profiles. We revealed that certain staphylococcal toxin gene profiles are associated not only with the methicillin resistance of S. aureus but also with their SCCmec subtypes.
Collapse
Affiliation(s)
- Jae-Seok Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
9
|
Nedelkov D, Rasooly A, Nelson RW. Multitoxin biosensor-mass spectrometry analysis: a new approach for rapid, real-time, sensitive analysis of staphylococcal toxins in food. Int J Food Microbiol 2000; 60:1-13. [PMID: 11014517 DOI: 10.1016/s0168-1605(00)00328-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biomolecular interaction analysis mass spectrometry (BIA-MS) was applied to detection of bacterial toxins in food samples. This two-step approach utilizes surface plasmon resonance (SPR) to detect the binding of the toxin(s) to antibodies immobilized on a surface of a sensor chip. SPR detection is then followed by identification of the bound toxin(s) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Staphylococcal enterotoxin B (SEB) was readily detected in milk and mushroom samples at levels of 1 ng/ml. In addition, non-specific binding of food components to the immobilized antibody and to the sensor chip surface was detected. To evaluate the applicability of BIA-MS in the analysis of materials containing multiple toxic components, sample containing both SEB and toxic-shock syndrome toxin-1 was analyzed. Both toxins were successfully and simultaneously detected through the utilization of multiaffinity sensor chip surfaces.
Collapse
Affiliation(s)
- D Nedelkov
- lntrinsic Bioprobes Inc, Tempe, AZ 85281, USA.
| | | | | |
Collapse
|