1
|
Yang J, Li A, Liu S. Structural Characteristics of Mitochondrial Genomes of Two Species of Mackerel and Phylogenetic Analysis of Scombridae Family. Biomolecules 2025; 15:555. [PMID: 40305293 PMCID: PMC12025218 DOI: 10.3390/biom15040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Accepted: 04/03/2025] [Indexed: 05/02/2025] Open
Abstract
Scomberomorus guttatus and Scomberomorus commerson are both important marine economic fish species worldwide, with high scientific and ecological value. In this study, the complete mitochondrial genome sequences of these two species of mackerel were obtained by using next-generation sequencing technology, with total lengths of 16,562 bp and 16,594 bp, respectively. Like most teleosts, both species possess 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 non-coding region D-loop. The base composition showed significant AT bias (55.1%, 53.4%) and anti-G bias (16.0%, 16.2%). In their control area, the terminal-associated sequence (TAS) was identified, and a total of three core sequences with repeated "---TACAT---ATGTA---" were found. There are typical CSB-E structures and CSB-D-like structures in the central conserved domain (CD), but no CSB-F structures have been found. Meanwhile, the CSB-2 and CSB-3 structures were identified in the conserved sequence block (CSB), but the CSB-1 structure was missing. To further investigate the phylogenetic relationships within the Scombridae family, this study conducted a comparative analysis of mitochondrial genomes from 30 Scombridae species. Phylogenetic trees encompassing 60% of the documented Scombridae species were constructed using the Neighbor-Joining (NJ) and Maximum Likelihood (ML) methods. The results revealed a close evolutionary relationship between the genus Scomber and Rastrelliger, while the genus Scomberomorus exhibited closer affinities to Thunnus, Euthynnus, and Katsuwonus. At the species level, Scomberomorus guttatus diverged earlier from Scomberomorus commerson. These findings refine and update the phylogenetic relationships among Scombridae species, providing critical molecular evidence and insights for deeper exploration of their evolutionary history and genetic affinities.
Collapse
Affiliation(s)
- Jianqi Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Sciences, Dalian Ocean University, Dalian 116023, China
| | - Ang Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Shufang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Chatzoglou E, Tsaousi N, Spetsieri A, Malandrakis EE, Miliou H. Rapid Detection of Epinephelus Species Substitution in the Greek Market Using High-Resolution Melting Analysis. Genes (Basel) 2025; 16:255. [PMID: 40149407 PMCID: PMC11942476 DOI: 10.3390/genes16030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Fish are vital in the Mediterranean diet, offering protein, nutrients, and ω-3 fatty acids. Greek consumers favor wild-caught, high-value fish like the dusky grouper (Epinephelus marginatus) classified as "vulnerable" and the white grouper (Epinephelus aeneus) classified as "near threatened" species, according to the IUCN Red List. Due to their premium prices and complex supply chains, these species are susceptible to fraud, especially through mislabeling. This practice not only deceives consumers but also poses health risks and encourages illegal fishing. DNA-based methods have shown effectiveness in accurately identifying species, even in processed samples. The aim of this study is to apply high-resolution melting analysis (HRM) as a rapid, effective method for monitoring the appropriate labeling of the two Epinephelus species in the Greek market. Methods: In this study, fresh fish from Greek catches as well as cooked, frozen, and filleted samples collected from the Greek market were identified using DNA barcoding. HRM analysis based on single nucleotide polymorphisms (SNPs) was used to differentiate between locally sourced E. marginatus and E. aeneus from their imported counterparts or from other species available in the Greek market that could be used in substitution incidents. Results: Using HRM analysis, cases of species mislabeling were identified and were also confirmed using sequencing. Conclusions: HRM analysis proved to be an accurate and cost-effective method for rapidly processing a large number of samples; therefore, it could serve as a valuable tool in extensive market controls as well as for bio-diversity conservation monitoring.
Collapse
Affiliation(s)
- Evanthia Chatzoglou
- Laboratory of Applied Hydrobiology, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, 11855 Athens, Greece; (N.T.); (A.S.); (E.E.M.); (H.M.)
| | | | | | | | | |
Collapse
|
3
|
Márquez EJ, Gómez-Chavarría DA, Alzate JF. Exploring the mitochondrial genomes and phylogenetic relationships of trans-Andean Bryconidae species (Actinopterygii: Ostariophysi: Characiformes). PLoS One 2024; 19:e0300830. [PMID: 39190628 PMCID: PMC11349099 DOI: 10.1371/journal.pone.0300830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Comparative mitogenomics and its evolutionary relationships within Bryconidae remains largely unexplored. To bridge this gap, this study assembled 15 mitogenomes from 11 Bryconidae species, including five newly sequenced. Salminus mitogenomes, exceeding 17,700 bp, exhibited the largest size, contrasting with a median size of 16,848 bp in the remaining species (Brycon and Chilobrycon). These mitogenomes encode 37 typical mitochondrial genes, including 13 protein-coding, 2 ribosomal RNA, and 22 transfer RNA genes, and exhibit the conserved gene arrangement found in most fish species. Phylogenetic relationships, based on the maximum-likelihood method, revealed that the trans-Andean species (found in northwestern South America) clustered into two main sister clades. One clade comprised the trans-Andean species from the Pacific slope, Brycon chagrensis and Chilobrycon deuterodon. The other clade grouped the trans-Andean species from the Magdalena-Cauca Basin Brycon moorei and Salminus affinis, with their respective cis-Andean congeners (found in eastern South America), with Brycon rubricauda as its sister clade. Since the current members of Brycon are split in three separated lineages, the systematic classification of Bryconidae requires further examination. This study provides novel insights into mitogenome characteristics and evolutionary pathways within Bryconidae, standing as crucial information for prospective phylogenetic and taxonomic studies, molecular ecology, and provides a valuable resource for environmental DNA applications.
Collapse
Affiliation(s)
- Edna Judith Márquez
- Laboratorio de Biología Molecular y Celular, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, Medellín, Antioquia, Colombia
| | - Daniel Alfredo Gómez-Chavarría
- Centro Nacional de Secuenciación Genómica-CNSG, Facultad de Medicina, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Juan Fernando Alzate
- Centro Nacional de Secuenciación Genómica-CNSG, Facultad de Medicina, Universidad de Antioquia, Medellín, Antioquia, Colombia
| |
Collapse
|
4
|
Yang P, Guo W, Wei C, Wang X, Wang Y, Wang J. Characterization and Phylogenetic Analysis of the Complete Mitochondrial Genome of Triplophysa microphthalma. BIOLOGY 2024; 13:608. [PMID: 39194546 DOI: 10.3390/biology13080608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
The complete mitochondrial genome has been extensively utilized in studies related to phylogenetics, offering valuable perspectives on evolutionary relationships. The mitochondrial genome of the fine-eyed plateau loach, Triplophysa microphthalma, has not attracted much attention, although this species is endemic to China. In this study, we characterized the mitochondrial genome of T. microphthalma and reassessed the classification status of its genus. The complete mitochondrial genome of T. microphthalma was 16,591 bp and contained thirty-seven genes, including thirteen protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), and twenty-two transfer RNA genes (tRNAs). All but one of the thirteen PCGs had the regular start codon ATG; the gene cox1 started with GTG. Six PCGs had incomplete stop codons (T--). These thirteen PCGs are thought to have evolved under purifying selection, and the mitogenome shared a high degree of similarity with the genomes of species within the genus Leptobotia. All tRNA genes exhibited the standard clover-shaped structure, with the exception of the trnS1 gene, which lacked a DHU stem. A phylogenetic analysis indicated that T. microphthalma was more closely related to species within the genus Triplophysa than to those in Barbatula. The present study contributes valuable genomic information for T. microphthalma, and offers new perspectives on the phylogenetic relationships among species of Triplophysa and Barbatula. The findings also provide essential data that can inform the management and conservation strategies for T. microphthalma and other species of Triplophysa and Barbatula.
Collapse
Affiliation(s)
- Ping Yang
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wei Guo
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China
| | - Chao Wei
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xin Wang
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yixuan Wang
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jia Wang
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
5
|
Sun CH, Lu CH. Comparative Analysis and Phylogenetic Study of Dawkinsia filamentosa and Pethia nigrofasciata Mitochondrial Genomes. Int J Mol Sci 2024; 25:3004. [PMID: 38474250 DOI: 10.3390/ijms25053004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Smiliogastrinae are recognized for their high nutritional and ornamental value. In this study, we employed high-throughput sequencing technology to acquire the complete mitochondrial genome sequences of Dawkinsia filamentosa and Pethia nigrofasciata. The gene composition and arrangement order in these species were similar to those of typical vertebrates, comprising 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 non-coding region. The mitochondrial genomes of D. filamentosa and P. nigrofasciata measure 16,598 and 16,948 bp, respectively. Both D. filamentosa and P. nigrofasciata exhibit a significant preference for AT bases and an anti-G bias. Notably, the AT and GC skew values of the ND6 gene fluctuated markedly, suggesting that the selection and mutation pressures on this gene may differ from those affecting other genes. Phylogenetic analysis, based on the complete mitochondrial genomes of 23 Cyprinidae fishes, revealed that D. filamentosa is closely related to the sister group comprising Dawkinsia denisonii and Sahyadria chalakkudiensis. Similarly, P. nigrofasciata forms a sister group with Pethia ticto and Pethia stoliczkana.
Collapse
Affiliation(s)
- Cheng-He Sun
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Chang-Hu Lu
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Gao T, Shi Y, Xiao J. Comparative Mitogenomics Reveals Cryptic Species in Sillago ingenuua McKay, 1985 (Perciformes: Sillaginidae). Genes (Basel) 2023; 14:2043. [PMID: 38002986 PMCID: PMC10671150 DOI: 10.3390/genes14112043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
It is unreliable to identify marine fishes only by external morphological features. Species misidentification brings great challenges to fishery research, resource monitoring and ecomanagement. Sillago ingenuua is an important part of commercial marine fishes, and in which, the morphological differences between different groups are not obvious. Here, we compared different geographical groups of S. ingenuua which were collected from Xiamen, Dongshan, Keelung, Songkhla and Java. The results showed that all samples of S. ingenuua were similar in external morphological characteristics and the shape of the swim bladder, but there were two distinctive lineages which were flagged as cryptic species based on DNA barcoding. The comparative mitogenomic results showed that S. ingenuua A and S. ingenuua B were identical in structural organization and gene arrangement. Their nucleotide composition and codon usage were also similar. A phylogenetic analysis was performed based on 13 concatenated PCGs from eight Sillago species. The results showed that the genetic distance between S. ingenuua A and S. ingenuua B was large (D = 0.069), and this genetic distance was large enough to reveal that S. ingenuua A and S. ingenuua B might be different species.
Collapse
Affiliation(s)
- Tianxiang Gao
- School of Fishery, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Yijia Shi
- Fisheries College, Jimei University, Xiamen 361021, China;
| | - Jiaguang Xiao
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| |
Collapse
|
7
|
The Nursehound Scyliorhinus stellaris Mitochondrial Genome—Phylogeny, Relationships among Scyliorhinidae and Variability in Waters of the Balearic Islands. Int J Mol Sci 2022; 23:ijms231810355. [PMID: 36142266 PMCID: PMC9499419 DOI: 10.3390/ijms231810355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
The complete mitochondrial DNA sequence of the Nursehound Scyliorhinus stellaris has been determined for the first time and compared with congeneric species. The mitogenome sequence was 16,684 bp in length. The mitogenome is composed of 13 PCGs, 2 rRNAs, 22 transfer RNA genes and non-coding regions. The gene order of the newly sequenced mitogenome is analogous to the organization described in other vertebrate genomes. The typical conservative blocks in the control region were indicated. The phylogenetic analysis revealed a monophyletic origin of the Scyliorhininae subfamily, and within it, two subclades were identified. A significant divergence of Scyliorhinus spp. together with Poroderna patherinum in relation to the group of Cephaloscyllium spp. was observed, except for Scyliorhinus torazame, more related to this last cited clade. A hypothesis of a divergent evolution consequent to a selective pressure in different geographic areas, which lead to a global latitudinal diversity gradient, has been suggested to explain this phylogenetic reconstruction. However, convergent evolution on mitochondrial genes could also involve different species in some areas of the world.
Collapse
|
8
|
Dornburg A, Near TJ. The Emerging Phylogenetic Perspective on the Evolution of Actinopterygian Fishes. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-122120-122554] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The emergence of a new phylogeny of ray-finned fishes at the turn of the twenty-first century marked a paradigm shift in understanding the evolutionary history of half of living vertebrates. We review how the new ray-finned fish phylogeny radically departs from classical expectations based on morphology. We focus on evolutionary relationships that span the backbone of ray-finned fish phylogeny, from the earliest divergences among teleosts and nonteleosts to the resolution of major lineages of Percomorpha. Throughout, we feature advances gained by the new phylogeny toward a broader understanding of ray-finned fish evolutionary history and the implications for topics that span from the genetics of human health to reconsidering the concept of living fossils. Additionally, we discuss conceptual challenges that involve reconciling taxonomic classification with phylogenetic relationships and propose an alternate higher-level classification for Percomorpha. Our review highlights remaining areas of phylogenetic uncertainty and opportunities for comparative investigations empowered by this new phylogenetic perspective on ray-finned fishes.
Collapse
Affiliation(s)
- Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina 28223, USA
| | - Thomas J. Near
- Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
9
|
Kálmán M, Matuz V, Sebők OM, Lőrincz D. Evolutionary Modifications Are Moderate in the Astroglial System of Actinopterygii as Revealed by GFAP Immunohistochemistry. Front Neuroanat 2021; 15:698459. [PMID: 34267629 PMCID: PMC8276248 DOI: 10.3389/fnana.2021.698459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 11/25/2022] Open
Abstract
The present paper is the first comparative study on the astroglia of several actinopterygian species at different phylogenetical positions, teleosts (16 species), and non-teleosts (3 species), based on the immunohistochemical staining of GFAP (glial fibrillary acidic protein), the characteristic cytoskeletal intermediary filament protein, and immunohistochemical marker of astroglia. The question was, how the astroglial architecture reflexes the high diversity of this largest vertebrate group. The actinopterygian telencephalon has a so-called ‘eversive’ development in contrast to the ‘evagination’ found in sarcopterygii (including tetrapods). Several brain parts either have no equivalents in tetrapod vertebrates (e.g., torus longitudinalis, lobus inferior, lobus nervi vagi), or have rather different shapes (e.g., the cerebellum). GFAP was visualized applying DAKO polyclonal anti-GFAP serum. The study was focused mainly on the telencephalon (eversion), tectum (visual orientation), and cerebellum (motor coordination) where the evolutionary changes were most expected, but the other areas were also investigated. The predominant astroglial elements were tanycytes (long, thin, fiber-like cells). In the teleost telencephala a ‘fan-shape’ re-arrangement of radial glia reflects the eversion. In bichir, starlet, and gar, in which the eversion is less pronounced, the ‘fan-shape’ re-arrangement did not form. In the tectum the radial glial processes were immunostained, but in Ostariophysi and Euteleostei it did not extend into their deep segments. In the cerebellum Bergmann-like glia was found in each group, including non-teleosts, except for Cyprinidae. The vagal lobe was uniquely enlarged and layered in Cyprininae, and had a corresponding layered astroglial system, which left almost free of GFAP the zones of sensory and motor neurons. In conclusion, despite the diversity and evolutionary alterations of Actinopterygii brains, the diversity of the astroglial architecture is moderate. In contrast to Chondrichthyes and Amniotes; in Actinopterygii true astrocytes (stellate-shaped extraependymal cells) did not appear during evolution, and the expansion of GFAP-free areas was limited.
Collapse
Affiliation(s)
- Mihály Kálmán
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Vanessza Matuz
- Department of Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Olivér M Sebők
- Department of Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Dávid Lőrincz
- Department of Zoology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
10
|
Takezaki N. Resolving the Early Divergence Pattern of Teleost Fish Using Genome-Scale Data. Genome Biol Evol 2021; 13:6178791. [PMID: 33739405 PMCID: PMC8103497 DOI: 10.1093/gbe/evab052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Regarding the phylogenetic relationship of the three primary groups of teleost fishes, Osteoglossomorpha (bonytongues and others), Elopomorpha (eels and relatives), Clupeocephala (the remaining teleost fish), early morphological studies hypothesized the first divergence of Osteoglossomorpha, whereas the recent prevailing view is the first divergence of Elopomorpha. Molecular studies supported all the possible relationships of the three primary groups. This study analyzed genome-scale data from four previous studies: 1) 412 genes from 12 species, 2) 772 genes from 15 species, 3) 1,062 genes from 30 species, and 4) 491 UCE loci from 27 species. The effects of the species, loci, and models used on the constructed tree topologies were investigated. In the analyses of the data sets (1)–(3), although the first divergence of Clupeocephala that left the other two groups in a sister relationship was supported by concatenated sequences and gene trees of all the species and genes, the first divergence of Elopomorpha among the three groups was supported using species and/or genes with low divergence of sequence and amino-acid frequencies. This result corresponded to that of the UCE data set (4), whose sequence divergence was low, which supported the first divergence of Elopomorpha with high statistical significance. The increase in accuracy of the phylogenetic construction by using species and genes with low sequence divergence was predicted by a phylogenetic informativeness approach and confirmed by computer simulation. These results supported that Elopomorpha was the first basal group of teleost fish to have diverged, consistent with the prevailing view of recent morphological studies.
Collapse
Affiliation(s)
- Naoko Takezaki
- Life Science Research Center, Kagawa University, Mikicho, Kitagun, Kagawa, Japan
| |
Collapse
|
11
|
Li Y, Liu C, Lin L, Li Y, Xiao J, Loh KH. Pleistocene isolation caused by sea-level fluctuations shaped genetic characterization of Pampus minor over a large-scale geographical distribution. Zookeys 2020; 969:137-154. [PMID: 33013170 PMCID: PMC7515929 DOI: 10.3897/zookeys.969.52069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/28/2020] [Indexed: 11/26/2022] Open
Abstract
The southern lesser pomfret (Pampusminor) is an economically important fish, and its numbers are declining because of overfishing and environmental pollution. In addition, owing to the similarities of its external morphological characteristics to other species in the genus Pampus, it is often mistaken for grey pomfret (P.cinereus) or silver pomfret (P.argenteus) juveniles. In this study, the genetic diversity and structure of 264 P.minor individuals from 11 populations in China and Malaysia coastal waters were evaluated for the first time, to the best of our knowledge, using mitochondrial cytochrome b fragments. The results showed that P.minor had moderate haplotype diversity and low nucleotide diversity. Furthermore, two divergent lineages were detected within the populations, but the phylogenetic structure corresponded imperfectly with geographical location; thus, the populations may have diverged in different glacial refugia during the Pleistocene low sea levels. Analysis of molecular variation (AMOVA) showed that genetic variation originated primarily from individuals within the population. Pairwise FST results showed significant differentiation between the Chinese and Malaysian populations. Except for the Xiamen population, which was classified as a marginal population, the genetic differentiation among the other Chinese populations was not significant. During the Late Pleistocene, P.minor experienced a population expansion event starting from the South China Sea refugium that expanded outward, and derivative populations quickly occupied and adapted to the new habitat. The results of this study will provide genetic information for the scientific conservation and management of P.minor resources.
Collapse
Affiliation(s)
- Yuan Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China Ministry of Natural Resources Xiamen China
| | - Cheng Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China Ministry of Natural Resources Xiamen China.,College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China Shanghai Ocean University Shanghai China
| | - Longshan Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China Ministry of Natural Resources Xiamen China.,College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China Shanghai Ocean University Shanghai China
| | - Yuanyuan Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China Ministry of Natural Resources Xiamen China
| | - Jiaguang Xiao
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China Ministry of Natural Resources Xiamen China
| | - Kar-Hoe Loh
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia University of Malaya Kuala Lumpur Malaysia
| |
Collapse
|
12
|
Lin CJ, Maugars G, Lafont AG, Jeng SR, Wu GC, Dufour S, Chang CF. Basal teleosts provide new insights into the evolutionary history of teleost-duplicated aromatase. Gen Comp Endocrinol 2020; 291:113395. [PMID: 31981691 DOI: 10.1016/j.ygcen.2020.113395] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/04/2020] [Accepted: 01/20/2020] [Indexed: 11/25/2022]
Abstract
Duplicated cyp19a1 genes (cyp19a1a encoding aromatase a and cyp19a1b encoding aromatase b) have been identified in an increasing number of teleost species. Cyp19a1a is mainly expressed in the gonads, while cyp19a1b is mainly expressed in the brain, specifically in radial glial cells, as largely investigated by Kah and collaborators. The third round of whole-genome duplication that specifically occurred in the teleost lineage (TWGD or 3R) is likely at the origin of the duplicated cyp19a1 paralogs. In contrast to the situation in other teleosts, our previous studies identified a single cyp19a1 in eels (Anguilla), which are representative species of a basal group of teleosts, Elopomorpha. In the present study, using genome data mining and phylogenetic and synteny analyses, we confirmed that the whole aromatase genomic region was duplicated in eels, with most aromatase-neighboring genes being conserved in duplicate in eels, as in other teleosts. These findings suggest that specific gene loss of one of the 3R-duplicated cyp19a1 paralogs occurred in Elopomorpha after TWGD. Similarly, a single cyp19a1 gene was found in the arowana, which is a representative species of another basal group of teleosts, Osteoglossomorpha. In eels, the single cyp19a1 is expressed in both the brain and the gonads, as observed for the single CYP19A1 gene present in other vertebrates. The results of phylogenetic, synteny, closest neighboring gene, and promoter structure analyses showed that the single cyp19a1 of the basal teleosts shared conserved properties with both teleost cyp19a1a and cyp19a1b paralogs, which did not allow us to conclude which of the 3R-duplicated paralogs (cyp19a1a or cyp19a1b) was lost in Elopomorpha. Elopomorpha and Osteoglossomorpha cyp19a1 genes exhibited preserved ancestral functions, including expression in both the gonad and brain. We propose that the subfunctionalization of the 3R-duplicated cyp19a1 paralogs expressed specifically in the gonad or brain occurred in Clupeocephala, after the split of Clupeocephala from Elopomorpha and Osteoglossomorpha, which represented a driving force for the conservation of both 3R-duplicated paralogs in all extant Clupeocephala. In contrast, the functional redundancy of the undifferentiated 3R-duplicated cyp19a1 paralogs in elopomorphs and osteoglossomorphs would have favored the loss of one 3R paralog in basal teleosts.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Gersende Maugars
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231 Paris Cedex 05, France
| | - Anne-Gaëlle Lafont
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231 Paris Cedex 05, France
| | - Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231 Paris Cedex 05, France.
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
13
|
Pirog A, Ravigné V, Fontaine MC, Rieux A, Gilabert A, Cliff G, Clua E, Daly R, Heithaus MR, Kiszka JJ, Matich P, Nevill JEG, Smoothey AF, Temple AJ, Berggren P, Jaquemet S, Magalon H. Population structure, connectivity, and demographic history of an apex marine predator, the bull shark Carcharhinus leucas. Ecol Evol 2019; 9:12980-13000. [PMID: 31871624 PMCID: PMC6912899 DOI: 10.1002/ece3.5597] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/23/2019] [Accepted: 07/28/2019] [Indexed: 01/16/2023] Open
Abstract
Knowledge of population structure, connectivity, and effective population size remains limited for many marine apex predators, including the bull shark Carcharhinus leucas. This large-bodied coastal shark is distributed worldwide in warm temperate and tropical waters, and uses estuaries and rivers as nurseries. As an apex predator, the bull shark likely plays a vital ecological role within marine food webs, but is at risk due to inshore habitat degradation and various fishing pressures. We investigated the bull shark's global population structure and demographic history by analyzing the genetic diversity of 370 individuals from 11 different locations using 25 microsatellite loci and three mitochondrial genes (CR, nd4, and cytb). Both types of markers revealed clustering between sharks from the Western Atlantic and those from the Western Pacific and the Western Indian Ocean, with no contemporary gene flow. Microsatellite data suggested low differentiation between the Western Indian Ocean and the Western Pacific, but substantial differentiation was found using mitochondrial DNA. Integrating information from both types of markers and using Bayesian computation with a random forest procedure (ABC-RF), this discordance was found to be due to a complete lack of contemporary gene flow. High genetic connectivity was found both within the Western Indian Ocean and within the Western Pacific. In conclusion, these results suggest important structuring of bull shark populations globally with important gene flow occurring along coastlines, highlighting the need for management and conservation plans on regional scales rather than oceanic basin scale.
Collapse
Affiliation(s)
- Agathe Pirog
- UMR ENTROPIE (Université de La Réunion/IRD/CNRS)Université de La RéunionSaint DenisFrance
| | | | - Michaël C. Fontaine
- Laboratoire MIVEGEC (Université de Montpellier UMR CNRS 5290, IRD 229)Centre IRD de MontpellierMontpellierFrance
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenThe Netherlands
| | | | | | - Geremy Cliff
- KwaZulu‐Natal Sharks BoardUmhlanga RocksSouth Africa
- School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Eric Clua
- EPHECNRS UPVDUSR 3278 CRIOBEPSL Research UniversityPerpignanFrance
- Laboratoire d'Excellence CORAILPerpignanFrance
| | - Ryan Daly
- Oceanographic Research InstituteDurbanSouth Africa
- South African Institute for Aquatic BiodiversityGrahamstownSouth Africa
| | - Michael R. Heithaus
- Department of Biological SciencesFlorida International UniversityNorth MiamiFLUSA
| | - Jeremy J. Kiszka
- Department of Biological SciencesFlorida International UniversityNorth MiamiFLUSA
| | - Philip Matich
- Department of Biological SciencesFlorida International UniversityNorth MiamiFLUSA
| | | | - Amy F. Smoothey
- NSW Department of Primary IndustriesSydney Institute of Marine ScienceMosmanNSWAustralia
| | - Andrew J. Temple
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Per Berggren
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Sébastien Jaquemet
- UMR ENTROPIE (Université de La Réunion/IRD/CNRS)Université de La RéunionSaint DenisFrance
| | - Hélène Magalon
- UMR ENTROPIE (Université de La Réunion/IRD/CNRS)Université de La RéunionSaint DenisFrance
- Laboratoire d'Excellence CORAILPerpignanFrance
| |
Collapse
|
14
|
Shedko SV. Causes of the Excess of Frequency of SCH34 Mitotype in Population of Amur Sturgeon Acipenser schrenckii (Acipenseridae) Based on the Analysis of Complete Mitochondrial Genomes. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419060164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Kálmán M, Lőrincz DL, Sebők OM, Ari C, Oszwald E, Somiya H, Jancsik V. Cerebrovascular β-dystroglycan immunoreactivity in vertebrates: not detected in anurans and in the teleosts Ostariophysi and Euteleostei. Integr Zool 2019; 15:16-31. [PMID: 30811839 DOI: 10.1111/1749-4877.12384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The aim of the present paper was to check for the presence of cerebrovascular dystroglycan in vertebrates, because dystroglycan, which is localized in the vascular astroglial end-feet, has a pivotal function in glio-vascular connections. In mammalian brains, the immunoreactivity of β-dystroglycan subunit delineates the vessels. The results of the present study demonstrate similar patterns in other vertebrates, except for anurans and the teleost groups Ostariophysi and Euteleostei. In this study, we investigated 1 or 2 representative species of the main groups of Chondrichthyes, teleost and non-teleost ray-finned fishes, urodeles, anurans, and reptiles. We also investigated 5 mammalian and 3 bird species. Animals were obtained from breeders or fishermen. The presence of β-dystroglycan was investigated immunohistochemically in free-floating sections. Pre-embedding electron microscopical immunohistochemistry on Heterodontus japonicus shark brains demonstrated that in Elasmobranchii, β-dystroglycan is also localized in the perivascular glial end-feet despite the different construction of their blood-brain barrier. The results indicated that the cerebrovascular β-dystroglycan immunoreactivity disappeared separately in anurans, and in teleosts, in the latter group before its division to Ostariophysi and Euteleostei. Immunohistochemistry in muscles and western blots from brain homogenates, however, detected the presence of β-dystroglycan, even in anurans and all teleosts. A possible explanation is that in the glial end-feet, β-dystroglycan is masked in these animals, or disappeared during adaptation to the freshwater habitat.
Collapse
Affiliation(s)
- Mihály Kálmán
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - David L Lőrincz
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.,University of Leicester, Dept. of Neuroscience, Psychology and Behaviour, Leicester, United Kingdom
| | - Olivér M Sebők
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Csilla Ari
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.,Hyperbaric Neuroscience Research Lab., Dept of Psychology, University of South Florida, Tampa, Florida, USA
| | - Erzsébet Oszwald
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Hiroaki Somiya
- Department of Environmental Biology, Chubu University, Chubu, Japan
| | | |
Collapse
|
16
|
Lait LA, Carr SM. Intraspecific mitogenomics of three marine species-at-risk: Atlantic, spotted, and northern wolffish (Anarhichas spp.). Genome 2018; 61:625-634. [PMID: 30001499 DOI: 10.1139/gen-2018-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-resolution mitogenomics of within-species relationships can answer such phylogeographic questions as how species survived the most recent glaciation, as well as identify contemporary factors such as physical barriers, isolation, and gene flow. We examined the mitogenomic population structure of three at-risk species of wolffish: Atlantic (Anarhichas lupus), spotted (A. minor), and northern (A. denticulatus). These species are extensively sympatric across the North Atlantic but exhibit very different life history strategies, a combination that results in concordant and discordant patterns of genetic variation and structure. Wolffish haplogroups were not structured geographically: Atlantic and spotted wolffish each comprised three shallow clades, whereas northern wolffish comprised two deeper but unstructured lineages. We suggest that wolffish species survived in isolation in multiple glacial refugia, either refugia within refugia (Atlantic and spotted wolffish) or more distant refugia (northern wolffish), followed by secondary admixture upon post-glacial recolonisation of the North Atlantic.
Collapse
Affiliation(s)
- Linda A Lait
- a Genetics, Evolution, and Molecular Systematics Laboratory, Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.,b Centre for Biodiversity Genomics, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Steven M Carr
- a Genetics, Evolution, and Molecular Systematics Laboratory, Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| |
Collapse
|
17
|
Lait LA, Marshall HD, Carr SM. Phylogeographic mitogenomics of Atlantic cod Gadus morhua: Variation in and among trans-Atlantic, trans-Laurentian, Northern cod, and landlocked fjord populations. Ecol Evol 2018; 8:6420-6437. [PMID: 30038745 PMCID: PMC6053584 DOI: 10.1002/ece3.3873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/21/2017] [Accepted: 01/01/2018] [Indexed: 01/16/2023] Open
Abstract
The historical phylogeography, biogeography, and ecology of Atlantic cod (Gadus morhua) have been impacted by cyclic Pleistocene glaciations, where drops in sea temperatures led to sequestering of water in ice sheets, emergence of continental shelves, and changes to ocean currents. High-resolution, whole-genome mitogenomic phylogeography can help to elucidate this history. We identified eight major haplogroups among 153 fish from 14 populations by Bayesian, parsimony, and distance methods, including one that extends the species coalescent back to ca. 330 kya. Fish from the Barents and Baltic Seas tend to occur in basal haplogroups versus more recent distribution of fish in the Northwest Atlantic. There was significant differentiation in the majority of trans-Atlantic comparisons (ΦST = .029-.180), but little or none in pairwise comparisons within the Northwest Atlantic of individual populations (ΦST = .000-.060) or defined management stocks (ΦST = .000-.023). Monte Carlo randomization tests of population phylogeography showed significantly nonrandom trans-Atlantic phylogeography versus absence of such structure within various partitions of trans-Laurentian, Northern cod (NAFO 2J3KL) and other management stocks, and Flemish Cap populations. A landlocked meromictic fjord on Baffin Island comprised multiple identical or near-identical mitogenomes in two major polyphyletic clades, and was significantly differentiated from all other populations (ΦST = .153-.340). The phylogeography supports a hypothesis of an eastern origin of genetic diversity ca. 200-250 kya, rapid expansion of a western superhaplogroup comprising four haplogroups ca. 150 kya, and recent postglacial founder populations.
Collapse
Affiliation(s)
- Linda A. Lait
- Genetics, Evolution, and Molecular Systematics LaboratoryDepartment of BiologyMemorial University of NewfoundlandSt. John'sNLCanada
- Centre for Biodiversity Genomics, Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| | - H. Dawn Marshall
- Genetics, Evolution, and Molecular Systematics LaboratoryDepartment of BiologyMemorial University of NewfoundlandSt. John'sNLCanada
| | - Steven M. Carr
- Genetics, Evolution, and Molecular Systematics LaboratoryDepartment of BiologyMemorial University of NewfoundlandSt. John'sNLCanada
| |
Collapse
|
18
|
Dai W, Zou M, Yang L, Du K, Chen W, Shen Y, Mayden RL, He S. Phylogenomic Perspective on the Relationships and Evolutionary History of the Major Otocephalan Lineages. Sci Rep 2018; 8:205. [PMID: 29317769 PMCID: PMC5760653 DOI: 10.1038/s41598-017-18432-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022] Open
Abstract
The phylogeny of otocephalan fishes is the subject of broad controversy based on morphological and molecular evidence. The primary unresolved issue pertaining to this lineage relates to the origin of Characiphysi, especially the paraphyly of Characiformes. The considerable uncertainty associated with this lineage has precluded a greater understanding of the origin and evolution of the clade. Herein, a phylogenomic approach was applied to resolve this debate. By analyzing 10 sets of transcriptomic data generated in this study and 12 sets of high-throughput data available in public databases, we obtained 1,110 single-copy orthologous genes (935,265 sites for analysis) from 22 actinopterygians, including 14 otocephalan fishes from six orders: Clupeiformes, Gonorynchiformes, Cypriniformes, Siluriformes, Characiformes, and Gymnotiformes. Based on a selection of 125 nuclear genes screened from single-gene maximum likelihood (ML) analyses and sequence bias testing, well-established relationships among Otocephala were reconstructed. We suggested that Gymnotiformes are more closely related to Characiformes than to Siluriformes and Characiformes are possibly paraphyletic. We also estimated that Otocephala originated in the Early-Late Jurassic, which postdates most previous estimations, and hypothesized scenarios of the early historical biogeographies of major otocephalan lineages.
Collapse
Affiliation(s)
- Wei Dai
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Ming Zou
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Beijing, 430070, People's Republic of China
| | - Liandong Yang
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Kang Du
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Weitao Chen
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Yanjun Shen
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Richard L Mayden
- Department of Biology, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Shunping He
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, People's Republic of China.
| |
Collapse
|
19
|
Page TJ, Stevens MI, Adams M, Foster R, Velasco-Castrillón A, Humphreys WF. Multiple molecular markers reinforce the systematic framework of unique Australian cave fishes (Milyeringa : Gobioidei). AUST J ZOOL 2018. [DOI: 10.1071/zo18008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Australia was once thought to be a biodiversity desert when considering the subterranean world; however, recent work has revealed a fascinating collection of cave creatures, many with surprising biogeographic histories. This has especially been so in the karstic regions of north-western Australia (Cape Range peninsula, Barrow Island, Pilbara), which is home not only to a diverse collection of subterranean invertebrates, but also to the continent’s only known underworld-adapted vertebrates, which includes the cave fish in the genus Milyeringa. These cave gudgeons have recently been in a state of taxonomic flux, with species being both split and lumped, but this was done with limited data (incomplete geographic sampling and no nuclear DNA sequence data). Therefore, we have revisited the systematic status of Milyeringa in a total-evidence molecular approach by integrating all existing data (mitochondrial, allozymes) with new DNA sequences from nuclear and mitochondrial loci and new multilocus allozyme data. Our conclusion, that there are two species, matches the most recent taxonomic treatment, with Milyeringa veritas present on both the eastern and western sides of the Cape Range peninsula, and Milyeringa justitia on Barrow Island. This has implications for future research in the linked fields of biogeography and conservation.
Collapse
|
20
|
Nakamura Y, Yasuike M, Mekuchi M, Iwasaki Y, Ojima N, Fujiwara A, Chow S, Saitoh K. Rhodopsin gene copies in Japanese eel originated in a teleost-specific genome duplication. ZOOLOGICAL LETTERS 2017; 3:18. [PMID: 29075512 PMCID: PMC5645911 DOI: 10.1186/s40851-017-0079-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/11/2017] [Indexed: 06/16/2023]
Abstract
BACKGROUND Gene duplication is considered important to increasing the genetic diversity in animals. In fish, visual pigment genes are often independently duplicated, and the evolutionary significance of such duplications has long been of interest. Eels have two rhodopsin genes (rho), one of which (freshwater type, fw-rho) functions in freshwater and the other (deep-sea type, ds-rho) in marine environments. Hence, switching of rho expression in retinal cells is tightly linked with eels' unique life cycle, in which they migrate from rivers or lakes to the sea. These rho genes are apparently paralogous, but the timing of their duplication is unclear due to the deep-branching phylogeny. The aim of the present study is to elucidate the evolutionary origin of the two rho copies in eels using comparative genomics methods. RESULTS In the present study, we sequenced the genome of Japanese eel Anguilla japonica and reconstructed two regions containing rho by de novo assembly. We found a single corresponding region in a non-teleostean primitive ray-finned fish (spotted gar) and two regions in a primitive teleost (Asian arowana). The order of ds-rho and the neighboring genes was highly conserved among the three species. With respect to fw-rho, which was lost in Asian arowana, the neighboring genes were also syntenic between Japanese eel and Asian arowana. In particular, the pattern of gene losses in ds-rho and fw-rho regions was the same as that in Asian arowana, and no discrepancy was found in any of the teleost genomes examined. Phylogenetic analysis supports mutual monophyly of these two teleostean synteny groups, which correspond to the ds-rho and fw-rho regions. CONCLUSIONS Syntenic and phylogenetic analyses suggest that the duplication of rhodopsin gene in Japanese eel predated the divergence of eel (Elopomorpha) and arowana (Osteoglossomorpha). Thus, based on the principle of parsimony, it is most likely that the rhodopsin paralogs were generated through a whole genome duplication in the ancestor of teleosts, and have remained till the present in eels with distinct functional roles. Our result indicates, for the first time, that teleost-specific genome duplication may have contributed to a gene innovation involved in eel-specific migratory life cycle.
Collapse
Affiliation(s)
- Yoji Nakamura
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648 Japan
| | - Motoshige Yasuike
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648 Japan
| | - Miyuki Mekuchi
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648 Japan
| | - Yuki Iwasaki
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648 Japan
- Present address: National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540 Japan
| | - Nobuhiko Ojima
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648 Japan
- Present address: Japan Fisheries Research and Education Agency, 2-3-3 Minatomirai, Nishi, Yokohama, Kanagawa 220-6115 Japan
| | - Atushi Fujiwara
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648 Japan
| | - Seinen Chow
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648 Japan
| | - Kenji Saitoh
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648 Japan
- Present address: Tohoku National Fisheries Research Institute, Japan Fisheries Research and Education Agency, 3-27-5 Shinhama, Shiogama, Miyagi 985-0001 Japan
| |
Collapse
|
21
|
Betancur-R R, Wiley EO, Arratia G, Acero A, Bailly N, Miya M, Lecointre G, Ortí G. Phylogenetic classification of bony fishes. BMC Evol Biol 2017; 17:162. [PMID: 28683774 PMCID: PMC5501477 DOI: 10.1186/s12862-017-0958-3] [Citation(s) in RCA: 444] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/26/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Fish classifications, as those of most other taxonomic groups, are being transformed drastically as new molecular phylogenies provide support for natural groups that were unanticipated by previous studies. A brief review of the main criteria used by ichthyologists to define their classifications during the last 50 years, however, reveals slow progress towards using an explicit phylogenetic framework. Instead, the trend has been to rely, in varying degrees, on deep-rooted anatomical concepts and authority, often mixing taxa with explicit phylogenetic support with arbitrary groupings. Two leading sources in ichthyology frequently used for fish classifications (JS Nelson's volumes of Fishes of the World and W. Eschmeyer's Catalog of Fishes) fail to adopt a global phylogenetic framework despite much recent progress made towards the resolution of the fish Tree of Life. The first explicit phylogenetic classification of bony fishes was published in 2013, based on a comprehensive molecular phylogeny ( www.deepfin.org ). We here update the first version of that classification by incorporating the most recent phylogenetic results. RESULTS The updated classification presented here is based on phylogenies inferred using molecular and genomic data for nearly 2000 fishes. A total of 72 orders (and 79 suborders) are recognized in this version, compared with 66 orders in version 1. The phylogeny resolves placement of 410 families, or ~80% of the total of 514 families of bony fishes currently recognized. The ordinal status of 30 percomorph families included in this study, however, remains uncertain (incertae sedis in the series Carangaria, Ovalentaria, or Eupercaria). Comments to support taxonomic decisions and comparisons with conflicting taxonomic groups proposed by others are presented. We also highlight cases were morphological support exist for the groups being classified. CONCLUSIONS This version of the phylogenetic classification of bony fishes is substantially improved, providing resolution for more taxa than previous versions, based on more densely sampled phylogenetic trees. The classification presented in this study represents, unlike any other, the most up-to-date hypothesis of the Tree of Life of fishes.
Collapse
Affiliation(s)
- Ricardo Betancur-R
- Department of Biology, University of Puerto Rico, Río Piedras, P.O. Box 23360, San Juan, PR 00931 USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
| | - Edward O. Wiley
- Biodiversity Institute and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS USA
- Sam Houston State Natural History Collections, Sam Houston State University, Huntsville, Texas USA
| | - Gloria Arratia
- Biodiversity Institute and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS USA
| | - Arturo Acero
- Universidad Nacional de Colombia sede Caribe, Cecimar, El Rodadero, Santa Marta, Magdalena Colombia
| | - Nicolas Bailly
- FishBase Information and Research Group, Los Baños, Philippines
| | - Masaki Miya
- Department Ecology and Environmental Sciences, Natural History Museum and Institute, Chiba, Japan
| | - Guillaume Lecointre
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, Paris, France
| | - Guillermo Ortí
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
- Department of Biology, The George Washington University, Washington, DC USA
| |
Collapse
|
22
|
Larouche O, Zelditch ML, Cloutier R. Fin modules: an evolutionary perspective on appendage disparity in basal vertebrates. BMC Biol 2017; 15:32. [PMID: 28449681 PMCID: PMC5406925 DOI: 10.1186/s12915-017-0370-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/26/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fishes are extremely speciose and also highly disparate in their fin configurations, more specifically in the number of fins present as well as their structure, shape, and size. How they achieved this remarkable disparity is difficult to explain in the absence of any comprehensive overview of the evolutionary history of fish appendages. Fin modularity could provide an explanation for both the observed disparity in fin configurations and the sequential appearance of new fins. Modularity is considered as an important prerequisite for the evolvability of living systems, enabling individual modules to be optimized without interfering with others. Similarities in developmental patterns between some of the fins already suggest that they form developmental modules during ontogeny. At a macroevolutionary scale, these developmental modules could act as evolutionary units of change and contribute to the disparity in fin configurations. This study addresses fin disparity in a phylogenetic perspective, while focusing on the presence/absence and number of each of the median and paired fins. RESULTS Patterns of fin morphological disparity were assessed by mapping fin characters on a new phylogenetic supertree of fish orders. Among agnathans, disparity in fin configurations results from the sequential appearance of novel fins forming various combinations. Both median and paired fins would have appeared first as elongated ribbon-like structures, which were the precursors for more constricted appendages. Among chondrichthyans, disparity in fin configurations relates mostly to median fin losses. Among actinopterygians, fin disparity involves fin losses, the addition of novel fins (e.g., the adipose fin), and coordinated duplications of the dorsal and anal fins. Furthermore, some pairs of fins, notably the dorsal/anal and pectoral/pelvic fins, show non-independence in their character distribution, supporting expectations based on developmental and morphological evidence that these fin pairs form evolutionary modules. CONCLUSIONS Our results suggest that the pectoral/pelvic fins and the dorsal/anal fins form two distinct evolutionary modules, and that the latter is nested within a more inclusive median fins module. Because the modularity hypotheses that we are testing are also supported by developmental and variational data, this constitutes a striking example linking developmental, variational, and evolutionary modules.
Collapse
Affiliation(s)
- Olivier Larouche
- Laboratoire de Paléontologie et de Biologie évolutive, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1 Canada
| | | | - Richard Cloutier
- Laboratoire de Paléontologie et de Biologie évolutive, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1 Canada
| |
Collapse
|
23
|
Martin KJ, Holland PWH. Diversification of Hox Gene Clusters in Osteoglossomorph Fish in Comparison to Other Teleosts and the Spotted Gar Outgroup. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:638-644. [DOI: 10.1002/jez.b.22726] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/14/2016] [Accepted: 12/25/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Kyle J Martin
- Department of Zoology; University of Oxford; Oxford UK
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
| | | |
Collapse
|
24
|
Karyotype description of the African weakly electric fish Campylomormyrus compressirostris in the context of chromosome evolution in Osteoglossiformes. ACTA ACUST UNITED AC 2017; 110:273-280. [PMID: 28108417 DOI: 10.1016/j.jphysparis.2017.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/21/2016] [Accepted: 01/14/2017] [Indexed: 11/22/2022]
Abstract
Karyotyping is a basic method to investigate chromosomal evolution and genomic rearrangements. Sixteen genera within the basal teleost order Osteoglossiformes are currently described cytogenetically. Our study adds information to this chromosomal dataset by determining the karyotype of Campylomormyrus compressirostris, a genus of African weakly electric fish that has not been previously examined. Our results indicate a diploid chromosome number of 2n=48 (4sm+26m+18a) with a fundamental number of FN=72. This chromosome number is identical to the number documented for the sister taxon of the genus Campylomormyrus, i.e., Gnathonemus petersii (2n=48). These results support the close relationship of Campylomormyrus and Gnathonemus. However, the karyotype formula of C. compressirostris is different from Gnathonemus petersii, thereby confirming the high variability of karyotype formulae within the Mormyridae. We infer that the differences in chromosome number and formula of Campylomormyrus relative to other mormyrids may be caused by Robertsonian fusion and pericentric inversion. In addition to the karyotype description and classification of Campylomormyrus, a ChromEvol analysis was used to determine the ancestral haploid chromosome number of osteoglossiform taxa. Our results indicate a relatively conservative haploid chromosome number of n=24 for the most recent common ancestor of Osteoglossiformes and for most of the internal nodes of osteoglossiform phylogeny. Hence, we presume that the high chromosome variability evolved recently on multiple independent occasions. Furthermore, we suggest that the most likely ancestral chromosome number of Mormyridae is either n=24 or n=25. To the best of our knowledge this is the first attempt to determine and classify the karyotype of the weakly electric fish genus Campylomormyrus and to analyze chromosomal evolution within the Osteoglossiformes based on Maximum Likelihood and Bayesian Inference analyses.
Collapse
|
25
|
Firidin S, Eroglu O, Altinok I. Genetic characterization of brown meagre (Sciaena umbra) and Shi Drum (Umbrina cirrosa) populations. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Knudsen SW, Clements KD. Input data for inferring species distributions in Kyphosidae world-wide. Data Brief 2016; 8:1013-7. [PMID: 27508256 PMCID: PMC4969239 DOI: 10.1016/j.dib.2016.06.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/17/2016] [Accepted: 06/24/2016] [Indexed: 11/18/2022] Open
Abstract
Input data files for inferring the relationship among the family Kyphosidae, as presented in (Knudsen and Clements, 2016) [1], is here provided together with resulting topologies, to allow the reader to explore the topologies in detail. The input data files comprise seven nexus-files with sequence alignments of mtDNA and nDNA markers for performing Bayesian analysis. A matrix of recoded character states inferred from the morphology examined in museum specimens representing Dichistiidae, Girellidae, Kyphosidae, Microcanthidae and Scorpididae, is also provided, and can be used for performing a parsimonious analysis to infer the relationship among these perciform families. The nucleotide input data files comprise both multiple and single representatives of the various species to allow for inference of the relationship among the species in Kyphosidae and between the families closely related to Kyphosidae. The '.xml'-files with various constrained relationships among the families potentially closely related to Kyphosidae are also provided to allow the reader to rerun and explore the results from the stepping-stone analysis. The resulting topologies are supplied in newick-file formats together with input data files for Bayesian analysis, together with '.xml'-files. Re-running the input data files in the appropriate software, will enable the reader to examine log-files and tree-files themselves.
Collapse
|
27
|
Mirande JM. Combined phylogeny of ray-finned fishes (Actinopterygii) and the use of morphological characters in large-scale analyses. Cladistics 2016; 33:333-350. [DOI: 10.1111/cla.12171] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2016] [Indexed: 01/27/2023] Open
Affiliation(s)
- Juan Marcos Mirande
- Unidad Ejecutora Lillo (UEL, Fundación Miguel Lillo-CONICET); San Miguel de Tucumán 4000 Argentina
| |
Collapse
|
28
|
Shan B, Song N, Han Z, Wang J, Gao T, Yokogawa K. Complete mitochondrial genomes of three sea basses Lateolabrax (Perciformes, Lateolabracidae) species: Genome description and phylogenetic considerations. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Lavoué S. Was Gondwanan breakup the cause of the intercontinental distribution of Osteoglossiformes? A time-calibrated phylogenetic test combining molecular, morphological, and paleontological evidence. Mol Phylogenet Evol 2016; 99:34-43. [DOI: 10.1016/j.ympev.2016.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 11/16/2022]
|
30
|
The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts. Sci Rep 2016; 6:24501. [PMID: 27089831 PMCID: PMC4835728 DOI: 10.1038/srep24501] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/30/2016] [Indexed: 11/09/2022] Open
Abstract
The Asian arowana (Scleropages formosus), one of the world's most expensive cultivated ornamental fishes, is an endangered species. It represents an ancient lineage of teleosts: the Osteoglossomorpha. Here, we provide a high-quality chromosome-level reference genome of a female golden-variety arowana using a combination of deep shotgun sequencing and high-resolution linkage mapping. In addition, we have also generated two draft genome assemblies for the red and green varieties. Phylogenomic analysis supports a sister group relationship between Osteoglossomorpha (bonytongues) and Elopomorpha (eels and relatives), with the two clades together forming a sister group of Clupeocephala which includes all the remaining teleosts. The arowana genome retains the full complement of eight Hox clusters unlike the African butterfly fish (Pantodon buchholzi), another bonytongue fish, which possess only five Hox clusters. Differential gene expression among three varieties provides insights into the genetic basis of colour variation. A potential heterogametic sex chromosome is identified in the female arowana karyotype, suggesting that the sex is determined by a ZW/ZZ sex chromosomal system. The high-quality reference genome of the golden arowana and the draft assemblies of the red and green varieties are valuable resources for understanding the biology, adaptation and behaviour of Asian arowanas.
Collapse
|
31
|
Turanov SV, Kartavtsev YP, Lee YH, Jeong D. Molecular phylogenetic reconstruction and taxonomic investigation of eelpouts (Cottoidei: Zoarcales) based on Co-1 and Cyt-b mitochondrial genes. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 28:547-557. [PMID: 27159708 DOI: 10.3109/24701394.2016.1155117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The infraorder Zoarcales (Cottoidei), or eelpouts, includes about 400 species of coldwater fishes concentrated mainly in the North Pacific. To date, the molecular phylogenetic methods in combination with morphological data have significantly contributed to understanding the taxonomic composition of this group and made it possible to confirm/refute validity of some families of obscure origin. In spite of the growing amount of new data on taxonomy and evolution of eelpouts, a consideration of the original and independent data is obviously needed to verify the existing knowledge of this taxon. In this study, which is based on concatenated matrix of Co-1 and Cyt-b mitochondrial genes, as well as relying on the samples from seven families and 45 species of eelpouts, we have reconstructed the phylogeny, which is generally consistent with previous inferences. Despite the resolution of the original data matrix is low, we have demonstrated the monophyletic origin of the families Zoarcidae and Anarhichadidae, as well as Neozoarcidae, previously related to Stichaeidae and recently revised Eulophiidae. The polyphyletic patterns amongst some subfamilies in Stichaeidae have been confirmed, whereas Opisthocentrinae and Pholidae seem to constitute a valid family-level taxon. Our results provide new opportunities with respect to taxonomic relationships in the complex and diverse group of eelpouts , whose part in the tree of life is not covered by recently flourishing multilocus phylogeny of teleost fishes. In light of the data obtained, the necessity of more unified and reproducible approaches to resolve the issues of evolution and taxonomy of such a complex group as Zoarcales becomes more evident.
Collapse
Affiliation(s)
- S V Turanov
- a A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences , Vladivostok , Russia.,e Far Eastern State Technical Fisheries University , Vladivostok , Russia
| | - Yu Ph Kartavtsev
- a A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences , Vladivostok , Russia.,b Chair of Biodiversity and Marine Bioresources , Far Eastern Federal University , Vladivostok , Russia
| | - Y H Lee
- c Marine Ecosystem Research Division, Korea Institute of Ocean Science and Technology , Haean-Ro , Sangnok-Gu, Ansan , Republic of Korea.,d Department of Marine Biology , University of Science and Technology , Gajeong-Dong , Yuseong-Gu, Daejeon , Republic of Korea
| | - D Jeong
- c Marine Ecosystem Research Division, Korea Institute of Ocean Science and Technology , Haean-Ro , Sangnok-Gu, Ansan , Republic of Korea.,d Department of Marine Biology , University of Science and Technology , Gajeong-Dong , Yuseong-Gu, Daejeon , Republic of Korea
| |
Collapse
|
32
|
Cherobim AM, Lazzarotto H, Langeani F. A new species of the catfish Neoplecostomus (Loricariidae: Neoplecostominae) from a coastal drainage in southeastern Brazil. NEOTROPICAL ICHTHYOLOGY 2016. [DOI: 10.1590/1982-0224-20160015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT A new species of loricariid catfish is described from the rio Perequê-Açú and surrounding basins, Parati, Rio de Janeiro State. The new species has the accessory process of ceratobranchial 1 more slender than the main body of the ceratobranchial, and a very large sesamoid ossification, markedly greater in size than the interhyal. Additionally, the new species presents a distinct dorsal color pattern consisting of a conspicuous horseshoe shaped light blotch with a central dark area posterior to the supraoccipital.
Collapse
|
33
|
Arratia G. Complexities of Early Teleostei and the Evolution of Particular Morphological Structures through Time. COPEIA 2015. [DOI: 10.1643/cg-14-184] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Chen MY, Liang D, Zhang P. Selecting Question-Specific Genes to Reduce Incongruence in Phylogenomics: A Case Study of Jawed Vertebrate Backbone Phylogeny. Syst Biol 2015; 64:1104-20. [PMID: 26276158 DOI: 10.1093/sysbio/syv059] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/10/2015] [Indexed: 11/13/2022] Open
Abstract
Incongruence between different phylogenomic analyses is the main challenge faced by phylogeneticists in the genomic era. To reduce incongruence, phylogenomic studies normally adopt some data filtering approaches, such as reducing missing data or using slowly evolving genes, to improve the signal quality of data. Here, we assembled a phylogenomic data set of 58 jawed vertebrate taxa and 4682 genes to investigate the backbone phylogeny of jawed vertebrates under both concatenation and coalescent-based frameworks. To evaluate the efficiency of extracting phylogenetic signals among different data filtering methods, we chose six highly intractable internodes within the backbone phylogeny of jawed vertebrates as our test questions. We found that our phylogenomic data set exhibits substantial conflicting signal among genes for these questions. Our analyses showed that non-specific data sets that are generated without bias toward specific questions are not sufficient to produce consistent results when there are several difficult nodes within a phylogeny. Moreover, phylogenetic accuracy based on non-specific data is considerably influenced by the size of data and the choice of tree inference methods. To address such incongruences, we selected genes that resolve a given internode but not the entire phylogeny. Notably, not only can this strategy yield correct relationships for the question, but it also reduces inconsistency associated with data sizes and inference methods. Our study highlights the importance of gene selection in phylogenomic analyses, suggesting that simply using a large amount of data cannot guarantee correct results. Constructing question-specific data sets may be more powerful for resolving problematic nodes.
Collapse
Affiliation(s)
- Meng-Yun Chen
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Dan Liang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Peng Zhang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
35
|
Kusuma WE, Kumazawa Y. Complete mitochondrial genome sequences of two Indonesian rasboras (Rasbora aprotaenia and Rasbora lateristriata). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:4222-4223. [PMID: 26061337 DOI: 10.3109/19401736.2015.1022749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Complete mitochondrial genome sequences were determined for two Indonesian freshwater fishes, Rasbora aprotaenia and Rasbora lateristriata. These genomes are 16,541 bp and 16,539 bp in length, respectively and encode 37 genes in the typical vertebrate gene arrangement. Phylogenetic analyses supported a view that these species are very closely related to each other.
Collapse
Affiliation(s)
- Wahyu Endra Kusuma
- a Department of Information and Biological Sciences and Research Center for Biological Diversity , Graduate School of Natural Sciences, Nagoya City University , Nagoya , Japan and.,b Department of Aquaculture, Faculty of Fisheries and Marine Science , University of Brawijaya Indonesia
| | - Yoshinori Kumazawa
- a Department of Information and Biological Sciences and Research Center for Biological Diversity , Graduate School of Natural Sciences, Nagoya City University , Nagoya , Japan and
| |
Collapse
|
36
|
Shi W, Li DH, Kong XY. Gene rearrangements in the mitochondrial genome of Cynoglossus bilineatus (Pleuronectiformes: Cynoglossidae). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:2161-2. [PMID: 25423523 DOI: 10.3109/19401736.2014.982606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cynoglossus bilineatus (Cynoglossidae, Soleoidei) is characterized by both eyes on the left side of the body and with a rounded snout and a short rostral hook. Here we first report the mitogenome of this tongue sole, which is 16,454 bp in length, and gene rearrangements have been observed. Particularly, the tRNA-Gln gene encoded by the light strand (L-strand) has translocated to the heavy strand (H-strand), along with the tRNA-Ile gene shuffling. In addition, the putative control region has translocated downstream to a position between the ND1 and tRNA-Gln genes, leaving a 26-bp intergenic spacer in its original position. However, the arrangement of the rest genes is identical to that of the typical teleost. This result could contribute to a better understanding the molecular mechanisms of gene rearrangement in fish mitogenome as well as phylogenetic study of Cynoglossidae and Pleuronectiformes.
Collapse
Affiliation(s)
- Wei Shi
- a Key Laboratory of Tropical Marine Bio-resources and Ecology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou , China and
| | - Dong-He Li
- a Key Laboratory of Tropical Marine Bio-resources and Ecology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou , China and.,b University of Chinese Academy of Sciences , Beijing , China
| | - Xiao-Yu Kong
- a Key Laboratory of Tropical Marine Bio-resources and Ecology , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou , China and
| |
Collapse
|
37
|
Liu J, Bu C, Wipfler B, Liang A. Comparative analysis of the mitochondrial genomes of Callitettixini Spittlebugs (Hemiptera: Cercopidae) confirms the overall high evolutionary speed of the AT-rich region but reveals the presence of short conservative elements at the tribal level. PLoS One 2014; 9:e109140. [PMID: 25285442 PMCID: PMC4186805 DOI: 10.1371/journal.pone.0109140] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 09/09/2014] [Indexed: 11/30/2022] Open
Abstract
The present study compares the mitochondrial genomes of five species of the spittlebug tribe Callitettixini (Hemiptera: Cercopoidea: Cercopidae) from eastern Asia. All genomes of the five species sequenced are circular double-stranded DNA molecules and range from 15,222 to 15,637 bp in length. They contain 22 tRNA genes, 13 protein coding genes (PCGs) and 2 rRNA genes and share the putative ancestral gene arrangement of insects. The PCGs show an extreme bias of nucleotide and amino acid composition. Significant differences of the substitution rates among the different genes as well as the different codon position of each PCG are revealed by the comparative evolutionary analyses. The substitution speeds of the first and second codon position of different PCGs are negatively correlated with their GC content. Among the five species, the AT-rich region features great differences in length and pattern and generally shows a 2–5 times higher substitution rate than the fastest PCG in the mitochondrial genome, atp8. Despite the significant variability in length, short conservative segments were identified in the AT-rich region within Callitettixini, although absent from the other groups of the spittlebug superfamily Cercopoidea.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
- Graduate University of the Chinese Academy of Sciences, Shijingshan District, Beijing, P. R. China
| | - Cuiping Bu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, Jiangsu Province, P. R. China
| | - Benjamin Wipfler
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Aiping Liang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
38
|
Martin KJ, Holland PWH. Enigmatic orthology relationships between Hox clusters of the African butterfly fish and other teleosts following ancient whole-genome duplication. Mol Biol Evol 2014; 31:2592-611. [PMID: 24974377 PMCID: PMC4166920 DOI: 10.1093/molbev/msu202] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2014] [Indexed: 12/13/2022] Open
Abstract
Numerous ancient whole-genome duplications (WGD) have occurred during eukaryote evolution. In vertebrates, duplicated developmental genes and their functional divergence have had important consequences for morphological evolution. Although two vertebrate WGD events (1R/2R) occurred over 525 Ma, we have focused on the more recent 3R or TGD (teleost genome duplication) event which occurred approximately 350 Ma in a common ancestor of over 26,000 species of teleost fishes. Through a combination of whole genome and bacterial artificial chromosome clone sequencing we characterized all Hox gene clusters of Pantodon buchholzi, a member of the early branching teleost subdivision Osteoglossomorpha. We find 45 Hox genes organized in only five clusters indicating that Pantodon has suffered more Hox cluster loss than other known species. Despite strong evidence for homology of the five Pantodon clusters to the four canonical pre-TGD vertebrate clusters (one HoxA, two HoxB, one HoxC, and one HoxD), we were unable to confidently resolve 1:1 orthology relationships between four of the Pantodon clusters and the eight post-TGD clusters of other teleosts. Phylogenetic analysis revealed that many Pantodon genes segregate outside the conventional "a" and "b" post-TGD orthology groups, that extensive topological incongruence exists between genes physically linked on a single cluster, and that signal divergence causes ambivalence in assigning 1:1 orthology in concatenated Hox cluster analyses. Out of several possible explanations for this phenomenon we favor a model which keeps with the prevailing view of a single TGD prior to teleost radiation, but which also considers the timing of diploidization after duplication, relative to speciation events. We suggest that although the duplicated hoxa clusters diploidized prior to divergence of osteoglossomorphs, the duplicated hoxb, hoxc, and hoxd clusters concluded diploidization independently in osteoglossomorphs and other teleosts. We use the term "tetralogy" to describe the homology relationship which exists between duplicated sequences which originate through a shared WGD, but which diploidize into distinct paralogs from a common allelic pool independently in two lineages following speciation.
Collapse
Affiliation(s)
- Kyle J Martin
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
39
|
Characterization of the mitochondrial genome and phylogeny of the black arowana (Osteoglossum ferreirai). Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0426-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Mitochondrial genomic investigation of flatfish monophyly. Gene 2014; 551:176-82. [PMID: 25172210 DOI: 10.1016/j.gene.2014.08.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/11/2014] [Accepted: 08/26/2014] [Indexed: 11/21/2022]
Abstract
We present the first study to use whole mitochondrial genome sequences to examine phylogenetic affinities of the flatfishes (Pleuronectiformes). Flatfishes have attracted attention in evolutionary biology since the early history of the field because understanding the evolutionary history and patterns of diversification of the group will shed light on the evolution of novel body plans. Because recent molecular studies based primarily on DNA sequences from nuclear loci have yielded conflicting results, it is important to examine phylogenetic signal in different genomes and genome regions. We aligned and analyzed mitochondrial genome sequences from thirty-nine pleuronectiforms including nine that are newly reported here, and sixty-six non-pleuronectiforms (twenty additional clade L taxa [Carangimorpha or Carangimorpharia] and forty-six secondary outgroup taxa). The analyses yield strong support for clade L and weak support for the monophyly of Pleuronectiformes. The suborder Pleuronectoidei receives moderate support, and as with other molecular studies the putatively basal lineage of Pleuronectiformes, the Psettodoidei is frequently not most closely related to other pleuronectiforms. Within the Pleuronectoidei, the basal lineages in the group are poorly resolved, however several flatfish subclades receive consistent support. The affinities of Lepidoblepharon and Citharoides among pleuronectoids are particularly uncertain with these data.
Collapse
|
41
|
Geraghty PT, Williamson JE, Macbeth WG, Blower DC, Morgan JAT, Johnson G, Ovenden JR, Gillings MR. Genetic structure and diversity of two highly vulnerable carcharhinids in Australian waters. ENDANGER SPECIES RES 2014. [DOI: 10.3354/esr00580] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
42
|
Evolution of dimorphisms of the proteasome subunit beta type 8 gene (PSMB8) in basal ray-finned fish. Immunogenetics 2014; 66:325-34. [PMID: 24622793 DOI: 10.1007/s00251-014-0767-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
The proteasome subunit beta type 8 (PSMB8) gene encodes a catalytic subunit of immunoproteasome that plays a central role in the processing of antigenic peptides presented by major histocompatibility complex class I molecules. The A- and F-type alleles defined by the 31st amino acid residue determining cleaving specificity have been identified from ray-finned fish, amphibia, and reptiles. These two types show extremely long-term trans-species polymorphism in Polypteriformes, Cypriniformes, and Salmoniformes, suggesting the presence of very ancient lineages termed A and F. To elucidate the evolution of the PSMB8 dimorphism in basal ray-finned fish, we analyzed Pantodon buchholzi (Osteoglossiformes), seven species of Anguilliformes, and Hypomesus nipponensis (Osmeriformes). Both A and F lineage sequences were identified from P. buchholzi and H. nipponensis, confirming that these two lineages have been conserved by basal ray-finned fish. However, both the A- and F-type alleles found in Anguilliformes species belonged to the F lineage irrespective of their types. This apparently suggests that the A lineage was lost in the common ancestor of Anguilliformes, and recovery of the A type within the F lineage occurred in Anguilliformes. The apparent loss of the F lineage and recovery of the F type within the A lineage have already been reported from tetrapods and higher teleosts. However, this is the first report on the reverse situation and reveals the dynamic evolution of the PSMB8 dimorphism.
Collapse
|
43
|
Sallan LC. Major issues in the origins of ray-finned fish (Actinopterygii) biodiversity. Biol Rev Camb Philos Soc 2014; 89:950-71. [DOI: 10.1111/brv.12086] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 01/02/2014] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Lauren C. Sallan
- Department of Organismal Biology and Anatomy; University of Chicago; Chicago IL 60637 U.S.A
- Department of Ecology and Evolutionary Biology; University of Michigan; Ann Arbor MI 48109 U.S.A
- Michigan Society of Fellows; University of Michigan; Ann Arbor MI 48109 U.S.A
| |
Collapse
|
44
|
Li DH, Shi W, Gong L, Yang M, Kong XY. The complete mitochondrial genome ofParaplagusia blochii(Pleuronectiformes: Cynoglossidae). ACTA ACUST UNITED AC 2014; 27:92-3. [DOI: 10.3109/19401736.2013.873918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Chen JN, López JA, Lavoué S, Miya M, Chen WJ. Phylogeny of the Elopomorpha (Teleostei): Evidence from six nuclear and mitochondrial markers. Mol Phylogenet Evol 2014; 70:152-61. [DOI: 10.1016/j.ympev.2013.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/04/2013] [Indexed: 12/15/2022]
|
46
|
Mu XD, Yang YX, Liu Y, Song HM, Luo JR, Hu YC. Complete mitochondrial genome of northern spotted barramundi, Scleropages jardinii. MITOCHONDRIAL DNA 2013; 26:698-9. [PMID: 24325672 DOI: 10.3109/19401736.2013.843080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We sequenced the complete mitogenome of northern spotted barramundi Scleropages jardinii, an ancestral bonytongue with economic and conservation value. The mitogenome is 16,670 bp in length with an A + T content of 52.9%, and contains 13 protein-coding genes, 2rRNAs, 22 tRNAs and a control region. The gene order and arrangement is similar to that of other Osteoglossidae species, as is base composition and codon usage. These data will provide useful molecular information for phylogenetic relationships within the family Osteoglossidae species.
Collapse
Affiliation(s)
- Xi-Dong Mu
- a Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation , Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture , Guangzhou , China
| | - Ye-Xin Yang
- a Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation , Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture , Guangzhou , China
| | - Yi Liu
- a Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation , Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture , Guangzhou , China
| | - Hong-Mei Song
- a Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation , Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture , Guangzhou , China
| | - Jian-Ren Luo
- a Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation , Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture , Guangzhou , China
| | - Yin-Chang Hu
- a Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation , Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture , Guangzhou , China
| |
Collapse
|
47
|
Geraghty PT, Williamson JE, Macbeth WG, Wintner SP, Harry AV, Ovenden JR, Gillings MR. Population expansion and genetic structure in Carcharhinus brevipinna in the southern Indo-Pacific. PLoS One 2013; 8:e75169. [PMID: 24086462 PMCID: PMC3783459 DOI: 10.1371/journal.pone.0075169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/12/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Quantifying genetic diversity and metapopulation structure provides insights into the evolutionary history of a species and helps develop appropriate management strategies. We provide the first assessment of genetic structure in spinner sharks (Carcharhinus brevipinna), a large cosmopolitan carcharhinid, sampled from eastern and northern Australia and South Africa. METHODS AND FINDINGS Sequencing of the mitochondrial DNA NADH dehydrogenase subunit 4 gene for 430 individuals revealed 37 haplotypes and moderately high haplotype diversity (h = 0.6770 ±0.025). While two metrics of genetic divergence (ΦST and F ST) revealed somewhat different results, subdivision was detected between South Africa and all Australian locations (pairwise ΦST, range 0.02717-0.03508, p values ≤ 0.0013; pairwise F ST South Africa vs New South Wales = 0.04056, p = 0.0008). Evidence for fine-scale genetic structuring was also detected along Australia's east coast (pairwise ΦST = 0.01328, p < 0.015), and between south-eastern and northern locations (pairwise ΦST = 0.00669, p < 0.04). CONCLUSIONS The Indian Ocean represents a robust barrier to contemporary gene flow in C. brevipinna between Australia and South Africa. Gene flow also appears restricted along a continuous continental margin in this species, with data tentatively suggesting the delineation of two management units within Australian waters. Further sampling, however, is required for a more robust evaluation of the latter finding. Evidence indicates that all sampled populations were shaped by a substantial demographic expansion event, with the resultant high genetic diversity being cause for optimism when considering conservation of this commercially-targeted species in the southern Indo-Pacific.
Collapse
Affiliation(s)
- Pascal T. Geraghty
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
- Cronulla Fisheries Research Centre of Excellence, New South Wales Department of Primary Industries, Sydney, New South Wales, Australia
| | - Jane E. Williamson
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - William G. Macbeth
- Cronulla Fisheries Research Centre of Excellence, New South Wales Department of Primary Industries, Sydney, New South Wales, Australia
| | - Sabine P. Wintner
- KwaZulu-Natal Sharks Board, Umhlanga Rocks, KwaZulu-Natal, South Africa
| | - Alastair V. Harry
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia
| | - Jennifer R. Ovenden
- Molecular Fisheries Laboratory, the University of Queensland, St. Lucia, Queensland, Australia
| | - Michael R. Gillings
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
48
|
Betancur-R R, Broughton RE, Wiley EO, Carpenter K, López JA, Li C, Holcroft NI, Arcila D, Sanciangco M, Cureton Ii JC, Zhang F, Buser T, Campbell MA, Ballesteros JA, Roa-Varon A, Willis S, Borden WC, Rowley T, Reneau PC, Hough DJ, Lu G, Grande T, Arratia G, Ortí G. The tree of life and a new classification of bony fishes. PLOS CURRENTS 2013; 5:ecurrents.tol.53ba26640df0ccaee75bb165c8c26288. [PMID: 23653398 PMCID: PMC3644299 DOI: 10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The tree of life of fishes is in a state of flux because we still lack a comprehensive phylogeny that includes all major groups. The situation is most critical for a large clade of spiny-finned fishes, traditionally referred to as percomorphs, whose uncertain relationships have plagued ichthyologists for over a century. Most of what we know about the higher-level relationships among fish lineages has been based on morphology, but rapid influx of molecular studies is changing many established systematic concepts. We report a comprehensive molecular phylogeny for bony fishes that includes representatives of all major lineages. DNA sequence data for 21 molecular markers (one mitochondrial and 20 nuclear genes) were collected for 1410 bony fish taxa, plus four tetrapod species and two chondrichthyan outgroups (total 1416 terminals). Bony fish diversity is represented by 1093 genera, 369 families, and all traditionally recognized orders. The maximum likelihood tree provides unprecedented resolution and high bootstrap support for most backbone nodes, defining for the first time a global phylogeny of fishes. The general structure of the tree is in agreement with expectations from previous morphological and molecular studies, but significant new clades arise. Most interestingly, the high degree of uncertainty among percomorphs is now resolved into nine well-supported supraordinal groups. The order Perciformes, considered by many a polyphyletic taxonomic waste basket, is defined for the first time as a monophyletic group in the global phylogeny. A new classification that reflects our phylogenetic hypothesis is proposed to facilitate communication about the newly found structure of the tree of life of fishes. Finally, the molecular phylogeny is calibrated using 60 fossil constraints to produce a comprehensive time tree. The new time-calibrated phylogeny will provide the basis for and stimulate new comparative studies to better understand the evolution of the amazing diversity of fishes.
Collapse
|
49
|
Abstract
The tree of life of fishes is in a state of flux because we still lack a comprehensive phylogeny that includes all major groups. The situation is most critical for a large clade of spiny-finned fishes, traditionally referred to as percomorphs, whose uncertain relationships have plagued ichthyologists for over a century. Most of what we know about the higher-level relationships among fish lineages has been based on morphology, but rapid influx of molecular studies is changing many established systematic concepts. We report a comprehensive molecular phylogeny for bony fishes that includes representatives of all major lineages. DNA sequence data for 21 molecular markers (one mitochondrial and 20 nuclear genes) were collected for 1410 bony fish taxa, plus four tetrapod species and two chondrichthyan outgroups (total 1416 terminals). Bony fish diversity is represented by 1093 genera, 369 families, and all traditionally recognized orders. The maximum likelihood tree provides unprecedented resolution and high bootstrap support for most backbone nodes, defining for the first time a global phylogeny of fishes. The general structure of the tree is in agreement with expectations from previous morphological and molecular studies, but significant new clades arise. Most interestingly, the high degree of uncertainty among percomorphs is now resolved into nine well-supported supraordinal groups. The order Perciformes, considered by many a polyphyletic taxonomic waste basket, is defined for the first time as a monophyletic group in the global phylogeny. A new classification that reflects our phylogenetic hypothesis is proposed to facilitate communication about the newly found structure of the tree of life of fishes. Finally, the molecular phylogeny is calibrated using 60 fossil constraints to produce a comprehensive time tree. The new time-calibrated phylogeny will provide the basis for and stimulate new comparative studies to better understand the evolution of the amazing diversity of fishes.
Collapse
|
50
|
Broughton RE, Betancur-R R, Li C, Arratia G, Ortí G. Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution. PLOS CURRENTS 2013; 5:ecurrents.tol.2ca8041495ffafd0c92756e75247483e. [PMID: 23788273 PMCID: PMC3682800 DOI: 10.1371/currents.tol.2ca8041495ffafd0c92756e75247483e] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Over half of all vertebrates are "fishes", which exhibit enormous diversity in morphology, physiology, behavior, reproductive biology, and ecology. Investigation of fundamental areas of vertebrate biology depend critically on a robust phylogeny of fishes, yet evolutionary relationships among the major actinopterygian and sarcopterygian lineages have not been conclusively resolved. Although a consensus phylogeny of teleosts has been emerging recently, it has been based on analyses of various subsets of actinopterygian taxa, but not on a full sample of all bony fishes. Here we conducted a comprehensive phylogenetic study on a broad taxonomic sample of 61 actinopterygian and sarcopterygian lineages (with a chondrichthyan outgroup) using a molecular data set of 21 independent loci. These data yielded a resolved phylogenetic hypothesis for extant Osteichthyes, including 1) reciprocally monophyletic Sarcopterygii and Actinopterygii, as currently understood, with polypteriforms as the first diverging lineage within Actinopterygii; 2) a monophyletic group containing gars and bowfin (= Holostei) as sister group to teleosts; and 3) the earliest diverging lineage among teleosts being Elopomorpha, rather than Osteoglossomorpha. Relaxed-clock dating analysis employing a set of 24 newly applied fossil calibrations reveals divergence times that are more consistent with paleontological estimates than previous studies. Establishing a new phylogenetic pattern with accurate divergence dates for bony fishes illustrates several areas where the fossil record is incomplete and provides critical new insights on diversification of this important vertebrate group.
Collapse
|