1
|
Valeri MP, Dias GB, Moreira CN, Yonenaga-Yassuda Y, Stanyon R, Kuhn GCES, Svartman M. Characterization of Satellite DNAs in Squirrel Monkeys genus Saimiri (Cebidae, Platyrrhini). Sci Rep 2020; 10:7783. [PMID: 32385398 PMCID: PMC7210261 DOI: 10.1038/s41598-020-64620-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/15/2020] [Indexed: 02/01/2023] Open
Abstract
The genus Saimiri is a decades-long taxonomic and phylogenetic puzzle to which cytogenetics has contributed crucial data. All Saimiri species apparently have a diploid number of 2n = 44 but vary in the number of chromosome arms. Repetitive sequences such as satellite DNAs are potentially informative cytogenetic markers because they display high evolutionary rates. Our goal is to increase the pertinent karyological data by more fully characterizing satellite DNA sequences in the Saimiri genus. We were able to identify two abundant satellite DNAs, alpha (~340 bp) and CapA (~1,500 bp), from short-read clustering of sequencing datasets from S. boliviensis. The alpha sequences comprise about 1% and the CapA 2.2% of the S. boliviensis genome. We also mapped both satellite DNAs in S. boliviensis, S. sciureus, S. vanzolinii, and S. ustus. The alpha has high interspecific repeat homogeneity and was mapped to the centromeres of all analyzed species. CapA is associated with non-pericentromeric heterochromatin and its distribution varies among Saimiri species. We conclude that CapA genomic distribution and its pervasiveness across Platyrrhini makes it an attractive cytogenetic marker for Saimiri and other New World monkeys.
Collapse
Affiliation(s)
- Mirela Pelizaro Valeri
- Laboratório de Citogenômica Evolutiva, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme Borges Dias
- Department of Genetics and Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| | - Camila Nascimento Moreira
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Yatiyo Yonenaga-Yassuda
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Roscoe Stanyon
- Department of Biology, University of Florence, Florence, Italy
| | - Gustavo Campos E Silva Kuhn
- Laboratório de Citogenômica Evolutiva, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marta Svartman
- Laboratório de Citogenômica Evolutiva, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Phillips JG, Deitloff J, Guyer C, Huetteman S, Nicholson KE. Biogeography and evolution of a widespread Central American lizard species complex: Norops humilis, (Squamata: Dactyloidae). BMC Evol Biol 2015; 15:143. [PMID: 26187158 PMCID: PMC4506609 DOI: 10.1186/s12862-015-0391-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/26/2015] [Indexed: 11/15/2022] Open
Abstract
Background Caribbean anole lizards (Dactyloidae) have frequently been used as models to study questions regarding biogeography and adaptive radiations, but the evolutionary history of Central American anoles (particularly those of the genus Norops) has not been well studied. Previous work has hypothesized a north-to-south dispersal pattern of Central American Norops, but no studies have examined dispersal within any Norops lineages. Here we test two major hypotheses for the dispersal of the N. humilis/quaggulus complex (defined herein, forming a subset within Savage and Guyer’s N. humilis group). Results Specimens of the N. humilis group were collected in Central America, from eastern Mexico to the Canal Zone of Panama. Major nodes were dated for comparison to the geologic history of Central America, and ancestral ranges were estimated for the N. humilis/quaggulus complex to test hypothesized dispersal patterns. These lineages displayed a northward dispersal pattern. We also demonstrate that the N. humilis/quaggulus complex consists of a series of highly differentiated mitochondrial lineages, with more conserved nuclear evolution. The paraphyly of the N. humilis species group is confirmed. A spatial analysis of molecular variance suggests that current populations are genetically distinct from one another, with limited mitochondrial gene flow occurring among sites. Conclusions The observed south-to-north colonization route within the Norops humilis/quaggulus complex represents the first evidence of a Norops lineage colonizing in a south-to-north pattern, (opposite to the previously held hypothesis for mainland Norops). One previously described taxon (N. quaggulus) was nested within N. humilis, demonstrating the paraphyly of this species; while our analyses also reject the monophyly of the Norops humilis species group (sensu Savage and Guyer), with N. tropidonotus, N. uniformis, and N. marsupialis being distantly related to/highly divergent from the N. humilis/quaggulus complex. Our work sheds light on mainland anole biogeography and past dispersal events, providing a pattern to test against other groups of mainland anoles. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0391-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John G Phillips
- Department of Biology, Central Michigan University, Mt. Pleasant, MI, 48859, USA. .,Present address: Department of Biological Sciences, University of Tulsa, Tulsa, OK, 74104, USA.
| | - Jennifer Deitloff
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.,Present address: Department of Biological Sciences, Lock Haven University, Lock Haven, PA, 17745, USA
| | - Craig Guyer
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Sara Huetteman
- Department of Biology, Central Michigan University, Mt. Pleasant, MI, 48859, USA
| | - Kirsten E Nicholson
- Department of Biology, Central Michigan University, Mt. Pleasant, MI, 48859, USA
| |
Collapse
|
3
|
Lynch Alfaro JW, Boubli JP, Paim FP, Ribas CC, Silva MNFD, Messias MR, Röhe F, Mercês MP, Silva Júnior JS, Silva CR, Pinho GM, Koshkarian G, Nguyen MT, Harada ML, Rabelo RM, Queiroz HL, Alfaro ME, Farias IP. Biogeography of squirrel monkeys (genus Saimiri): South-central Amazon origin and rapid pan-Amazonian diversification of a lowland primate. Mol Phylogenet Evol 2015; 82 Pt B:436-54. [DOI: 10.1016/j.ympev.2014.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 08/02/2014] [Accepted: 09/09/2014] [Indexed: 12/15/2022]
|
4
|
Molecular phylogenetics and phylogeography of all the Saimiri taxa (Cebidae, Primates) inferred from mt COI and COII gene sequences. Primates 2014; 56:145-61. [DOI: 10.1007/s10329-014-0452-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/02/2014] [Indexed: 11/25/2022]
|
5
|
Mercês MP, Lynch Alfaro JW, Ferreira WAS, Harada ML, Silva Júnior JS. Morphology and mitochondrial phylogenetics reveal that the Amazon River separates two eastern squirrel monkey species: Saimiri sciureus and S. collinsi. Mol Phylogenet Evol 2014; 82 Pt B:426-35. [PMID: 25451802 DOI: 10.1016/j.ympev.2014.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 11/26/2022]
Abstract
Saimiri has a complicated taxonomic history, and there is continuing disagreement about the number of valid taxa. Despite these controversies, one point of consensus among morphologists has been that the eastern Amazonian populations of squirrel monkeys form a single terminal taxon, Saimiri sciureus sciureus (Linnaeus, 1758). This group is distributed to both the north and south of the middle to lower Amazon River and in the Marajó Archipelago. However, a recent molecular study by Lavergne and colleagues suggested that the Saimiri sciureus complex (comprised of S. s. sciureus sensu lato, S. s. albigena, S. s. macrodon, and S. s. cassiquiarensis) was paraphyletic. The discordance between morphological and molecular studies prompted us to conduct a new multidisciplinary analysis, employing a combination of morphological, morphometric, and molecular markers. Our results suggest the currently recognized taxon S. s. sciureus contains two distinct species, recognized by the Phylogenetic Species Concept: Saimiri sciureus (Linnaeus, 1758) and Saimiri collinsi Osgood, 1916. East Amazonian squirrel monkeys north of the Amazon have a gray crown (S. sciureus), and south of the Amazon, the crown is yellow (S. collinsi). Morphometric measurements also clearly distinguish between the two species, with the most important contributing factors including width across upper canines for both sexes. For males, the mean zygomatic breadth was significantly wider in S. sciureus compared to S. collinsi, and for females, the width across the upper molars was wider in S. sciureus compared to S. collinsi. Mitochondrial phylogenetic analyses support this separation of the eastern Amazonian squirrel monkeys into two distinct taxa, recovering one clade (S. sciureus) distributed to the north of the Amazon River, from the Negro River and Branco River to the Guiana coast and the Brazilian state of Amapá, and another clade (S. collinsi) south of the Amazon River, from the region of the Tapajós River to the state of Maranhão, as well as within the Marajó Archipelago. The revalidation of the species S. collinsi was corroborated by all of the methods in the study, as the clades recovered in our molecular study are congruent with the pattern of morphological variation. We confirm both the paraphyly of the Saimiri sciureus complex and the paraphyly of the subspecies S. s. sciureus as defined in the current literature.
Collapse
Affiliation(s)
- Michelle P Mercês
- Museu Paraense Emílio Goeldi, Belém, PA, Brazil; Universidade Federal do Pará, Belém, PA, Brazil.
| | - Jessica W Lynch Alfaro
- Institute for Society and Genetics, University of California, Los Angeles, CA 90095, United States; Department of Anthropology, University of California, Los Angeles, CA, United States.
| | | | | | | |
Collapse
|
6
|
Blair ME, Gutierrez-Espeleta GA, Melnick DJ. Subspecies of the Central American Squirrel Monkey (Saimiri oerstedii) as Units for Conservation. INT J PRIMATOL 2012. [DOI: 10.1007/s10764-012-9650-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Chiou KL, Pozzi L, Lynch Alfaro JW, Di Fiore A. Pleistocene diversification of living squirrel monkeys (Saimiri spp.) inferred from complete mitochondrial genome sequences. Mol Phylogenet Evol 2011; 59:736-45. [DOI: 10.1016/j.ympev.2011.03.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/17/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
|
8
|
Ruiz-Garcia M, Castillo MI, Ledezma A, Leguizamon N, Sánchez R, Chinchilla M, Gutierrez-Espeleta GA. Molecular systematics and phylogeography of Cebus capucinus (Cebidae, Primates) in Colombia and Costa Rica by means of the mitochondrial COII gene. Am J Primatol 2011; 74:366-80. [DOI: 10.1002/ajp.20940] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/25/2010] [Accepted: 01/27/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Manuel Ruiz-Garcia
- Laboratorio de Genética de Poblaciones Molecular y Biología Evolutiva; Departamento de Biología, Facultad de Ciencias; Pontificia Universidad Javeriana; Bogotá; DC; Colombia
| | - Maria Ignacia Castillo
- Laboratorio de Genética de Poblaciones Molecular y Biología Evolutiva; Departamento de Biología, Facultad de Ciencias; Pontificia Universidad Javeriana; Bogotá; DC; Colombia
| | - Andrea Ledezma
- Laboratorio de Genética de Poblaciones Molecular y Biología Evolutiva; Departamento de Biología, Facultad de Ciencias; Pontificia Universidad Javeriana; Bogotá; DC; Colombia
| | | | - Ronald Sánchez
- Sede de Occidente; Universidad de Costa Rica; Alajuela; Costa Rica
| | - Misael Chinchilla
- Departamento de Investigación; Universidad de Ciencias Médicas; San José; Costa Rica
| | | |
Collapse
|
9
|
Zimbler-DeLorenzo HS, Stone AI. Integration of field and captive studies for understanding the behavioral ecology of the squirrel monkey (Saimiri sp.). Am J Primatol 2011; 73:607-22. [DOI: 10.1002/ajp.20946] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 02/01/2011] [Accepted: 02/05/2011] [Indexed: 11/06/2022]
|
10
|
Lavergne A, Ruiz-García M, Catzeflis F, Lacote S, Contamin H, Mercereau-Puijalon O, Lacoste V, de Thoisy B. Phylogeny and phylogeography of squirrel monkeys (genus Saimiri) based on cytochrome b genetic analysis. Am J Primatol 2010; 72:242-53. [PMID: 19937739 DOI: 10.1002/ajp.20773] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Squirrel monkeys (genus Saimiri) are distributed over a wide area encompassing the Amazon Basin: French Guiana, Suriname, and Guyana, together with Western Panama and Western Costa Rica. The genus Saimiri includes a complex of species and subspecies displaying considerable morphological variation. Taxonomic and systematic studies have identified, in this genus, one to seven species comprising up to 16 subspecies. The phylogenetic relationships between these taxa are poorly understood. Molecular markers have yielded a consistent framework for the systematics of Central and South American Saimiri, identifying four distinct clades: S. oerstedii, S. sciureus, S. boliviensis, and S. ustus. Here, we reconsider the phylogenetic and biogeographic history of Saimiri on the basis of mitochondrial (mtDNA) sequence data, focusing mostly on individuals originating from the Amazon Basin. We studied 32 monkeys with well-defined geographic origins and inferred the phylogenetic relationships between them on the basis of full-length cytochrome b gene nucleotide sequences. The high level of gene diversity observed (0.966) is consistent with the high level of behavioral and morphological variation observed across the geographic range of the genus: 20 mtDNA haplotypes were identified with a maximum divergence of 4.81% between S. b. boliviensis and S. ustus. In addition to confirming the existence of the four clades previously identified on the basis of molecular characters, we suggest several new lineages, including S. s. macrodon, S. s. albigena, S. s. cassiquiarensis, and S. s. collinsi. We also propose new patterns of dispersion and diversification for the genus Saimiri, and discuss the contribution of certain rivers and forest refuges to its structuring.
Collapse
Affiliation(s)
- Anne Lavergne
- Centre de Primatologie de l'Institut Pasteur de la Guyane, Cayenne, French Guiana
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Adventive Vertebrates and Historical Ecology in the Pre-Columbian Neotropics. DIVERSITY 2009. [DOI: 10.3390/d1020151] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Osterholz M, Vermeer J, Walter L, Roos C. A PCR-based marker to simply identify Saimiri sciureus and S. boliviensis boliviensis. Am J Primatol 2009; 70:1177-80. [PMID: 18831057 DOI: 10.1002/ajp.20606] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Squirrel monkeys, mainly Saimiri sciureus and S. boliviensis, are common in zoos and widely used in biomedical research. However, an exact species identification based on morphological characteristics is difficult. Hence, several molecular methods were proposed, but all of them are expensive and require extensive laboratory work. In contrast, we describe an Alu integration, which is present in S. boliviensis boliviensis and absent in S. sciureus. Among analyzed S. b. peruviensis specimens various presence/absence patterns of the integration were detected indicating that this study population might have originated from a natural hybrid zone. Based on the size of the Alu element ( approximately 300 bp), the presence/absence pattern of the integration can easily be traced by PCR and followed by agarose gel electrophoresis.
Collapse
|
13
|
Isbell LA. Snakes as agents of evolutionary change in primate brains. J Hum Evol 2006; 51:1-35. [PMID: 16545427 DOI: 10.1016/j.jhevol.2005.12.012] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2004] [Revised: 10/04/2005] [Accepted: 12/28/2005] [Indexed: 10/24/2022]
Abstract
Current hypotheses that use visually guided reaching and grasping to explain orbital convergence, visual specialization, and brain expansion in primates are open to question now that neurological evidence reveals no correlation between orbital convergence and the visual pathway in the brain that is associated with reaching and grasping. An alternative hypothesis proposed here posits that snakes were ultimately responsible for these defining primate characteristics. Snakes have a long, shared evolutionary existence with crown-group placental mammals and were likely to have been their first predators. Mammals are conservative in the structures of the brain that are involved in vigilance, fear, and learning and memory associated with fearful stimuli, e.g., predators. Some of these areas have expanded in primates and are more strongly connected to visual systems. However, primates vary in the extent of brain expansion. This variation is coincident with variation in evolutionary co-existence with the more recently evolved venomous snakes. Malagasy prosimians have never co-existed with venomous snakes, New World monkeys (platyrrhines) have had interrupted co-existence with venomous snakes, and Old World monkeys and apes (catarrhines) have had continuous co-existence with venomous snakes. The koniocellular visual pathway, arising from the retina and connecting to the lateral geniculate nucleus, the superior colliculus, and the pulvinar, has expanded along with the parvocellular pathway, a visual pathway that is involved with color and object recognition. I suggest that expansion of these pathways co-occurred, with the koniocellular pathway being crucially involved (among other tasks) in pre-attentional visual detection of fearful stimuli, including snakes, and the parvocellular pathway being involved (among other tasks) in protecting the brain from increasingly greater metabolic demands to evolve the neural capacity to detect such stimuli quickly. A diet that included fruits or nectar (though not to the exclusion of arthropods), which provided sugars as a neuroprotectant, may have been a required preadaptation for the expansion of such metabolically active brains. Taxonomic differences in evolutionary exposure to venomous snakes are associated with similar taxonomic differences in rates of evolution in cytochrome oxidase genes and in the metabolic activity of cytochrome oxidase proteins in at least some visual areas in the brains of primates. Raptors that specialize in eating snakes have larger eyes and greater binocularity than more generalized raptors, and provide non-mammalian models for snakes as a selective pressure on primate visual systems. These models, along with evidence from paleobiogeography, neuroscience, ecology, behavior, and immunology, suggest that the evolutionary arms race begun by constrictors early in mammalian evolution continued with venomous snakes. Whereas other mammals responded by evolving physiological resistance to snake venoms, anthropoids responded by enhancing their ability to detect snakes visually before the strike.
Collapse
Affiliation(s)
- Lynne A Isbell
- Department of Anthropology, University of California, Davis, 95616, USA.
| |
Collapse
|
14
|
Hasbún CR, Gómez A, Köhler G, Lunt DH. Mitochondrial DNA phylogeography of the Mesoamerican spiny-tailed lizards (Ctenosaura quinquecarinata complex): historical biogeography, species status and conservation. Mol Ecol 2005; 14:3095-107. [PMID: 16101776 DOI: 10.1111/j.1365-294x.2005.02665.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Through the examination of past and present distributions of plants and animals, historical biogeographers have provided many insights on the dynamics of the massive organismal exchange between North and South America. However, relatively few phylogeographic studies have been attempted in the land bridge of Mesoamerica despite its importance to better understand the evolutionary forces influencing this biodiversity 'hotspot'. Here we use mitochondrial DNA sequence data from fresh samples and formalin-fixed museum specimens to investigate the genetic and biogeographic diversity of the threatened Mesoamerican spiny-tailed lizards of the Ctenosaura quinquecarinata complex. Species boundaries and their phylogeographic patterns are examined to better understand their disjunct distribution. Three monophyletic, allopatric lineages are established using mtDNA phylogenetic and nested clade analyses in (i) northern: México, (ii) central: Guatemala, El Salvador and Honduras, and (iii) southern: Nicaragua and Costa Rica. The average sequence divergence observed between lineages varied between 2.0% and 3.7% indicating that they do not represent a very recent split and the patterns of divergence support the recently established nomenclature of C. quinquecarinata, Ctenosaura flavidorsalis and Ctenosaura oaxacana. Considering the geological history of Mesoamerica and the observed phylogeographic patterns of these lizards, major evolutionary episodes of their radiation in Mesoamerica are postulated and are indicative of the regions' geological complexity. The implications of these findings for the historical biogeography, taxonomy and conservation of these lizards are discussed.
Collapse
|
15
|
Cortés-Ortiz L, Bermingham E, Rico C, Rodríguez-Luna E, Sampaio I, Ruiz-García M. Molecular systematics and biogeography of the Neotropical monkey genus, Alouatta. Mol Phylogenet Evol 2003; 26:64-81. [PMID: 12470939 DOI: 10.1016/s1055-7903(02)00308-1] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We take advantage of the broad distribution of howler monkeys from Mexico to Argentina to provide a historical biogeographical analysis on a regional scale that encompasses the entire Neotropics. The phylogenetic relationships among 9 of the 10 recognized Alouatta species were inferred using three mitochondrial and two nuclear genes. The nuclear gene regions provided no phylogenetic resolution among howler monkey species, and were characterized by very low levels of sequence divergence between Alouatta and the Ateles outgroup. The mtDNA genes, on the other hand, produced a well-resolved phylogeny, which indicated that the earliest split among howler monkeys separated cis- and trans-Andean clades. Eight monophyletic mtDNA haplotype clades were identified, representing six named species in South America, including Alouatta seniculus, Alouatta sara, Alouatta macconelli, Alouatta caraya, Alouatta belzebul, and Alouatta guariba, and two in Mesoamerica, Alouatta pigra and Alouatta palliata. Molecular clock-based estimates of branching times indicated that contemporary howler monkey species originated in the late Miocene and Pliocene, not the Pleistocene. The causes of Alouatta diversification were more difficult to pin down, although we posit that the initial cis-, trans-Andean split in the genus was caused by the late Miocene completion of the northern Andes. Riverine barriers to dispersal and putative forest refuges can neither be discounted nor distinguished as causes of speciation in many cases, and one, the other or both have likely played a role in the diversification of South American howler monkeys. Finally, we estimated the separation of Mesoamerican A. pigra and A. palliata at 3Ma, which corresponds to the completion date of the Panama Isthmus promoting a role for this earth history event in the speciation of Central American howler monkeys.
Collapse
Affiliation(s)
- L Cortés-Ortiz
- School of Biological Sciences, University of East Anglia, UK.
| | | | | | | | | | | |
Collapse
|