1
|
Mandáková T, Krumpolcová A, Matyášek R, Volkov R, Lysak MA, Kovařík A. Uniparental silencing of 5S rRNA genes in plant allopolyploids - insights from Cardamine (Brassicaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38838061 DOI: 10.1111/tpj.16850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
While the phenomenon of uniparental silencing of 35S rDNA in interspecific hybrids and allopolyploids is well documented, there is a notable absence of information regarding whether such silencing extends to the 5S RNA component of ribosomes. To address this gap in knowledge, we analyzed the 5S and 35S rDNA expression in Cardamine (Brassicaceae) allopolyploids, namely C. × insueta (2n = 3x = 24, genome composition RRA), C. flexuosa (2n = 4x = 32, AAHH), and C. scutata (2n = 4x = 32, PPAA) which share a common diploid ancestor (AA). We employed high-throughput sequencing of transcriptomes and genomes and phylogenetic analyses of 5S rRNA variants. The genomic organization of rDNA was further scrutinized through clustering and fluorescence in situ hybridization. In the C. × insueta allotriploid, we observed uniparental dominant expression of 5S and 35S rDNA loci. In the C. flexuosa and C. scutata allotetraploids, the expression pattern differed, with the 35S rDNA being expressed from the A subgenome, whereas the 5S rDNA was expressed from the partner subgenome. Both C. flexuosa and C. scutata but not C. × insueta showed copy and locus number changes. We conclude that in stabilized allopolyploids, transcription of ribosomal RNA components occurs from different subgenomes. This phenomenon appears to result in the formation of chimeric ribosomes comprising rRNA molecules derived from distinct parental origins. We speculate that the interplay of epigenetic silencing and rDNA rearrangements introduces an additional layer of variation in multimolecule ribosomal complexes, potentially contributing to the evolutionary success of allopolyploids.
Collapse
Affiliation(s)
- Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| | - Alice Krumpolcová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 00, Brno, Czech Republic
| | - Roman Matyášek
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 00, Brno, Czech Republic
| | - Roman Volkov
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, 58012, Chernivtsi, Ukraine
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 625 00, Brno, Czech Republic
| | - Ales Kovařík
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 00, Brno, Czech Republic
| |
Collapse
|
2
|
Luo X, Liu Y, Gong X, Ye M, Xiao Q, Zeng Z. Karyotype Description and Comparative Chromosomal Mapping of 5S rDNA in 42 Species. Genes (Basel) 2024; 15:647. [PMID: 38790276 PMCID: PMC11121585 DOI: 10.3390/genes15050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
This study was conducted to evaluate the 5S rDNA site number, position, and origin of signal pattern diversity in 42 plant species using fluorescence in situ hybridization. The species were selected based on the discovery of karyotype rearrangement, or because 5S rDNA had not yet been explored the species. The chromosome number varied from 14 to 160, and the chromosome length ranged from 0.63 to 6.88 μm, with 21 species having small chromosomes (<3 μm). The chromosome numbers of three species and the 5S rDNA loci of nineteen species are reported for the first time. Six 5S rDNA signal pattern types were identified. The 5S rDNA varied and was abundant in signal site numbers (2-18), positions (distal, proximal, outside of chromosome arms), and even in signal intensity. Variation in the numbers and locations of 5S rDNA was observed in 20 species, whereas an extensive stable number and location of 5S rDNA was found in 22 species. The potential origin of the signal pattern diversity was proposed and discussed. These data characterized the variability of 5S rDNA within the karyotypes of the 42 species that exhibited chromosomal rearrangements and provided anchor points for genetic physical maps.
Collapse
Affiliation(s)
- Xiaomei Luo
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (X.G.); (M.Y.)
| | - Yunke Liu
- Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China; (Y.L.); (Q.X.); (Z.Z.)
| | - Xiao Gong
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (X.G.); (M.Y.)
| | - Meng Ye
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (X.G.); (M.Y.)
| | - Qiangang Xiao
- Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China; (Y.L.); (Q.X.); (Z.Z.)
| | - Zhen Zeng
- Chengdu Academy of Agriculture and Forestry Sciences, Nongke Road 200, Wenjiang District, Chengdu 611130, China; (Y.L.); (Q.X.); (Z.Z.)
| |
Collapse
|
3
|
Garcia S, Pascual-Díaz JP, Krumpolcová A, Kovarík A. Analysis of 5S rDNA Genomic Organization Through the RepeatExplorer2 Pipeline: A Simplified Protocol. Methods Mol Biol 2023; 2672:501-512. [PMID: 37335496 DOI: 10.1007/978-1-0716-3226-0_30] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The ribosomal RNA genes (rDNA) are universal genome components with a housekeeping function, given the crucial role of ribosomal RNA in the synthesis of ribosomes and thus for life-on-Earth. Therefore, their genomic organization is of considerable interest for biologists, in general. Ribosomal RNA genes have also been largely used to establish phylogenetic relationships, and to identify allopolyploid or homoploid hybridization.Here, we demonstrate how high-throughput sequencing data, through graph clustering implemented in RepeatExplorer2 pipeline ( https://repeatexplorer-elixir.cerit-sc.cz/galaxy/ ), can be helpful to decipher the genomic organization of 5S rRNA genes. We show that the linear shapes of cluster graphs are reminiscent to the linked organization of 5S and 35S rDNA (L-type arrangement) while the circular graphs correspond to their separate arrangement (S-type). We further present a simplified protocol based on the paper by (Garcia et al., Front Plant Sci 11:41, 2020) about the use of graph clustering of 5S rDNA homoeologs (S-type) to identify hybridization events in the species history. We found that the graph complexity (i.e., graph circularity in this case) is related to ploidy and genome complexity, with diploids typically showing circular-shaped graphs while allopolyploids and other interspecific hybrids display more complex graphs, with usually two or more interconnected loops representing intergenic spacers. When a three-genomic comparative clustering analysis from a given hybrid (homoploid/allopolyploid) and its putative progenitor species (diploids) is performed, it is possible to identify the corresponding homoeologous 5S rRNA gene families, and to elucidate the contribution of each putative parental genome to the 5S rDNA pool of the hybrid. Thus, the analysis of 5S rDNA cluster graphs by RepeatExplorer, together with information coming from other sources (e.g., morphology, cytogenetics) is a complementary approach for the determination of allopolyploid or homoploid hybridization and even ancient introgression events.
Collapse
Affiliation(s)
- Sònia Garcia
- Institut Botànic de Barcelona (CSIC - Ajuntament de Barcelona), Barcelona, Spain
| | | | - Alice Krumpolcová
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ales Kovarík
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| |
Collapse
|
4
|
Tynkevich YO, Shelyfist AY, Kozub LV, Hemleben V, Panchuk II, Volkov RA. 5S Ribosomal DNA of Genus Solanum: Molecular Organization, Evolution, and Taxonomy. FRONTIERS IN PLANT SCIENCE 2022; 13:852406. [PMID: 35498650 PMCID: PMC9043955 DOI: 10.3389/fpls.2022.852406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The Solanum genus, being one of the largest among high plants, is distributed worldwide and comprises about 1,200 species. The genus includes numerous agronomically important species such as Solanum tuberosum (potato), Solanum lycopersicum (tomato), and Solanum melongena (eggplant) as well as medical and ornamental plants. The huge Solanum genus is a convenient model for research in the field of molecular evolution and structural and functional genomics. Clear knowledge of evolutionary relationships in the Solanum genus is required to increase the effectiveness of breeding programs, but the phylogeny of the genus is still not fully understood. The rapidly evolving intergenic spacer region (IGS) of 5S rDNA has been successfully used for inferring interspecific relationships in several groups of angiosperms. Here, combining cloning and sequencing with bioinformatic analysis of genomic data available in the SRA database, we evaluate the molecular organization and diversity of IGS for 184 accessions, representing 137 species of the Solanum genus. It was found that the main mechanisms of IGS molecular evolution was step-wise accumulation of single base substitution or short indels, and that long indels and multiple base substitutions, which arose repeatedly during evolution, were mostly not conserved and eliminated. The reason for this negative selection seems to be association between indels/multiple base substitutions and pseudogenization of 5S rDNA. Comparison of IGS sequences allowed us to reconstruct the phylogeny of the Solanum genus. The obtained dendrograms are mainly congruent with published data: same major and minor clades were found. However, relationships between these clades and position of some species (S. cochoae, S. clivorum, S. macrocarpon, and S. spirale) were different from those of previous results and require further clarification. Our results show that 5S IGS represents a convenient molecular marker for phylogenetic studies on the Solanum genus. In particular, the simultaneous presence of several structural variants of rDNA in the genome enables the detection of reticular evolution, especially in the largest and economically most important sect. Petota. The origin of several polyploid species should be reconsidered.
Collapse
Affiliation(s)
- Yurij O. Tynkevich
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
| | - Antonina Y. Shelyfist
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
| | - Liudmyla V. Kozub
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
| | - Vera Hemleben
- Center of Plant Molecular Biology (ZMBP), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Irina I. Panchuk
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
- Center of Plant Molecular Biology (ZMBP), Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Roman A. Volkov
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
| |
Collapse
|
5
|
Hemleben V, Grierson D, Borisjuk N, Volkov RA, Kovarik A. Personal Perspectives on Plant Ribosomal RNA Genes Research: From Precursor-rRNA to Molecular Evolution. FRONTIERS IN PLANT SCIENCE 2021; 12:797348. [PMID: 34992624 PMCID: PMC8724763 DOI: 10.3389/fpls.2021.797348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
The history of rDNA research started almost 90 years ago when the geneticist, Barbara McClintock observed that in interphase nuclei of maize the nucleolus was formed in association with a specific region normally located near the end of a chromosome, which she called the nucleolar organizer region (NOR). Cytologists in the twentieth century recognized the nucleolus as a common structure in all eukaryotic cells, using both light and electron microscopy and biochemical and genetic studies identified ribosomes as the subcellular sites of protein synthesis. In the mid- to late 1960s, the synthesis of nuclear-encoded rRNA was the only system in multicellular organisms where transcripts of known function could be isolated, and their synthesis and processing could be studied. Cytogenetic observations of NOR regions with altered structure in plant interspecific hybrids and detailed knowledge of structure and function of rDNA were prerequisites for studies of nucleolar dominance, epistatic interactions of rDNA loci, and epigenetic silencing. In this article, we focus on the early rDNA research in plants, performed mainly at the dawn of molecular biology in the 60 to 80-ties of the last century which presented a prequel to the modern genomic era. We discuss - from a personal view - the topics such as synthesis of rRNA precursor (35S pre-rRNA in plants), processing, and the organization of 35S and 5S rDNA. Cloning and sequencing led to the observation that the transcribed and processed regions of the rRNA genes vary enormously, even between populations and species, in comparison with the more conserved regions coding for the mature rRNAs. Epigenetic phenomena and the impact of hybridization and allopolyploidy on rDNA expression and homogenization are discussed. This historical view of scientific progress and achievements sets the scene for the other articles highlighting the immense progress in rDNA research published in this special issue of Frontiers in Plant Science on "Molecular organization, evolution, and function of ribosomal DNA."
Collapse
Affiliation(s)
- Vera Hemleben
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Donald Grierson
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Nikolai Borisjuk
- School of Life Sciences, Huaiyin Normal University, Huai'an, China
| | - Roman A. Volkov
- Department of Molecular Genetics and Biotechnology, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
| | - Ales Kovarik
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| |
Collapse
|
6
|
González ML, Chiapella JO, Urdampilleta JD. The Antarctic and South American species of Deschampsia: phylogenetic relationships and cytogenetic differentiation. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2020.1860151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- María Laura González
- Instituto Multidisciplinario de Biologıa Vegetal (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cordoba), C.C. 495, Cordoba, Argentina
| | - Jorge O. Chiapella
- Instituto de Investigaciones en Biodiversidad y Medioambiente (Consejo Nacional de Investigaciones Científicas y Técnicas – Universidad Nacional del Comahue), Quintral 1250, 8400 Bariloche, Río Negro, Argentina
| | - Juan Domingo Urdampilleta
- Instituto Multidisciplinario de Biologıa Vegetal (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cordoba), C.C. 495, Cordoba, Argentina
| |
Collapse
|
7
|
Chen G, Stepanenko A, Borisjuk N. Mosaic Arrangement of the 5S rDNA in the Aquatic Plant Landoltia punctata (Lemnaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:678689. [PMID: 34249048 PMCID: PMC8264772 DOI: 10.3389/fpls.2021.678689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Duckweeds are a group of monocotyledonous aquatic plants in the Araceae superfamily, represented by 37 species divided into five genera. Duckweeds are the fastest growing flowering plants and are distributed around the globe; moreover, these plants have multiple applications, including biomass production, wastewater remediation, and making pharmaceutical proteins. Dotted duckweed (Landoltia punctata), the sole species in genus Landoltia, is one of the most resilient duckweed species. The ribosomal DNA (rDNA) encodes the RNA components of ribosomes and represents a significant part of plant genomes but has not been comprehensively studied in duckweeds. Here, we characterized the 5S rDNA genes in L. punctata by cloning and sequencing 25 PCR fragments containing the 5S rDNA repeats. No length variation was detected in the 5S rDNA gene sequence, whereas the nontranscribed spacer (NTS) varied from 151 to 524 bp. The NTS variants were grouped into two major classes, which differed both in nucleotide sequence and the type and arrangement of the spacer subrepeats. The dominant class I NTS, with a characteristic 12-bp TC-rich sequence present in 3-18 copies, was classified into four subclasses, whereas the minor class II NTS, with shorter, 9-bp nucleotide repeats, was represented by two identical sequences. In addition to these diverse subrepeats, class I and class II NTSs differed in their representation of cis-elements and the patterns of predicted G-quadruplex structures, which may influence the transcription of the 5S rDNA. Similar to related duckweed species in the genus Spirodela, L. punctata has a relatively low rDNA copy number, but in contrast to Spirodela and the majority of other plants, the arrangement of the 5S rDNA units demonstrated an unusual, heterogeneous pattern in L. punctata, as revealed by analyzing clones containing double 5S rDNA neighboring units. Our findings may further stimulate the research on the evolution of the plant rDNA and discussion of the molecular forces driving homogenization of rDNA repeats in concerted evolution.
Collapse
Affiliation(s)
- Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
8
|
Jiang W, Jiang C, Yuan W, Zhang M, Fang Z, Li Y, Li G, Jia J, Yang Z. A universal karyotypic system for hexaploid and diploid Avena species brings oat cytogenetics into the genomics era. BMC PLANT BIOLOGY 2021; 21:213. [PMID: 33980176 PMCID: PMC8114715 DOI: 10.1186/s12870-021-02999-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/28/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND The identification of chromosomes among Avena species have been studied by C-banding and in situ hybridization. However, the complicated results from several cytogenetic nomenclatures for identifying oat chromosomes are often contradictory. A universal karyotyping nomenclature system for precise chromosome identification and comparative evolutionary studies would be essential for genus Avena based on the recently released genome sequences of hexaploid and diploid Avena species. RESULTS Tandem repetitive sequences were predicted and physically located on chromosomal regions of the released Avena sativa OT3098 genome assembly v1. Eight new oligonucleotide (oligo) probes for sequential fluorescence in situ hybridization (FISH) were designed and then applied for chromosome karyotyping on mitotic metaphase spreads of A. brevis, A. nuda, A. wiestii, A. ventricosa, A. fatua, and A. sativa species. We established a high-resolution standard karyotype of A. sativa based on the distinct FISH signals of multiple oligo probes. FISH painting with bulked oligos, based on wheat-barley collinear regions, was used to validate the linkage group assignment for individual A. sativa chromosomes. We integrated our new Oligo-FISH based karyotype system with earlier karyotype nomenclatures through sequential C-banding and FISH methods, then subsequently determined the precise breakage points of some chromosome translocations in A. sativa. CONCLUSIONS This new universal chromosome identification system will be a powerful tool for describing the genetic diversity, chromosomal rearrangements and evolutionary relationships among Avena species by comparative cytogenetic and genomic approaches.
Collapse
Affiliation(s)
- Wenxi Jiang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Chengzhi Jiang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Weiguang Yuan
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Meijun Zhang
- College of Agronomy, Shanxi Agricultural University, 030801, Taigu, China
| | - Zijie Fang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Yang Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Guangrong Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China
| | - Juqing Jia
- College of Agronomy, Shanxi Agricultural University, 030801, Taigu, China.
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China.
| |
Collapse
|
9
|
Ishchenko OO, Bednarska IO, Panchuk ІІ. Application of 5S Ribosomal DNA for Molecular Taxonomy of Subtribe Loliinae (Poaceae). CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721010096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Ishchenko OO, Mel’nyk VM, Parnikoza ІY, Budzhak VV, Panchuk ІІ, Kunakh VA, Volkov RA. Molecular Organization of 5S Ribosomal DNA and Taxonomic Status of Avenella flexuosa (L.) Drejer (Poaceae). CYTOL GENET+ 2021. [DOI: 10.3103/s0095452720060055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Garcia S, Wendel JF, Borowska-Zuchowska N, Aïnouche M, Kuderova A, Kovarik A. The Utility of Graph Clustering of 5S Ribosomal DNA Homoeologs in Plant Allopolyploids, Homoploid Hybrids, and Cryptic Introgressants. FRONTIERS IN PLANT SCIENCE 2020; 11:41. [PMID: 32117380 PMCID: PMC7025596 DOI: 10.3389/fpls.2020.00041] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/13/2020] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Ribosomal DNA (rDNA) loci have been widely used for identification of allopolyploids and hybrids, although few of these studies employed high-throughput sequencing data. Here we use graph clustering implemented in the RepeatExplorer (RE) pipeline to analyze homoeologous 5S rDNA arrays at the genomic level searching for hybridogenic origin of species. Data were obtained from more than 80 plant species, including several well-defined allopolyploids and homoploid hybrids of different evolutionary ages and from widely dispersed taxonomic groups. RESULTS (i) Diploids show simple circular-shaped graphs of their 5S rDNA clusters. In contrast, most allopolyploids and other interspecific hybrids exhibit more complex graphs composed of two or more interconnected loops representing intergenic spacers (IGS). (ii) There was a relationship between graph complexity and locus numbers. (iii) The sequences and lengths of the 5S rDNA units reconstituted in silico from k-mers were congruent with those experimentally determined. (iv) Three-genomic comparative cluster analysis of reads from allopolyploids and progenitor diploids allowed identification of homoeologous 5S rRNA gene families even in relatively ancient (c. 1 Myr) Gossypium and Brachypodium allopolyploids which already exhibit uniparental partial loss of rDNA repeats. (v) Finally, species harboring introgressed genomes exhibit exceptionally complex graph structures. CONCLUSION We found that the cluster graph shapes and graph parameters (k-mer coverage scores and connected component index) well-reflect the organization and intragenomic homogeneity of 5S rDNA repeats. We propose that the analysis of 5S rDNA cluster graphs computed by the RE pipeline together with the cytogenetic analysis might be a reliable approach for the determination of the hybrid or allopolyploid plant species parentage and may also be useful for detecting historical introgression events.
Collapse
Affiliation(s)
- Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC - Ajuntament de Barcelona), Barcelona, Spain
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Jonathan F. Wendel
- Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, IA, United States
| | - Natalia Borowska-Zuchowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Malika Aïnouche
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, Rennes, France
| | - Alena Kuderova
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Ales Kovarik
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| |
Collapse
|
12
|
Wang W, Wan T, Becher H, Kuderova A, Leitch IJ, Garcia S, Leitch AR, Kovařík A. Remarkable variation of ribosomal DNA organization and copy number in gnetophytes, a distinct lineage of gymnosperms. ANNALS OF BOTANY 2019; 123:767-781. [PMID: 30265284 PMCID: PMC6526317 DOI: 10.1093/aob/mcy172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/04/2018] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Gnetophytes, comprising the genera Ephedra, Gnetum and Welwitschia, are an understudied, enigmatic lineage of gymnosperms with a controversial phylogenetic relationship to other seed plants. Here we examined the organization of ribosomal DNA (rDNA) across representative species. METHODS We applied high-throughput sequencing approaches to isolate and reconstruct rDNA units and to determine their intragenomic homogeneity. In addition, fluorescent in situ hybridization and Southern blot hybridization techniques were used to reveal the chromosome and genomic organization of rDNA. KEY RESULTS The 5S and 35S rRNA genes were separate (S-type) in Gnetum montanum, Gnetum gnemon and Welwitschia mirabilis and linked (L-type) in Ephedra altissima. There was considerable variability in 5S rDNA abundance, ranging from as few as ~4000 (W. mirabilis) to >100 000 (G. montanum) copies. A similar large variation was also observed in 5S rDNA locus numbers (two to 16 sites per diploid cell). 5S rRNA pseudogenes were interspersed between functional genes forming a single unit in E. altissima and G. montanum. Their copy number was comparable or even higher than that of functional 5S rRNA genes. In E. altissima internal transcribed spacers of 35S rDNA were long and intrinsically repetitive while in G. montanum and W. mirabilis they were short without the subrepeats. CONCLUSIONS Gnetophytes are distinct from other gymnosperms and angiosperms as they display surprisingly large variability in rDNA organization and rDNA copy and locus numbers between genera, with no relationship between copy numbers and genome sizes apparent. Concerted evolution of 5S rDNA units seems to have led to the amplification of 5S pseudogenes in both G. montanum and E. altissima. Evolutionary patterns of rDNA show both gymnosperm and angiosperm features underlining the diversity of the group.
Collapse
Affiliation(s)
- Wencai Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Tao Wan
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzen, PR China
- Sino-Africa Joint Research Center, Chinese Academy of Science, Wuhan, PR China
| | - Hannes Becher
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Alena Kuderova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Ilia J Leitch
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, UK
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, Parc de Montjuïc, Barcelona, Catalonia, Spain
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- For correspondence. E-mail
| |
Collapse
|
13
|
Ishchenko OO, Panchuk ІІ, Andreev ІO, Kunakh VA, Volkov RA. Molecular Organization of 5S Ribosomal DNА of Deschapmpsia antarctica. CYTOL GENET+ 2018. [DOI: 10.3103/s0095452718060105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Saarela JM, Bull RD, Paradis MJ, Ebata SN, Paul M. Peterson, Soreng RJ, Paszko B. Molecular phylogenetics of cool-season grasses in the subtribes Agrostidinae, Anthoxanthinae, Aveninae, Brizinae, Calothecinae, Koeleriinae and Phalaridinae (Poaceae, Pooideae, Poeae, Poeae chloroplast group 1). PHYTOKEYS 2017; 87:1-139. [PMID: 29114171 PMCID: PMC5672130 DOI: 10.3897/phytokeys.87.12774] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/04/2017] [Indexed: 08/22/2023]
Abstract
Circumscriptions of and relationships among many genera and suprageneric taxa of the diverse grass tribe Poeae remain controversial. In an attempt to clarify these, we conducted phylogenetic analyses of >2400 new DNA sequences from two nuclear ribosomal regions (ITS, including internal transcribed spacers 1 and 2 and the 5.8S gene, and the 3'-end of the external transcribed spacer (ETS)) and five plastid regions (matK, trnL-trnF, atpF-atpH, psbK-psbI, psbA-rps19-trnH), and of more than 1000 new and previously published ITS sequences, focused particularly on Poeae chloroplast group 1 and including broad and increased species sampling compared to previous studies. Deep branches in the combined plastid and combined ITS+ETS trees are generally well resolved, the trees are congruent in most aspects, branch support across the trees is stronger than in trees based on only ITS and fewer plastid regions, and there is evidence of conflict between data partitions in some taxa. In plastid trees, a strongly supported clade corresponds to Poeae chloroplast group 1 and includes Agrostidinae p.p., Anthoxanthinae, Aveninae s.str., Brizinae, Koeleriinae (sometimes included in Aveninae s.l.), Phalaridinae and Torreyochloinae. In the ITS+ETS tree, a supported clade includes these same tribes as well as Sesleriinae and Scolochloinae. Aveninae s.str. and Sesleriinae are sister taxa and form a clade with Koeleriinae in the ITS+ETS tree whereas Aveninae s.str. and Koeleriinae form a clade and Sesleriinae is part of Poeae chloroplast group 2 in the plastid tree. All species of Trisetum are part of Koeleriinae, but the genus is polyphyletic. Koeleriinae is divided into two major subclades: one comprises Avellinia, Gaudinia, Koeleria, Rostraria, Trisetaria and Trisetum subg. Trisetum, and the other Calamagrostis/Deyeuxia p.p. (multiple species from Mexico to South America), Peyritschia, Leptophyllochloa, Sphenopholis, Trisetopsis and Trisetum subg. Deschampsioidea. Graphephorum, Trisetum cernuum, T. irazuense and T. macbridei fall in different clades of Koeleriinae in plastid vs. nuclear ribosomal trees, and are likely of hybrid origin. ITS and matK trees identify a third lineage of Koeleriinae corresponding to Trisetum subsect. Sibirica, and affinities of Lagurus ovatus with respect to Aveninae s.str. and Koeleriinae are incongruent in nuclear ribosomal and plastid trees, supporting recognition of Lagurus in its own subtribe. A large clade comprises taxa of Agrostidinae, Brizinae and Calothecinae, but neither Agrostidinae nor Calothecinae are monophyletic as currently circumscribed and affinities of Brizinae differ in plastid and nuclear ribosomal trees. Within this clade, one newly identified lineage comprises Calamagrostis coarctata, Dichelachne, Echinopogon (Agrostidinae p.p.) and Relchela (Calothecinae p.p.), and another comprises Chascolytrum (Calothecinae p.p.) and Deyeuxia effusa (Agrostidinae p.p.). Within Agrostidinae p.p., the type species of Deyeuxia and Calamagrostis s.str. are closely related, supporting classification of Deyeuxia as a synonym of Calamagrostis s.str. Furthermore, the two species of Ammophila are not sister taxa and are nested among different groups of Calamagrostis s.str., supporting their classification in Calamagrostis. Agrostis, Lachnagrostis and Polypogon form a clade and species of each are variously intermixed in plastid and nuclear ribosomal trees. Additionally, all but one species from South America classified in Deyeuxia sect. Stylagrostis resolve in Holcinae p.p. (Deschampsia). The current phylogenetic results support recognition of the latter species in Deschampsia, and we also demonstrate Scribneria is part of this clade. Moreover, Holcinae is not monophyletic in its current circumscription because Deschampsia does not form a clade with Holcus and Vahlodea, which are sister taxa. The results support recognition of Deschampsia in its own subtribe Aristaveninae. Substantial further changes to the classification of these grasses will be needed to produce generic circumscriptions consistent with phylogenetic evidence. The following 15 new combinations are made: Calamagrostis × calammophila, C. breviligulata, C. breviligulata subsp. champlainensis, C. × don-hensonii, Deschampsia aurea, D. bolanderi, D. chrysantha, D. chrysantha var. phalaroides, D. eminens, D. eminens var. fulva, D. eminens var. inclusa, D. hackelii, D. ovata, and D. ovata var. nivalis. D. podophora; the new name Deschampsia parodiana is proposed; the new subtribe Lagurinae is described; and a second-step lectotype is designated for the name Deyeuxia phalaroides.
Collapse
Affiliation(s)
- Jeffery M. Saarela
- Botany Section, Research and Collections, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | - Roger D. Bull
- Botany Section, Research and Collections, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | - Michel J. Paradis
- Botany Section, Research and Collections, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | - Sharon N. Ebata
- Botany Section, Research and Collections, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | - Paul M. Peterson
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America
| | - Robert J. Soreng
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America
| | - Beata Paszko
- Department of Vascular Plant Systematics and Phytogeography, W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
15
|
Winterfeld G, Wölk A, Röser M. Genome evolution in alpine oat-like grasses through homoploid hybridization and polyploidy. AOB PLANTS 2016; 8:plw039. [PMID: 27255513 PMCID: PMC4940509 DOI: 10.1093/aobpla/plw039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 05/07/2016] [Indexed: 05/17/2023]
Abstract
Hybridization and polyploidization can radically impact genome organization from sequence level to chromosome structure. As a result, often in response to environmental change and species isolation, the development of novel traits can arise and will tend to result in the formation of homoploid or polyploid hybrid species. In this study we focus on evidence of hybridization and polyploidization by ascertaining the species parentage of the endemic alpine Helictotrichon parlatorei group. This group comprises five taxa; the diploids H. parlatorei, Helictotrichon setaceum subsp. setaceum and subsp. petzense, their putative hybrid Helictotrichon ×krischae and the hexaploid Helictotrichon sempervirens. For molecular analyses, cloned nuclear Topoisomerase VI genes of H. sempervirens and H. ×krischae were sequenced and compared with sequences of the diploids to estimate the evolutionary history in this group. In addition, detailed chromosome studies were carried out including fluorescence in situ hybridization (FISH) with 5S and 45S ribosomal and satellite DNA probes, and fluorochrome staining with chromomycin and DAPI. Two distinct types of Topoisomerase VI sequences were identified. One of them (SET) occurs in both subspecies of H. setaceum, the other (PAR) in H. parlatorei. Both types were found in H. ×krischae and H. sempervirens Karyotypes of H. parlatorei and H. setaceum could be distinguished by chromosomes with a clearly differentiated banding pattern of ribosomal DNAs. Both patterns occurred in the hybrid H. ×krischae Hexaploid H. sempervirens shares karyotype features with diploid H. parlatorei, but lacks the expected chromosome characteristics of H. setaceum, possibly an example of beginning diploidization after polyploidization. The geographic origin of the putative parental species and their hybrids and the possible biogeographical spread through the Alps are discussed.
Collapse
Affiliation(s)
- Grit Winterfeld
- Institute of Biology, Martin Luther University Halle-Wittenberg, Neuwerk 21, 06099 Halle, Germany
| | - Alexandra Wölk
- Institute of Biology, Martin Luther University Halle-Wittenberg, Neuwerk 21, 06099 Halle, Germany
| | - Martin Röser
- Institute of Biology, Martin Luther University Halle-Wittenberg, Neuwerk 21, 06099 Halle, Germany
| |
Collapse
|
16
|
Distribution of rDNA and polyploidy in Deschampsia antarctica E. Desv. in Antarctic and Patagonic populations. Polar Biol 2016. [DOI: 10.1007/s00300-016-1890-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Evolution of the beta-amylase gene in the temperate grasses: Non-purifying selection, recombination, semiparalogy, homeology and phylogenetic signal. Mol Phylogenet Evol 2015; 91:68-85. [DOI: 10.1016/j.ympev.2015.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 01/18/2023]
|
18
|
Wölk A, Winterfeld G, Röser M. Genome evolution in a Mediterranean species complex: phylogeny and cytogenetics ofHelictotrichon(Poaceae) allopolyploids based on nuclear DNA sequences (rDNA, topoisomerase gene) and FISH. SYST BIODIVERS 2015. [DOI: 10.1080/14772000.2015.1023867] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
19
|
Saarela JM, Wysocki WP, Barrett CF, Soreng RJ, Davis JI, Clark LG, Kelchner SA, Pires JC, Edger PP, Mayfield DR, Duvall MR. Plastid phylogenomics of the cool-season grass subfamily: clarification of relationships among early-diverging tribes. AOB PLANTS 2015; 7:plv046. [PMID: 25940204 PMCID: PMC4480051 DOI: 10.1093/aobpla/plv046] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/21/2015] [Indexed: 05/08/2023]
Abstract
Whole plastid genomes are being sequenced rapidly from across the green plant tree of life, and phylogenetic analyses of these are increasing resolution and support for relationships that have varied among or been unresolved in earlier single- and multi-gene studies. Pooideae, the cool-season grass lineage, is the largest of the 12 grass subfamilies and includes important temperate cereals, turf grasses and forage species. Although numerous studies of the phylogeny of the subfamily have been undertaken, relationships among some 'early-diverging' tribes conflict among studies, and some relationships among subtribes of Poeae have not yet been resolved. To address these issues, we newly sequenced 25 whole plastomes, which showed rearrangements typical of Poaceae. These plastomes represent 9 tribes and 11 subtribes of Pooideae, and were analysed with 20 existing plastomes for the subfamily. Maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) robustly resolve most deep relationships in the subfamily. Complete plastome data provide increased nodal support compared with protein-coding data alone at nodes that are not maximally supported. Following the divergence of Brachyelytrum, Phaenospermateae, Brylkinieae-Meliceae and Ampelodesmeae-Stipeae are the successive sister groups of the rest of the subfamily. Ampelodesmeae are nested within Stipeae in the plastome trees, consistent with its hybrid origin between a phaenospermatoid and a stipoid grass (the maternal parent). The core Pooideae are strongly supported and include Brachypodieae, a Bromeae-Triticeae clade and Poeae. Within Poeae, a novel sister group relationship between Phalaridinae and Torreyochloinae is found, and the relative branching order of this clade and Aveninae, with respect to an Agrostidinae-Brizinae clade, are discordant between MP and ML/BI trees. Maximum likelihood and Bayesian analyses strongly support Airinae and Holcinae as the successive sister groups of a Dactylidinae-Loliinae clade.
Collapse
Affiliation(s)
- Jeffery M Saarela
- Botany Section, Research and Collections, Canadian Museum of Nature, PO Box 3443 Stn. D, Ottawa, ON, Canada K1P 3P4
| | - William P Wysocki
- Biological Sciences, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861, USA
| | - Craig F Barrett
- Department of Biological Sciences, California State University, 5151 State University Dr., Los Angeles, CA 90032-8201, USA
| | - Robert J Soreng
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Jerrold I Davis
- Section of Plant Biology, Cornell University, 412 Mann Library, Ithaca, NY 14853, USA
| | - Lynn G Clark
- Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, IA 50011-1020, USA
| | - Scot A Kelchner
- Biological Sciences, Idaho State University, 921 S. 8th Ave, Pocatello, ID 83209, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, 1201 Rollins St, Columbia, MO 65211, USA
| | - Patrick P Edger
- Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA 94720, USA
| | - Dustin R Mayfield
- Division of Biological Sciences, University of Missouri, 1201 Rollins St, Columbia, MO 65211, USA
| | - Melvin R Duvall
- Biological Sciences, Northern Illinois University, 1425 W. Lincoln Hwy, DeKalb, IL 60115-2861, USA
| |
Collapse
|
20
|
Winterfeld G, Schneider J, Perner K, Röser M. Polyploidy and hybridization as main factors of speciation: complex reticulate evolution within the grass genus Helictochloa. Cytogenet Genome Res 2014; 142:204-25. [PMID: 24731950 DOI: 10.1159/000361002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2013] [Indexed: 11/19/2022] Open
Abstract
To study the origin and evolution of naturally occurring polyploids, we performed phylogenetic analyses of nuclear ribosomal DNA spacers combined with molecular cytogenetics in 55 accessions of 27 taxa of the oat genus Helictochloa. A complex pattern of reticulate evolution was revealed with many diploid species and extensive polyploidy up to 20x. Altogether 11 groups of internal transcribed spacer (ITS) sequences can be distinguished. Sequences from 1-3 different ITS lineages were detected in polyploids. Cytogenetic data allow reconstruction of 8 basic monoploid chromosome sets. Six of these genomes occur in different combinations in the polyploid species. Two genomes are only found in diploids. Our sequence and karyological data highlight the occurrence of autopolyploidy and allopolyploidy, provide new information about the evolutionary history of taxa, and allow a more accurate systematic treatment of the concerned species. The geographical distribution of the 11 ITS lineages distinguished is highly structured and points to an origin of the genus in western Asia, presumably in grasslands like steppes or mountain steppes and meadows. The evolutionary basal lineages are of Asian, Minor Asian and east Mediterranean distribution and are present also in North America. The western and central parts of the Mediterranean and northern Europe harbor the modern lineages.
Collapse
Affiliation(s)
- G Winterfeld
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | | | | |
Collapse
|
21
|
Polyphyly of the grass tribe Hainardieae (Poaceae: Pooideae): identification of its different lineages based on molecular phylogenetics, including morphological and cytogenetic characteristics. ORG DIVERS EVOL 2012. [DOI: 10.1007/s13127-012-0077-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Sousa A, Barros e Silva A, Cuadrado A, Loarce Y, Alves M, Guerra M. Distribution of 5S and 45S rDNA sites in plants with holokinetic chromosomes and the “chromosome field” hypothesis. Micron 2011; 42:625-31. [DOI: 10.1016/j.micron.2011.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
|
23
|
Wicke S, Costa A, Muñoz J, Quandt D. Restless 5S: the re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants. Mol Phylogenet Evol 2011; 61:321-32. [PMID: 21757016 DOI: 10.1016/j.ympev.2011.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 06/23/2011] [Accepted: 06/27/2011] [Indexed: 01/16/2023]
Abstract
Among eukaryotes two types of nuclear ribosomal DNA (nrDNA) organization have been observed. Either all components, i.e. the small ribosomal subunit, 5.8S, large ribosomal subunit, and 5S occur tandemly arranged or the 5S rDNA forms a separate cluster of its own. Generalizations based on data derived from just a few model organisms have led to a superimposition of structural and evolutionary traits to the entire plant kingdom asserting that plants generally possess separate arrays. This study reveals that plant nrDNA organization into separate arrays is not a distinctive feature, but rather assignable almost solely to seed plants. We show that early diverging land plants and presumably streptophyte algae share a co-localization of all rRNA genes within one repeat unit. This raises the possibility that the state of rDNA gene co-localization had occurred in their common ancestor. Separate rDNA arrays were identified for all basal seed plants and water ferns, implying at least two independent 5S rDNA transposition events during land plant evolution. Screening for 5S derived Cassandra transposable elements which might have played a role during the transposition events, indicated that this retrotransposon is absent in early diverging vascular plants including early fern lineages. Thus, Cassandra can be rejected as a primary mechanism for 5S rDNA transposition in water ferns. However, the evolution of Cassandra and other eukaryotic 5S derived elements might have been a side effect of the 5S rDNA cluster formation. Structural analysis of the intergenic spacers of the ribosomal clusters revealed that transposition events partially affect spacer regions and suggests a slightly different transcription regulation of 5S rDNA in early land plants. 5S rDNA upstream regulatory elements are highly divergent or absent from the LSU-5S spacers of most early divergent land plant lineages. Several putative scenarios and mechanisms involved in the concerted relocation of hundreds of 5S rRNA gene copies are discussed.
Collapse
Affiliation(s)
- Susann Wicke
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstr. 1, D-48149 Muenster, Germany.
| | | | | | | |
Collapse
|
24
|
Sultana S, Bang JW, Choi HW. Organization of the 5S rRNA gene units in Korean Lilium species. Genes Genomics 2011. [DOI: 10.1007/s13258-010-0131-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Allopolyploid origin of Mediterranean species inHelictotrichon(Poaceae) and its consequences for karyotype repatterning and homogenisation of rDNA repeat units. SYST BIODIVERS 2009. [DOI: 10.1017/s1477200009003041] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Winterfeld G, Döring E, Röser M. Chromosome evolution in wild oat grasses (Aveneae) revealed by molecular phylogeny. Genome 2009; 52:361-80. [PMID: 19370092 DOI: 10.1139/g09-012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Karyotype structures revealed by in situ hybridization with ribosomal and satellite DNAs and fluorochrome staining of AT- or GC-rich regions are reported for 23 diploid to tetraploid taxa of Aveneae genera Arrhenatherum, Avena, Helictotrichon, and Pseudarrhenatherum. Chromosomal features are compared with a molecular phylogeny generated on nuclear ribosomal (ITS, 5S) and chloroplast (matK) DNA sequences. Ancestral chromosomal character states are (1) two satellite chromosomes per set of x = 7, (2) 5S rDNA localized in nonsatellite chromosomes, (3) large chromosomes with (4) rather equal lengths of their respective chromosome arms, (5) sets with strong variance of chromosome lengths, (6) absence or small amounts of heterochromatin, and (7) absence or no detectable amplification of the satellite DNAs tested. Overall, most karyotype characteristics are species specific, but common patterns were found for the species of two large subgenera of Helictotrichon. Pseudarrhenatherum, although nested in the molecular phylogeny within Helictotrichon subgenus Helictotrichon, deviates strongly in karyotype characters such as Arrhenatherum as sister of Avena. The karyotype of Helictotrichon jahandiezii, sister to the clade of Helictotrichon subgenera Helictotrichon, Avena, and Arrhenatherum, strongly resembles that of Avena macrostachya. Karyotype features suggest that perennial A. macrostachya and H. jahandiezii are close to the C-genome species of annual Avena, whereas the Avena A genome resembles that of Arrhenatherum.
Collapse
Affiliation(s)
- Grit Winterfeld
- Institute of Biology, Martin Luther University of Halle-Wittenberg, D-06099 Halle, Germany.
| | | | | |
Collapse
|
27
|
Garcia S, Lim KY, Chester M, Garnatje T, Pellicer J, Vallès J, Leitch AR, Kovarík A. Linkage of 35S and 5S rRNA genes in Artemisia (family Asteraceae): first evidence from angiosperms. Chromosoma 2008; 118:85-97. [PMID: 18779974 DOI: 10.1007/s00412-008-0179-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/22/2008] [Accepted: 08/20/2008] [Indexed: 10/24/2022]
Abstract
Typically in plants, the 5S and 35S ribosomal DNA (rDNA) encoding two major ribosomal RNA species occur at separate loci. However, in some algae, bryophytes and ferns, they are at the same locus (linked arranged). Southern blot hybridisation, polymerase chain reactions (PCR), fluorescent in situ hybridisation, cloning and sequencing were used to reveal 5S and 35S rDNA genomic organisation in Artemisia. We observed thousands of rDNA units at two-three loci containing 5S rDNA in an inverted orientation within the inter-genic spacer (IGS) of 35S rDNA. The sequenced clones of 26-18S IGS from Artemisia absinthium appeared to contain a conserved 5S gene insertion proximal to the 26S gene terminus (5S rDNA-1) and a second less conserved 5S insertion (5S rDNA-2) further downstream. Whilst the 5S rDNA-1 showed all the structural features of a functional gene, the 5S-rDNA-2 had a deletion in the internal promoter and probably represents a pseudogene. The linked arrangement probably evolved before the divergence of Artemisia from the rest of Asteraceae (>10 Myrs). This arrangement may have involved retrotransposons and once formed spread via mechanisms of concerted evolution. Heterogeneity in unit structure may reflect ongoing homogenisation of variant unit types without fixation for any particular variant.
Collapse
Affiliation(s)
- Sònia Garcia
- Laboratori de Botànica, Facultat de Farmàcia, Universitat de Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Peng YY, Wei YM, Baum BR, Zheng YL. Molecular diversity of the 5S rRNA gene and genomic relationships in the genus Avena (Poaceae: Aveneae). Genome 2008; 51:137-54. [PMID: 18356948 DOI: 10.1139/g07-111] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular diversity of the rDNA sequences (5S rDNA units) in 71 accessions from 26 taxa of Avena was evaluated. The analyses, based on 553 sequenced clones, indicated that there were 6 unit classes, named according to the haplomes (genomes) they putatively represent, namely the long A1, long B1, long M1, short C1, short D1, and short M1 unit classes. The long and short M1 unit classes were found in the tetraploid A. macrostachya, the only perennial species. The long M1 unit class was closely related to the short C1 unit class, while the short M1 unit class was closely related to the long A1 and long B1 unit classes. However, the short D1 unit class was more divergent from the other unit classes. There was only one unit class per haplome in Avena, whereas haplomes in the Triticeae often have two. Most of the sequences captured belonged to the long A1 unit class. Sequences identified as the long B1 unit class were found in the tetraploids A. abyssinica and A. vaviloviana and the diploids A. atlantica and A. longiglumis. The short C1 unit class was found in the diploid species carrying the C genome, i.e., A. clauda, A. eriantha, and A. ventricosa, and also in the diploid A. longiglumis, the tetraploids A. insularis and A. maroccana, and all the hexaploid species. The short D1 unit class was found in all the hexaploid species and two clones of A. clauda. It is noteworthy that in previous studies the B genome was found only in tetraploid species and the D genome only in hexaploid species. Unexpectedly, we found that various diploid Avena species contained the B1 and D1 units. The long B1 unit class was found in 3 accessions of the diploid A. atlantica (CN25849, CN25864, and CN25887) collected in Morocco and in 2 accessions of A. longiglumis (CIav9087 and CIav9089) collected in Algeria and Libya, respectively, whereas only 1 clone of A. clauda (CN21378) had the short D1 unit. Thus there might be a clue as to where to search for diploids carrying the B and D genomes. Avena longiglumis was found to be the most diverse species, possibly harboring the A, B, and C haplomes. The long M1 and short M1 are the unit classes typical of A. macrostachya. These results could explain the roles of A. clauda, A. longiglumis, and A. atlantica in the evolution of the genus Avena. Furthermore, one clone of the tetraploid A. murphyi was found to have sequences belonging to the short D1 unit class, which could indicate that A. murphyi might have been the progenitor of hexaploid oats and not, as postulated earlier, A. insularis. The evolution of Avena did not follow the molecular clock. The path inferred is that the C genome is more ancient than the A and B genomes and closer to the genome of A. macrostachya, the only existing perennial, which is presumed to be the most ancestral species in the genus.
Collapse
Affiliation(s)
- Yuan-Ying Peng
- Triticeae Research Institute, Sichuan Agricultural University, Yaan 625014, Sichuan, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Zhu XY, Cai DT, Ding Y. Molecular and cytological characterization of 5S rDNA inOryzaspecies: genomic organization and phylogenetic implications. Genome 2008; 51:332-40. [DOI: 10.1139/g08-016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the molecular characteristics and chromosomal organization of 5S rDNA in the genus Oryza , including diploid and tetraploid species. A phylogenetic tree of Oryza species was constructed based on the non-transcribed spacer sequences of 5S rDNA, and some novel relationships were discovered. Specifically, comparative sequence analysis of 5S rDNA in several wild rice species showed unique characteristics inconsistent with the model of concerted evolution: (1) multiple distinct 5S rDNA types were detected within a species, leading to intraspecific divergence of 5S rDNA; (2) multiple identical 5S rDNA types were shared among species, resulting in interspecies clustering of 5S rDNA types; and (3) intraspecific nucleotide diversity was detected within a 5S rDNA class. Our results obtained by fluorescence in situ hybridization revealed that each rice species studied contained only one 5S rDNA locus with two hybridization sites, which were located on either chromosome 7 or chromosome 11. These results suggest that different 5S rDNA classes within the rice genome were arranged together and that one pair of 5S rDNA loci from a diploid progenitor of the tetraploid species might have been lost during evolution. Taken together, our data show that 5S rDNA in rice species is more informative at the gene level than at the chromosome level.
Collapse
Affiliation(s)
- Xiao-Yan Zhu
- Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
- College of Life Sciences, Hubei University, Wuhan 430072, P.R. China
| | - De-Tian Cai
- Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
- College of Life Sciences, Hubei University, Wuhan 430072, P.R. China
| | - Yi Ding
- Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
- College of Life Sciences, Hubei University, Wuhan 430072, P.R. China
| |
Collapse
|
30
|
Falistocco E, Passeri V, Marconi G. Investigations of 5S rDNA of Vitis vinifera L.: sequence analysis and physical mapping. Genome 2007; 50:927-38. [DOI: 10.1139/g07-070] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we report the first results of a study of 5S rDNA of Vitis vinifera . 5S rDNA sequences from seven genotypes were amplified by PCR, cloned, and sequenced. Three types of repeats were found. Two variants, denominated long repeat and short repeat, appeared to be the main components of the 5S rDNA of this species, since they were found in all genotypes analyzed. They differed markedly from each other in both the length and the nucleotide composition of the spacers. The third variant, classified as DEL short repeat, differs from the short repeat owing to a large deletion in the spacer region. It appears to be the most recent repeat type, since it was identified in only one genotype. The organization of the 5S rDNA repeat unit variants was investigated by amplifying the genomic DNA with primers designed on the sequence of the long and short spacers. The PCR-amplified fragments showed that the long repeat is associated with the other two repeats, indicating that in V. vinifera different repeat units coexist within the same tandem array. FISH analysis demonstrated that 5S rRNA genes are localized at a single locus. The variability of 5S rDNA repeats is discussed in relation to the putative allopolyploid origin of V. vinifera.
Collapse
Affiliation(s)
- E. Falistocco
- Dipartimento di Biologia Vegetale e Biotecnologie Agroambientali e Zootecniche, Università degli Studi di Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| | - V. Passeri
- Dipartimento di Biologia Vegetale e Biotecnologie Agroambientali e Zootecniche, Università degli Studi di Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| | - G. Marconi
- Dipartimento di Biologia Vegetale e Biotecnologie Agroambientali e Zootecniche, Università degli Studi di Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| |
Collapse
|
31
|
|
32
|
Fulnecek J, Matyasek R, Kovarik A. Plant 5S rDNA has multiple alternative nucleosome positions. Genome 2006; 49:840-50. [PMID: 16936792 DOI: 10.1139/g06-039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In plants, 5S ribosomal DNA (5S rDNA) is typically found in hundreds of copies of tandemly arranged units. Nucleotide database searches revealed that the majority of 5S genes (>90%) have repeat lengths that are not simple multiples of a plant nucleosomal unit, ranging in plants from 175-185 bp. To get insight into the chromatin structure, we have determined positions of nucleosomes in the Nicotiana sylvestris and Nicotiana tomentosiformis 5S rDNA units with repeat lengths of about 430 and 645 bp, respectively. Mapping experiments carried out on isolated nucleo somal DNA revealed many (>50) micrococcal nuclease cleavage sites in each class of repeats. Permutation analysis and theoretical computer prediction showed multiple DNA bend sites, mostly located in the nontranscribed spacer region. The distance between bend sites, however, did not correspond to the average spacing of nucleosomes in 5S chromatin (approximately 180 bp). These data indicate that 5S rDNA does not have fixed nucleosomal positioning sites and that units can be wrapped in a number of alternative nucleosome frames. Consequently, accessibility of transcription factors to cognate motifs might vary across the tandem array, potentially influencing gene expression.
Collapse
Affiliation(s)
- Jaroslav Fulnecek
- Institute of Biophysics, Academy of Scences of Czech Republic, Kralovopolska, Czech Republic
| | | | | |
Collapse
|
33
|
Sun Y, Fung KP, Leung PC, Shaw PC. A phylogenetic analysis of Epimedium (Berberidaceae) based on nuclear ribosomal DNA sequences. Mol Phylogenet Evol 2005; 35:287-91. [PMID: 15737598 DOI: 10.1016/j.ympev.2004.12.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 12/13/2004] [Accepted: 12/16/2004] [Indexed: 10/25/2022]
Affiliation(s)
- Ye Sun
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | | | | |
Collapse
|
34
|
Hemleben V, Volkov RA, Zentgraf U, Medina FJ. Molecular Cell Biology: Organization and Molecular Evolution of rDNA, Nucleolar Dominance, and Nucleolus Structure. PROGRESS IN BOTANY 2004. [DOI: 10.1007/978-3-642-18819-0_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|