1
|
Santisteban MM, Iadecola C. The pathobiology of neurovascular aging. Neuron 2025; 113:49-70. [PMID: 39788087 DOI: 10.1016/j.neuron.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
As global life expectancy increases, age-related brain diseases such as stroke and dementia have become leading causes of death and disability. The aging of the neurovasculature is a critical determinant of brain aging and disease risk. Neurovascular cells are particularly vulnerable to aging, which induces significant structural and functional changes in arterial, venous, and lymphatic vessels. Consequently, neurovascular aging impairs oxygen and glucose delivery to active brain regions, disrupts endothelial transport mechanisms essential for blood-brain exchange, compromises proteostasis by reducing the clearance of potentially toxic proteins, weakens immune surveillance and privilege, and deprives the brain of key growth factors required for repair and renewal. In this review, we examine the effects of neurovascular aging on brain function and its role in stroke, vascular cognitive impairment, and Alzheimer's disease. Finally, we discuss key unanswered questions that must be addressed to develop neurovascular strategies aimed at promoting healthy brain aging.
Collapse
Affiliation(s)
- Monica M Santisteban
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Tarumi T, Tomoto T, Sugawara J, Zhang R. Aerobic Exercise Training for the Aging Brain: Effective Dosing and Vascular Mechanism. Exerc Sport Sci Rev 2025; 53:31-40. [PMID: 39254652 DOI: 10.1249/jes.0000000000000349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
This article presents evidence supporting the hypothesis that starting aerobic exercise in early adulthood and continuing it throughout life leads to significant neurocognitive benefits compared with starting exercise later in life. Regular aerobic exercise at moderate-to-vigorous intensity during midlife is associated with significant improvement in cardiorespiratory fitness, which may create a favorable brain microenvironment promoting neuroplasticity through enhanced vascular function.
Collapse
|
3
|
Wright SA, Lennon R, Greenhalgh AD. Basement membranes' role in immune cell recruitment to the central nervous system. J Inflamm (Lond) 2024; 21:53. [PMID: 39707430 DOI: 10.1186/s12950-024-00426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024] Open
Abstract
Basement membranes form part of the extracellular matrix (ECM), which is the structural basis for all tissue. Basement membranes are cell-adherent sheets found between cells and vascular endothelia, including those of the central nervous system (CNS). There is exceptional regional specialisation of these structures, both in tissue organisation and regulation of tissue-specific cellular processes. Due to their location, basement membranes perform a key role in immune cell trafficking and therefore are important in inflammatory processes causing or resulting from CNS disease and injury. This review will describe basement membranes in detail, with special focus on the brain. We will cover how genetic changes drive brain pathology, describe basement membranes' role in immune cell recruitment and how they respond to various brain diseases. Understanding how basement membranes form the junction between the immune and central nervous systems will be a major advance in understanding brain disease.
Collapse
Affiliation(s)
- Shaun A Wright
- Lydia Becker Institute of Immunology and Inflammation, Division, Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Rachel Lennon
- Cell Matrix Biology & Regenerative Medicine and Wellcome Centre for Cell-Matrix Research, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Andrew D Greenhalgh
- Lydia Becker Institute of Immunology and Inflammation, Division, Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
4
|
Lopez FV, O'Shea A, Huo Z, DeKosky ST, Trouard TP, Alexander GE, Woods AJ, Bowers D. Frontal-temporal regional differences in brain energy metabolism and mitochondrial function using 31P MRS in older adults. GeroScience 2024; 46:3185-3195. [PMID: 38225480 PMCID: PMC11009166 DOI: 10.1007/s11357-023-01046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/07/2023] [Indexed: 01/17/2024] Open
Abstract
Aging is a major risk for cognitive decline and transition to dementia. One well-known age-related change involves decreased brain efficiency and energy production, mediated in part by changes in mitochondrial function. Damaged or dysfunctional mitochondria have been implicated in the pathogenesis of age-related neurodegenerative conditions like Alzheimer's disease (AD). The aim of the current study was to investigate mitochondrial function over frontal and temporal regions in a sample of 70 cognitively normal older adults with subjective memory complaints and a first-degree family history of AD. We hypothesized cerebral mitochondrial function and energy metabolism would be greater in temporal as compared to frontal regions based on the high energy consumption in the temporal lobes (i.e., hippocampus). To test this hypothesis, we used phosphorous (31P) magnetic resonance spectroscopy (MRS) which is a non-invasive and powerful method for investigating in vivo mitochondrial function via high energy phosphates and phospholipid metabolism ratios. We used a single voxel method (left temporal and bilateral prefrontal) to achieve optimal sensitivity. Results of separate repeated measures analyses of variance showed 31P MRS ratios of static energy, energy reserve, energy consumption, energy demand, and phospholipid membrane metabolism were greater in the left temporal than bilateral prefrontal voxels. Our findings that all 31P MRS ratios were greater in temporal than bifrontal regions support our hypothesis. Future studies are needed to determine whether findings are related to cognition in older adults.
Collapse
Affiliation(s)
- Francesca V Lopez
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, PO Box 100165, Gainesville, FL, 32610, USA.
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Steven T DeKosky
- Department of Neurology, Fixel Center for Neurological Diseases, College of Medicine, and Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Theodore P Trouard
- Department of Biomedical Engineering, College of Engineering, and Evelyn F. McKnight Brain Institute, University of Arizona and Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Gene E Alexander
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Adam J Woods
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, PO Box 100165, Gainesville, FL, 32610, USA
- Center for Cognitive Aging and Memory, Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Dawn Bowers
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, PO Box 100165, Gainesville, FL, 32610, USA
- Department of Neurology, Fixel Center of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Schultz JL, Gander PE, Workman CD, Ponto LL, Cross S, Nance CS, Groth CL, Taylor EB, Ernst SE, Xu J, Uc EY, Magnotta VA, Welsh MJ, Narayanan NS. A pilot dose-finding study of Terazosin in humans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.22.24307622. [PMID: 38826433 PMCID: PMC11142298 DOI: 10.1101/2024.05.22.24307622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Parkinson's disease (PD) is a prevalent neurodegenerative disorder where progressive neuron loss is driven by impaired brain bioenergetics, particularly mitochondrial dysfunction and disrupted cellular respiration. Terazosin (TZ), an α-1 adrenergic receptor antagonist with a known efficacy in treating benign prostatic hypertrophy and hypertension, has shown potential in addressing energy metabolism deficits associated with PD due to its action on phosphoglycerate kinase 1 (PGK1). This study aimed to investigate the safety, tolerability, bioenergetic target engagement, and optimal dose of TZ in neurologically healthy subjects. Methods Eighteen healthy men and women (60 - 85 years old) were stratified into two cohorts based on maximum TZ dosages (5 mg and 10 mg daily). Methods included plasma and cerebrospinal fluid TZ concentration measurements, whole blood ATP levels, 31 Phosphorous magnetic resonance spectroscopy for brain ATP levels, 18 F-FDG PET imaging for cerebral metabolic activity, and plasma metabolomics. Results Our results indicated that a 5 mg/day dose of TZ significantly increased whole blood ATP levels and reduced global cerebral 18 F-FDG PET uptake without significant side effects or orthostatic hypotension. These effects were consistent across sexes. Higher doses did not result in additional benefits and showed a potential biphasic dose-response. Conclusions TZ at a dosage of 5 mg/day engages its metabolic targets effectively in both sexes without inducing significant adverse effects and provides a promising therapeutic avenue for mitigating energetic deficiencies. Further investigation via clinical trials to validate TZ's efficacy and safety in neurodegenerative (i.e., PD) contexts is warranted.
Collapse
|
6
|
Iandolo R, Avci E, Bommarito G, Sandvig I, Rohweder G, Sandvig A. Characterizing upper extremity fine motor function in the presence of white matter hyperintensities: A 7 T MRI cross-sectional study in older adults. Neuroimage Clin 2024; 41:103569. [PMID: 38281363 PMCID: PMC10839532 DOI: 10.1016/j.nicl.2024.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND White matter hyperintensities (WMH) are a prevalent radiographic finding in the aging brain studies. Research on WMH association with motor impairment is mostly focused on the lower-extremity function and further investigation on the upper-extremity is needed. How different degrees of WMH burden impact the network of activation recruited during upper limb motor performance could provide further insight on the complex mechanisms of WMH pathophysiology and its interaction with aging and neurological disease processes. METHODS 40 healthy elderly subjects without a neurological/psychiatric diagnosis were included in the study (16F, mean age 69.3 years). All subjects underwent ultra-high field 7 T MRI including structural and finger tapping task-fMRI. First, we quantified the WMH lesion load and its spatial distribution. Secondly, we performed a data-driven stratification of the subjects according to their periventricular and deep WMH burdens. Thirdly, we investigated the distribution of neural recruitment and the corresponding activity assessed through BOLD signal changes among different brain regions for groups of subjects. We clustered the degree of WMH based on location, numbers, and volume into three categories; ranging from mild, moderate, and severe. Finally, we explored how the spatial distribution of WMH, and activity elicited during task-fMRI relate to motor function, measured with the 9-Hole Peg Test. RESULTS Within our population, we found three subgroups of subjects, partitioned according to their periventricular and deep WMH lesion load. We found decreased activity in several frontal and cingulate cortex areas in subjects with a severe WMH burden. No statistically significant associations were found when performing the brain-behavior statistical analysis for structural or functional data. CONCLUSION WMH burden has an effect on brain activity during fine motor control and the activity changes are associated with varying degrees of the total burden and distributions of WMH lesions. Collectively, our results shed new light on the potential impact of WMH on motor function in the context of aging and neurodegeneration.
Collapse
Affiliation(s)
- Riccardo Iandolo
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Esin Avci
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Giulia Bommarito
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Gitta Rohweder
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Stroke Unit, Department of Medicine, St Olav's University Hospital, Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, Trondheim, Norway; Department of Clinical Neurosciences, Division of Neuro, Head and Neck, Umeå University Hospital, Umeå, Sweden; Department of Community Medicine and Rehabilitation, Umeå University Hospital, Umeå, Sweden.
| |
Collapse
|
7
|
An S, Hwang G, Noh SA, Lee HC, Hwang TS. Quantitative Analysis of Brain CT Perfusion in Healthy Beagle Dogs: A Pilot Study. Vet Sci 2023; 10:469. [PMID: 37505873 PMCID: PMC10385523 DOI: 10.3390/vetsci10070469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023] Open
Abstract
Brain computed tomography (CT) perfusion is a technique that allows for the fast evaluation of cerebral hemodynamics. However, quantitative studies of brain CT perfusion in veterinary medicine are lacking. The purpose of this study was to investigate the normal range of perfusion determined via CT in brains of healthy dogs and to compare values between white matter and gray matter, differences in aging, and each hemisphere. Nine intact male beagle dogs were prospectively examined using dynamic CT scanning and post-processing for brain perfusion. Regional cerebral blood volume (rCBV), regional cerebral blood flow (rCBF), mean transit time, and time to peak were calculated. Tissue ROIs were drawn in the gray matter and white matter of the frontal, temporal, parietal, and occipital lobes; caudate nucleus; thalamus; piriform lobe; hippocampus; and cerebellum. Significant differences were observed between the white matter regions and gray matter regions for rCBV and rCBF (p < 0.05). However, no significant differences were identified between hemispheres and between young and old groups in brain regions. The findings obtained in this study involving healthy beagle dogs might serve as a reference for regional CT perfusion values in specific brain regions. These results may aid in the characterization of various brain diseases in dogs.
Collapse
Affiliation(s)
- Soyon An
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gunha Hwang
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seul Ah Noh
- AniCom Medical Center, Animal Hospital, Seoul 04599, Republic of Korea
| | - Hee Chun Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae Sung Hwang
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
8
|
Tomoto T, Lu M, Khan AM, Liu J, Pasha EP, Tarumi T, Zhang R. Cerebral blood flow and cerebrovascular resistance across the adult lifespan: A multimodality approach. J Cereb Blood Flow Metab 2023; 43:962-976. [PMID: 36708213 PMCID: PMC10196748 DOI: 10.1177/0271678x231153741] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 01/29/2023]
Abstract
Cerebral blood flow (CBF) decreases across the adult lifespan; however, more studies are needed to understand the underlying mechanisms. This study measured CBF and cerebrovascular resistance (CVR) using a multimodality approach in 185 healthy adults (21-80 years). Color-coded duplex ultrasonography and phase-contrast MRI were used to measure CBF, CBF velocity, and vessel diameters of the internal carotid (ICA) and vertebral arteries (VA). MRI arterial spin labeling was used to measure brain perfusion. Transcranial Doppler was used to measure CBF velocity at the middle cerebral artery. Structural MRI was used to measure brain volume. CBF was presented as total blood flow (mL/min) and normalized CBF (nCBF, mL/100g/min). Mean arterial pressure was measured to calculate CVR. Age was associated with decreased CBF by ∼3.5 mL/min/year and nCBF by ∼0.19 mL/100g/min/year across the methods. CVR increased by ∼0.011 mmHg/mL/100g/min/year. Blood flow velocities in ICA and VA decreased with age ranging from 0.07-0.15 cm/s/year, while the vessel diameters remained similar among age groups. These findings suggest that age-related decreases in CBF can be attributed mainly to decreases in blood flow velocity in the large cerebral arteries and that increased CVR likely reflects the presence of cerebral vasoconstrictions in the small cerebral arterioles and/or capillaries.
Collapse
Affiliation(s)
- Tsubasa Tomoto
- Institute for Exercise and
Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas,
Texas, USA
- Human Informatics and Interaction
Research Institute, National Institute of Advanced Industrial Science and
Technology, Tsukuba, Ibaraki, Japan
- Department of Neurology, University
of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Marilyn Lu
- Department of Neurology, University
of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ayaz M Khan
- Department of Diagnostic Imaging,
St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jie Liu
- Department of Pharmacology,
Physiology and Neuroscience, Rutgers University, Newark, New Jersey, USA
| | - Evan P Pasha
- Institute for Exercise and
Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas,
Texas, USA
- Department of Neurology, University
of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Takashi Tarumi
- Institute for Exercise and
Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas,
Texas, USA
- Human Informatics and Interaction
Research Institute, National Institute of Advanced Industrial Science and
Technology, Tsukuba, Ibaraki, Japan
- Department of Neurology, University
of Texas Southwestern Medical Center, Dallas, Texas, USA
- Graduate School of Comprehensive
Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Rong Zhang
- Institute for Exercise and
Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas,
Texas, USA
- Department of Neurology, University
of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine,
University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Lu J, Wang M, Wu P, Yakushev I, Zhang H, Ziegler S, Jiang J, Förster S, Wang J, Schwaiger M, Rominger A, Huang SC, Liu F, Zuo C, Shi K. Adjustment for the Age- and Gender-Related Metabolic Changes Improves the Differential Diagnosis of Parkinsonism. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:50-63. [PMID: 36939769 PMCID: PMC9883378 DOI: 10.1007/s43657-022-00079-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 06/18/2023]
Abstract
Age and gender are the important factors for brain metabolic declines in both normal aging and neurodegeneration, and the confounding effects may influence early and differential diagnosis of neurodegenerative diseases based on the [18F]fluorodeoxyglucose positron emission tomography ([18F]FDG PET). We aimed to explore the potential of the adjustment of age- and gender-related confounding factors on [18F]FDG PET images in differentiation of Parkinson's disease (PD), multiple system atrophy (MSA) and progressive supra-nuclear palsy (PSP). Eight hundred and seventy-seven clinically definitely diagnosed Parkinsonian patients from a benchmark Huashan Parkinsonian PET imaging database were included. An age- and gender-adjusted Z (AGAZ) score was established based on the gender-specific longitudinal metabolic changes on healthy subjects. AGAZ scores and standardized uptake value ratio (SUVR) values were quantified at regional-level and support vector machine-based error-correcting output codes method was applied for classification. Additional references of the classifications based on metabolic pattern scores were included. The feature-based AGAZ score showed the best performance in classification (accuracy for PD, MSA, PSP: 93.1%, 96.3%, 94.8%). In both genders, the AGAZ score consistently achieved the best efficiency, and the improvements compared to the conventional SUVR value for PD, MSA, and PSP mainly laid in specificity (Male: 5.7%; Female: 11.1%), sensitivity (Male: 7.2%; Female: 7.3%), and sensitivity (Male: 7.3%; Female: 17.2%). Female patients benefited more from the adjustment on [18F]FDG PET in MSA and PSP groups (absolute net reclassification index, p < 0.001). Collectively, the adjustment of age- and gender-related confounding factors may improve the differential diagnosis of Parkinsonism. Particularly, the diagnosis of female Parkinsonian population has the best improvement from this correction. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00079-6.
Collapse
Affiliation(s)
- Jiaying Lu
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235 China
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Min Wang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, 200444 China
- Department of Informatics, Technische Universität München, 80333 Munich, Germany
| | - Ping Wu
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235 China
- National Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Igor Yakushev
- Department of Nuclear Medicine, Technische Universität München, 80333 Munich, Germany
| | - Huiwei Zhang
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235 China
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital LMU Munich, 80539 Munich, Germany
| | - Jiehui Jiang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Stefan Förster
- Department of Nuclear Medicine, Technische Universität München, 80333 Munich, Germany
- Department of Nuclear Medicine, Klinikum Bayreuth, 95445, Bayreuth, Germany
| | - Jian Wang
- National Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040 China
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040 China
| | - Markus Schwaiger
- Klinikum r. d. Isar, Technische Universität München, 95445 Munich, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Sung-Cheng Huang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 90095 USA
| | - Fengtao Liu
- National Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040 China
- Department of Neurology, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040 China
| | - Chuantao Zuo
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, 518 East Wuzhong Road, Shanghai, 200235 China
- National Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040 China
- Human Phenome Institute, Fudan University, Shanghai, 200433 China
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Informatics, Technische Universität München, 80333 Munich, Germany
| |
Collapse
|
10
|
Sung Kim J, Bin Bae J, Won Han J, Jong Oh D, Wan Suh S, Hyoung Kim J, Woong Kim K. Association of estimated white matter hyperintensity age with cognition in elderly with controlled hypertension. Neuroimage Clin 2023; 37:103323. [PMID: 36638599 PMCID: PMC9860510 DOI: 10.1016/j.nicl.2023.103323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Hypertension is associated with white matter hyperintensity (WMH) and cognitive impairment. Further, WMH is associated with cognitive impairment including executive, attention and visuospatial functions. The aim of this study was to investigate the effects of controlled hypertension (cHT) and previously developed concept, 'WMH age' on cognitive function and the mediating role of WMH in the effect of cHT on cognitive impairment. METHODS We enrolled 855 Koreans without dementia aged 60 years or older, 326 of whom completed 2-year follow-up assessment. We measured their blood pressure thrice in a sitting position using an automated blood pressure monitoring device. We estimated 'WMH age' of every participant using previously developed WMH probability map of healthy older Koreans. We analyzed the mediating effect of WMH age in the association of cHT and cognitive function using the PROCESS Macro model. RESULTS Old WMH age was associated with a faster decline in the Mini-Mental Status Examination (MMSE; p =.003), Consortium to Establish a Registry for Alzheimer's Disease total score (CERAD-TS; p =.003), and Frontal Assessment Battery (FAB; p =.007). Old WMH age showed an approximately-six times higher risk of incident mild cognitive impairment (OR = 6.47, 95 % CI = 1.37 - 9.50, p =.024) compared to young or normal WMH age over the 2-year follow-up period in the cHT group. WMH age mediated the effects of cHT on the MMSE, CERAD-TS, and FAB scores at baseline and two-year follow-up period. CONCLUSIONS WMH mediates the adverse effect of hypertension on cognitive function. Elders with cHT who have older WMH age may be at a higher risk of cognitive decline.
Collapse
Affiliation(s)
- Jun Sung Kim
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggido, South Korea
| | - Jong Bin Bae
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggido, South Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggido, South Korea
| | - Dae Jong Oh
- Workplace Mental Health Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seung Wan Suh
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Jae Hyoung Kim
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Gyeonggido, South Korea
| | - Ki Woong Kim
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggido, South Korea; Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea; Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea.
| |
Collapse
|
11
|
Nitchingham A, Pereira JVB, Wegner EA, Oxenham V, Close J, Caplan GA. Regional cerebral hypometabolism on 18F-FDG PET/CT scan in delirium is independent of acute illness and dementia. Alzheimers Dement 2023; 19:97-106. [PMID: 35289980 PMCID: PMC10078760 DOI: 10.1002/alz.12604] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Delirium is associated with new onset dementia and accelerated cognitive decline; however, its pathophysiology remains unknown. Cerebral glucose metabolism previously seen in delirium may have been attributable to acute illness and/or dementia. We aimed to statistically map cerebral glucose metabolism attributable to delirium. METHODS We assessed cerebral glucose metabolism using 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) in sick, older patients with and without delirium, all without clinical dementia (N = 20). Strict exclusion criteria were adopted to minimize the effect of established confounders on FDG-PET. RESULTS Patients with delirium demonstrated hypometabolism in the bilateral thalami and right superior frontal, right posterior cingulate, right infero-lateral anterior temporal, and left superior parietal cortices. Regional hypometabolism correlated with delirium severity and performance on neuropsychological testing. DISCUSSION In patients with acute illness but without clinical dementia, delirium is accompanied by regional cerebral hypometabolism. While some hypometabolic regions may represent preclinical Alzheimer's disease (AD), thalamic hypometabolism is atypical of AD and consistent with the clinical features that are unique to delirium.
Collapse
Affiliation(s)
- Anita Nitchingham
- Department of Geriatric Medicine, Prince of Wales Hospital, Sydney, Australia.,Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | | | - Eva A Wegner
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia.,Department of Nuclear Medicine and PET, Prince of Wales Hospital, Sydney, Australia
| | - Vincent Oxenham
- Department of Psychology, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.,Department of Neurology, Royal North Shore Hospital, Sydney, Australia
| | - Jacqueline Close
- Department of Geriatric Medicine, Prince of Wales Hospital, Sydney, Australia.,Prince of Wales Clinical School, University of New South Wales, Sydney, Australia.,Neuroscience Research Australia, University of New South Wales, Sydney, Australia
| | - Gideon A Caplan
- Department of Geriatric Medicine, Prince of Wales Hospital, Sydney, Australia.,Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| |
Collapse
|
12
|
Sapsford TP, Johnson SR, Headrick JP, Branjerdporn G, Adhikary S, Sarfaraz M, Stapelberg NJC. Forgetful, sad and old: Do vascular cognitive impairment and depression share a common pre-disease network and how is it impacted by ageing? J Psychiatr Res 2022; 156:611-627. [PMID: 36372004 DOI: 10.1016/j.jpsychires.2022.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022]
Abstract
Vascular cognitive impairment (VCI) and depression frequently coexist in geriatric populations and reciprocally increase disease risks. We assert that a shared pre-disease state of the psycho-immune-neuroendocrine (PINE) network model mechanistically explains bidirectional associations between VCI and depression. Five pathophysiological sub-networks are identified that are shared by VCI and depression: neuroinflammation, kynurenine pathway imbalance, hypothalamic-pituitary-adrenal (HPA) axis overactivity, impaired neurotrophic support and cerebrovascular dysfunction. These do not act independently, and their complex interactions necessitate a systems biology approach to better define disease pathogenesis. The PINE network is already established in the context of non-communicable diseases (NCDs) such as depression, hypertension, atherosclerosis, coronary heart disease and type 2 diabetes mellitus. We build on previous literature to specifically explore mechanistic links between MDD and VCI in the context of PINE pathways and discuss key mechanistic commonalities linking these comorbid conditions and identify a common pre-disease state which precedes transition to VCI and MDD. We expand the model to incorporate bidirectional interactions with biological ageing. Diathesis factors for both VCI and depression feed into this network and the culmination of shared mechanisms (on an ageing substrate) lead to a critical network transition to one or both disease states. A common pre-disease state underlying VCI and depression can provide clinicians a unique opportunity for early risk assessment and intervention in disease development. Establishing the mechanistic elements and systems biology of this network can reveal early warning or predictive biomarkers together with novel therapeutic targets. Integrative studies are recommended to elucidate the dynamic networked biology of VCI and depression over time.
Collapse
Affiliation(s)
- Timothy P Sapsford
- Griffith University School of Medicine, Gold Coast, Queensland, Australia; Gold Coast Hospital and Health Service, Gold Coast, Queensland, Australia
| | - Susannah R Johnson
- Gold Coast Hospital and Health Service, Gold Coast, Queensland, Australia
| | - John P Headrick
- Griffith University School of Medicine, Gold Coast, Queensland, Australia
| | - Grace Branjerdporn
- Gold Coast Hospital and Health Service, Gold Coast, Queensland, Australia.
| | - Sam Adhikary
- Mater Young Adult Health Centre, Mater Hospital, Brisbane, Queensland, Australia
| | - Muhammad Sarfaraz
- Gold Coast Hospital and Health Service, Gold Coast, Queensland, Australia
| | - Nicolas J C Stapelberg
- Gold Coast Hospital and Health Service, Gold Coast, Queensland, Australia; Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
13
|
Chu M, Chen Z, Nie B, Liu L, Xie K, Cui Y, Chen K, Rosa-Neto P, Wu L. A longitudinal 18F-FDG PET/MRI study in asymptomatic stage of genetic Creutzfeldt-Jakob disease linked to G114V mutation. J Neurol 2022; 269:6094-6103. [PMID: 35864212 PMCID: PMC9553814 DOI: 10.1007/s00415-022-11288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Pathogenic prion protein may start to deposit in some brain regions and cause functional alterations in the asymptomatic stage in Creutzfeldt-Jakob disease. The study aims to determine the trajectory of the brain metabolic changes for prion protein diseases at the preclinical stage. METHODS At baseline, we enrolled five asymptomatic PRNP G114V mutation carriers, six affected genetic PRNP E200K CJD patients and 23 normal controls. All participants completed clinical, diffusion-weighted imaging (DWI) and 18F fluorodeoxyglucose-positron emission tomography (18F-FDG-PET) examinations. Longitudinal follow-up was completed in five asymptomatic mutation carriers. We set three-time points to identify the changing trajectory in the asymptomatic carriers group including baseline, 2-year and 4-year follow-up. RESULTS At baseline, DWI signals, the cerebral glucose standardized uptake value rate ratio (SUVR) and clinical status in 5 asymptomatic cases were normal. At the follow-up period, mild hypometabolism on PET images was found in asymptomatic carriers without any DWI abnormal signal. Further group quantitatively analysis showed hypometabolic brain regions in the asymptomatic genetic CJD group were in the insula, frontal, parietal, and temporal lobes in 4-year follow-up. The SUVR changing trajectories of all asymptomatic cases were within the range between the normal controls and affected patients. Notably, the SUVR of one asymptomatic individual whose baseline age was older showed a rapid decline at the last follow-up. CONCLUSIONS Our study illustrates that the neurodegenerative process associated with genetic CJD may initiate before the clinical presentation of the disease.
Collapse
Affiliation(s)
- Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053, China
| | - Zhongyun Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053, China
| | - Kexin Xie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053, China
| | - Yue Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053, China
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
- School of Mathematics and Statistics, Arizona State University, Phoenix, USA
| | - Pedro Rosa-Neto
- Alzheimer's Disease Research Unit, McGill Centre for Studies in Aging, Montreal, H4H 1R3, Canada
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053, China.
| |
Collapse
|
14
|
Deery HA, Di Paolo R, Moran C, Egan GF, Jamadar SD. Lower brain glucose metabolism in normal ageing is predominantly frontal and temporal: A systematic review and pooled effect size and activation likelihood estimates meta-analyses. Hum Brain Mapp 2022; 44:1251-1277. [PMID: 36269148 PMCID: PMC9875940 DOI: 10.1002/hbm.26119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 01/31/2023] Open
Abstract
This review provides a qualitative and quantitative analysis of cerebral glucose metabolism in ageing. We undertook a systematic literature review followed by pooled effect size and activation likelihood estimates (ALE) meta-analyses. Studies were retrieved from PubMed following the PRISMA guidelines. After reviewing 635 records, 21 studies with 22 independent samples (n = 911 participants) were included in the pooled effect size analyses. Eight studies with eleven separate samples (n = 713 participants) were included in the ALE analyses. Pooled effect sizes showed significantly lower cerebral metabolic rates of glucose for older versus younger adults for the whole brain, as well as for the frontal, temporal, parietal, and occipital lobes. Among the sub-cortical structures, the caudate showed a lower metabolic rate among older adults. In sub-group analyses controlling for changes in brain volume or partial volume effects, the lower glucose metabolism among older adults in the frontal lobe remained significant, whereas confidence intervals crossed zero for the other lobes and structures. The ALE identified nine clusters of lower glucose metabolism among older adults, ranging from 200 to 2640 mm3 . The two largest clusters were in the left and right inferior frontal and superior temporal gyri and the insula. Clusters were also found in the inferior temporal junction, the anterior cingulate and caudate. Taken together, the results are consistent with research showing less efficient glucose metabolism in the ageing brain. The findings are discussed in the context of theories of cognitive ageing and are compared to those found in neurodegenerative disease.
Collapse
Affiliation(s)
- Hamish A. Deery
- Turner Institute for Brain and Mental HealthMonash UniversityMelbourneAustralia,Monash Biomedical ImagingMonash UniversityMelbourneAustralia
| | - Robert Di Paolo
- Turner Institute for Brain and Mental HealthMonash UniversityMelbourneAustralia,Monash Biomedical ImagingMonash UniversityMelbourneAustralia
| | - Chris Moran
- Peninsula Clinical School, Central Clinical SchoolMonash UniversityFrankstonVictoriaAustralia,Department of Geriatric MedicinePeninsula HealthFrankstonVictoriaAustralia
| | - Gary F. Egan
- Turner Institute for Brain and Mental HealthMonash UniversityMelbourneAustralia,Monash Biomedical ImagingMonash UniversityMelbourneAustralia,Australian Research Council Centre of Excellence for Integrative Brain FunctionMelbourneAustralia
| | - Sharna D. Jamadar
- Turner Institute for Brain and Mental HealthMonash UniversityMelbourneAustralia,Monash Biomedical ImagingMonash UniversityMelbourneAustralia,Australian Research Council Centre of Excellence for Integrative Brain FunctionMelbourneAustralia
| |
Collapse
|
15
|
Healthy brain aging assessed with [ 18F]FDG and [ 11C]UCB-J PET. Nucl Med Biol 2022; 112-113:52-58. [PMID: 35820300 DOI: 10.1016/j.nucmedbio.2022.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The average human lifespan has increased dramatically over the past century. However, molecular and physiological alterations of the healthy brain during aging remain incompletely understood. Generalized synaptic restructuring may contribute to healthy aging and the reduced metabolism observed in the aged brain. The aim of this study was to assess healthy brain aging using [18F]FDG as a measure of cerebral glucose consumption and [11C]UCB-J PET as an indicator of synaptic density. METHOD Using in vivo PET imaging and the novel synaptic-vesicle-glycoprotein 2A (SV2A) radioligand [11C]UCB-J alongside with the fluorodeoxyglucose radioligand [18F]FDG, we obtained SUVR-1 values for 14 pre-defined volume-of-interest brain regions defined on MRI T1 scans. Regional differences in relative [18F]FDG and [11C]UCB-J uptake were investigated using a voxel-wise approach. Finally, correlations between [11C]UCB-J, [18F]FDG PET, and age were examined. RESULTS We found widespread cortical reduction of synaptic density in a cohort of older HC subjects (N = 15) compared with young HC subjects (N = 11). However, no reduction persisted after partial volume correction and corrections for multiple comparison. Our study confirms previously reported synaptic stability during aging. Regional differences in relative [18F]FDG and [11C]UCB-J uptake were observed with up to 20 % higher [11C]UCB-J uptake in the amygdala and temporal lobe and up to 34 % higher glucose metabolism in thalamus, striatum, occipital, parietal and frontal cortex. CONCLUSION In vivo PET using [11C]UCB-J does not support declining synaptic density levels during aging. Thus, loss of synaptic density may be unrelated to aging and does not seem to be a sufficient explanation for the recognized reduction in brain metabolism during aging. Our study also demonstrates that the relationship between glucose consumption and synaptic density is not uniform throughout the human brain with implications for our understanding of neuroenergetics.
Collapse
|
16
|
Lee J, Burkett BJ, Min HK, Senjem ML, Lundt ES, Botha H, Graff-Radford J, Barnard LR, Gunter JL, Schwarz CG, Kantarci K, Knopman DS, Boeve BF, Lowe VJ, Petersen RC, Jack CR, Jones DT. Deep learning-based brain age prediction in normal aging and dementia. NATURE AGING 2022; 2:412-424. [PMID: 37118071 PMCID: PMC10154042 DOI: 10.1038/s43587-022-00219-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/29/2022] [Indexed: 11/08/2022]
Abstract
Brain aging is accompanied by patterns of functional and structural change. Alzheimer's disease (AD), a representative neurodegenerative disease, has been linked to accelerated brain aging. Here, we developed a deep learning-based brain age prediction model using a large collection of fluorodeoxyglucose positron emission tomography and structural magnetic resonance imaging and tested how the brain age gap relates to degenerative syndromes including mild cognitive impairment, AD, frontotemporal dementia and Lewy body dementia. Occlusion analysis, performed to facilitate the interpretation of the model, revealed that the model learns an age- and modality-specific pattern of brain aging. The elevated brain age gap was highly correlated with cognitive impairment and the AD biomarker. The higher gap also showed a longitudinal predictive nature across clinical categories, including cognitively unimpaired individuals who converted to a clinical stage. However, regions generating brain age gaps were different for each diagnostic group of which the AD continuum showed similar patterns to normal aging.
Collapse
Affiliation(s)
- Jeyeon Lee
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Hoon-Ki Min
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Matthew L Senjem
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Emily S Lundt
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | - David T Jones
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
17
|
van Aalst J, Devrome M, Van Weehaeghe D, Rezaei A, Radwan A, Schramm G, Ceccarini J, Sunaert S, Koole M, Van Laere K. Regional glucose metabolic decreases with ageing are associated with microstructural white matter changes: a simultaneous PET/MR study. Eur J Nucl Med Mol Imaging 2021; 49:664-680. [PMID: 34398271 DOI: 10.1007/s00259-021-05518-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE Human ageing is associated with a regional reduction in cerebral neuronal activity as assessed by numerous studies on brain glucose metabolism and perfusion, grey matter (GM) density and white matter (WM) integrity. As glucose metabolism may impact energetics to maintain myelin integrity, but changes in functional connectivity may also alter regional metabolism, we conducted a cross-sectional simultaneous FDG PET/MR study in a large cohort of healthy volunteers with a wide age range, to directly assess the underlying associations between reduced glucose metabolism, GM atrophy and decreased WM integrity in a single ageing cohort. METHODS In 94 healthy subjects between 19.9 and 82.5 years (mean 50.1 ± 17.1; 47 M/47F, MMSE ≥ 28), simultaneous FDG-PET, structural MR and diffusion tensor imaging (DTI) were performed. Voxel-wise associations between age and grey matter (GM) density, RBV partial-volume corrected (PVC) glucose metabolism, white matter (WM) fractional anisotropy (FA) and mean diffusivity (MD), and age were assessed. Clusters representing changes in glucose metabolism correlating significantly with ageing were used as seed regions for tractography. Both linear and quadratic ageing models were investigated. RESULTS An expected age-related reduction in GM density was observed bilaterally in the frontal, lateral and medial temporal cortex, striatum and cerebellum. After PVC, relative FDG uptake was negatively correlated with age in the inferior and midfrontal, cingulate and parietal cortex and subcortical regions, bilaterally. FA decreased with age throughout the entire brain WM. Four white matter tracts were identified connecting brain regions with declining glucose metabolism with age. Within these, relative FDG uptake in both origin and target clusters correlated positively with FA (0.32 ≤ r ≤ 0.71) and negatively with MD (- 0.75 ≤ r ≤ - 0.41). CONCLUSION After appropriate PVC, we demonstrated that regional cerebral glucose metabolic declines with age and that these changes are related to microstructural changes in the interconnecting WM tracts. The temporal course and potential causality between ageing effects on glucose metabolism and WM integrity should be further investigated in longitudinal cohort PET/MR studies.
Collapse
Affiliation(s)
- June van Aalst
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Martijn Devrome
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Donatienne Van Weehaeghe
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Ahmadreza Rezaei
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Ahmed Radwan
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Georg Schramm
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium.
- UZ Leuven, Campus Gasthuisberg, Nucleaire Geneeskunde, E901, Herestraat 49, BE-3000 , Leuven, Belgium.
| |
Collapse
|
18
|
van Aalst J, Ceccarini J, Sunaert S, Dupont P, Koole M, Van Laere K. In vivo synaptic density relates to glucose metabolism at rest in healthy subjects, but is strongly modulated by regional differences. J Cereb Blood Flow Metab 2021; 41:1978-1987. [PMID: 33444094 PMCID: PMC8327121 DOI: 10.1177/0271678x20981502] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Preclinical and postmortem studies have suggested that regional synaptic density and glucose consumption (CMRGlc) are strongly related. However, the relation between synaptic density and cerebral glucose metabolism in the human brain has not directly been assessed in vivo. Using [11C]UCB-J binding to synaptic vesicle glycoprotein 2 A (SV2A) as indicator for synaptic density and [18F]FDG for measuring cerebral glucose consumption, we studied twenty healthy female subjects (age 29.6 ± 9.9 yrs) who underwent a single-day dual-tracer protocol (GE Signa PET-MR). Global measures of absolute and relative CMRGlc and specific binding of [11C]UCB-J were indeed highly significantly correlated (r > 0.47, p < 0.001). However, regional differences in relative [18F]FDG and [11C]UCB-J uptake were observed, with up to 19% higher [11C]UCB-J uptake in the medial temporal lobe (MTL) and up to 17% higher glucose metabolism in frontal and motor-related areas and thalamus. This pattern has a considerable overlap with the brain regions showing different levels of aerobic glycolysis. Regionally varying energy demands of inhibitory and excitatory synapses at rest may also contribute to this difference. Being unaffected by astroglial and/or microglial energy demands, changes in synaptic density in the MTL may therefore be more sensitive to early detection of pathological conditions compared to changes in glucose metabolism.
Collapse
Affiliation(s)
- June van Aalst
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Translational MRI, Department of Imaging and Pathology, Leuven, Belgium.,Radiology, UZ Leuven, Leuven, Belgium
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Nuclear Medicine, UZ Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Zhao Y, Liu P, Turner MP, Abdelkarim D, Lu H, Rypma B. The neural-vascular basis of age-related processing speed decline. Psychophysiology 2021; 58:e13845. [PMID: 34115388 DOI: 10.1111/psyp.13845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022]
Abstract
Most studies examining neurocognitive aging are based on the blood-oxygen level-dependent signal obtained during functional magnetic resonance imaging (fMRI). The physiological basis of this signal is neural-vascular coupling, the process by which neurons signal cerebrovasculature to dilate in response to an increase in active neural metabolism due to stimulation. These fMRI studies of aging rely on the hemodynamic equivalence assumption that this process is not disrupted by physiologic deterioration associated with aging. Studies of neural-vascular coupling challenge this assumption and show that neural-vascular coupling is closely related to cognition. In this review, we put forward a theory of processing speed decline in aging and how it is related to age-related neural-vascular coupling changes based on the results of studies elucidating the relationships between cognition, cerebrovascular dynamics, and aging.
Collapse
Affiliation(s)
- Yuguang Zhao
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| | - Peiying Liu
- School of Medicine, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Monroe P Turner
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| | - Dema Abdelkarim
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| | - Hanzhang Lu
- School of Medicine, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
20
|
Verger A, Doyen M, Campion JY, Guedj E. The pons as reference region for intensity normalization in semi-quantitative analysis of brain 18FDG PET: application to metabolic changes related to ageing in conventional and digital control databases. EJNMMI Res 2021; 11:31. [PMID: 33761019 PMCID: PMC7990981 DOI: 10.1186/s13550-021-00771-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Background The objective of the study is to define the most appropriate region for intensity normalization in brain 18FDG PET semi-quantitative analysis. The best option could be based on previous absolute quantification studies, which showed that the metabolic changes related to ageing affect the quasi-totality of brain regions in healthy subjects. Consequently, brain metabolic changes related to ageing were evaluated in two populations of healthy controls who underwent conventional (n = 56) or digital (n = 78) 18FDG PET/CT. The median correlation coefficients between age and the metabolism of each 120 atlas brain region were reported for 120 distinct intensity normalizations (according to the 120 regions). SPM linear regression analyses with age were performed on most significant normalizations (FWE, p < 0.05). Results The cerebellum and pons were the two sole regions showing median coefficients of correlation with age less than − 0.5. With SPM, the intensity normalization by the pons provided at least 1.7- and 2.5-fold more significant cluster volumes than other normalizations for conventional and digital PET, respectively. Conclusions The pons is the most appropriate area for brain 18FDG PET intensity normalization for examining the metabolic changes through ageing.
Collapse
Affiliation(s)
- A Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, 54000, Nancy, France.,IADI, INSERM U1254, Université de Lorraine, 54000, Nancy, France
| | - M Doyen
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, 54000, Nancy, France.,IADI, INSERM U1254, Université de Lorraine, 54000, Nancy, France
| | - J Y Campion
- CNRS, Ecole Centrale de Marseille, UMR 7249, Institut Fresnel, Aix-Marseille Université, Marseille, France.,CERIMED, Aix-Marseille University, Marseille, France
| | - Eric Guedj
- CNRS, Ecole Centrale de Marseille, UMR 7249, Institut Fresnel, Aix-Marseille Université, Marseille, France. .,CERIMED, Aix-Marseille University, Marseille, France. .,Department of Nuclear Medicine, Assistance Publique Hôpitaux de Marseille, Timone University Hospital, Marseille, France.
| |
Collapse
|
21
|
Kim JS, Lee S, Kim GE, Oh DJ, Moon W, Bae JB, Han JW, Byun S, Suh SW, Choi YY, Choi KY, Lee KH, Kim JH, Kim KW. Construction and validation of a cerebral white matter hyperintensity probability map of older Koreans. NEUROIMAGE-CLINICAL 2021; 30:102607. [PMID: 33711622 PMCID: PMC7972979 DOI: 10.1016/j.nicl.2021.102607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/04/2022]
Abstract
We constructed WPM from healthy elderly Koreans. WPM may serve as a tool to study pathology and normal aging of distribution of WMH. WPM provides a prominent atlas of the age related distribution of WMH.
Background and purpose Although two white matter hyperintensity (WMH) probability maps of healthy older adults already exist, they have several limitations in representing the distribution of WMH in healthy older adults, especially Asian older adults. We constructed and validated a WMH probability map (WPM) of healthy older Koreans and examined the age-associated differences of WMH. Methods We constructed WPM using development dataset that consisted of high-resolution 3D fluid-attenuated inversion recovery images of 5 age groups (60–64 years, 65–69 years, 70–74 years, 75–79 years, and 80+ years). Each age group included 30 age-matched men and women each. We tested the validity of the WPM by comparing WMH ages estimated by the WPM and the chronological ages of 30 healthy controls, 30 hypertension patients, and 30 S patients. Results Older age groups showed a higher volume of WMH in both hemispheres (p < 0.001). About 90% of the WMH were periventricular in all age groups. With advancing age, the peak of the distance histogram from the ventricular wall of the periventricular WMH shifted away from the ventricular wall, while that of deep WMH shifted toward the ventricular wall. The estimated WMH ages were comparable to the chronological ages in the healthy controls, while being higher than the chronological ages in hypertension and stroke patients. Conclusions This WPM may serve as a standard atlas in research on WMH of older adults, especially Asians.
Collapse
Affiliation(s)
- Jun Sung Kim
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Subin Lee
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Grace Eun Kim
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Dae Jong Oh
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggido, South Korea
| | - Woori Moon
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggido, South Korea
| | - Jong Bin Bae
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggido, South Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggido, South Korea
| | - Seonjeong Byun
- Department of Neuropsychiatry, National Medical Center, Seoul, South Korea
| | - Seung Wan Suh
- Department of Psychiatry, College of Medicine, Hallym University, Kangdong Sacred Heart Hospital, Seoul, South Korea
| | - Yu Yong Choi
- National Research Center for Dementia, Chosun University, Gwangju, South Korea; Biomedical Technology Center, Chosun University Hospital, Gwangju, South Korea
| | - Kyu Yeong Choi
- National Research Center for Dementia, Chosun University, Gwangju, South Korea
| | - Kun Ho Lee
- National Research Center for Dementia, Chosun University, Gwangju, South Korea; Department of Biomedical Science, Chosun University, Gwangju, South Korea
| | - Jae Hyoung Kim
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Gyeonggido, South Korea
| | - Ki Woong Kim
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea; Department of Neuropsychiatry, Seoul National University Bundang Hospital, Gyeonggido, South Korea; Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea.
| |
Collapse
|
22
|
Bahadur Patel A, Veeraiah P, Shameem M, Mahesh Kumar J, Saba K. Impaired GABAergic and glutamatergic neurometabolic activity in aged mice brain as measured by 1 H-[ 13 C]-NMR spectroscopy. FASEB J 2021; 35:e21321. [PMID: 33543543 DOI: 10.1096/fj.202001704rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023]
Abstract
Healthy aging is associated with a decline in cognitive function, and is a major risk factor for many neurodegenerative diseases. Although, there are several evidence that brain mitochondrial function is altered with aging its significance at the cellular level is elusive. In this study, we have investigated mitochondrial TCA cycle and neurotransmitter cycle fluxes associated with glutamatergic, GABAergic neurons and astroglia in the cerebral cortex and hippocampus of young (6 months) and aged (24 months) C57BL6 mice by using 1 H-[13 C]-NMR spectroscopy together with timed infusion of 13 C-labeled glucose and acetate. The ratio VCyc /VTCA was determined from a steady-state [2-13 C]acetate experiment. Metabolic fluxes were obtained by fitting a three-compartment metabolic model to 13 C turnover of amino acids from glucose. Levels of glutamate, aspartate and taurine were reduced in the cerebral cortex, while glutamine and choline were elevated in the hippocampus of aged mice. Interestingly, the rate of acetate oxidation increased in the cerebral cortex, while the flux of mitochondrial TCA cycle of glutamatergic neurons decreased in the cerebral cortex (P < .0001) and hippocampus (P = .025) of aged mice. The glutamate-glutamine neurotransmitter cycle flux was reduced in the cerebral cortex (P < .0001). The GABAergic TCA cycle flux was reduced in the cerebral cortex (P = .0008), while GABA-glutamine neurotransmitter cycling flux was also reduced in the cerebral cortex (P = .011) and hippocampus (P = .042) of aged brain. In conclusion, the reduction in excitatory and inhibitory neurotransmitter activity of glutamatergic and GABAergic neurons in the cerebral cortex and hippocampus correlates qualitatively with declined cognitive function in aged mice.
Collapse
Affiliation(s)
- Anant Bahadur Patel
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pandichelvam Veeraiah
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Mohammad Shameem
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Jerald Mahesh Kumar
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Kamal Saba
- NMR Microimaging and Spectroscopy, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
23
|
Bergeret S, Queneau M, Rodallec M, Curis E, Dumurgier J, Hugon J, Paquet C, Farid K, Baron JC. [ 18 F]FDG PET may differentiate cerebral amyloid angiopathy from Alzheimer's disease. Eur J Neurol 2021; 28:1511-1519. [PMID: 33460498 DOI: 10.1111/ene.14743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a frequent cause of both intracerebral hemorrhage (ICH) and cognitive impairment in the elderly. Diagnosis relies on the Boston criteria, which use magnetic resonance imaging markers including ≥2 exclusively lobar cerebral microbleeds (lCMBs). Although amyloid positron emission tomography (PET) may provide molecular diagnosis, its specificity relative to Alzheimer's disease (AD) is limited due to the prevalence of positive amyloid PET in cognitively normal elderly. Using early-phase 11 C-Pittsburgh compound B as surrogate for tissue perfusion, a significantly lower occipital/posterior cingulate (O/PC) tracer uptake ratio in probable CAA relative to AD was recently reported, consistent with histopathological lesion distribution. We tested whether this finding could be reproduced using [18 F]fluorodeoxyglucose (FDG)-PET, a widely available modality that correlates well with early-phase amyloid PET in both healthy subjects and AD. METHODS From a large memory clinic database, we retrospectively included 14 patients with probable CAA (Boston criteria) and 21 patients with no lCMB fulfilling AD criteria including cerebrospinal fluid biomarkers. In all, [18 F]FDG-PET/computed tomography (CT) was available as part of routine care. No subject had a clinical history of ICH. Regional standardized [18 F]FDG uptake values normalized to the pons (standard uptake value ratio [SUVr]) were obtained, and the O/PC ratio was calculated. RESULTS The SUVr O/PC ratio was significantly lower in CAA versus AD (1.02 ± 0.14 vs. 1.19 ± 0.18, respectively; p = 0.024). CONCLUSIONS Despite the small sample, our findings are consistent with the previous early-phase amyloid PET study. Thus, [18 F]FDG-PET may help differentiate CAA from AD, particularly in cases of amyloid PET positivity. Larger prospective studies, including in CAA-related ICH, are however warranted.
Collapse
Affiliation(s)
- Sébastien Bergeret
- Department of Nuclear Medicine, CHU French West Indies, Fort-de-France, France
| | - Mathieu Queneau
- Department of Nuclear Medicine, Centre Cardiologique du Nord, Saint-Denis, France
| | - Mathieu Rodallec
- Department of Radiology, Centre Cardiologique du Nord, Saint-Denis, France
| | - Emmanuel Curis
- Laboratoire de Biomathématiques, EA 7537 "BioSTM", Faculté de Pharmacie, Université de Paris, Paris, France.,Service de Biostatistiques et d'Information Médicale, Hôpital Saint-Louis, APHP, Paris, France
| | - Julien Dumurgier
- INSERM UMR-S 1144: Therapeutic Optimization in Neuropsychopharmacology, Université de Paris, Paris, France
| | - Jacques Hugon
- INSERM UMR-S 1144: Therapeutic Optimization in Neuropsychopharmacology, Université de Paris, Paris, France.,Cognitive Neurology Center, APHP, Saint-Louis Lariboisière Fernand-Widal Hospital Group, Paris, France
| | - Claire Paquet
- INSERM UMR-S 1144: Therapeutic Optimization in Neuropsychopharmacology, Université de Paris, Paris, France.,Cognitive Neurology Center, APHP, Saint-Louis Lariboisière Fernand-Widal Hospital Group, Paris, France
| | - Karim Farid
- Department of Nuclear Medicine, CHU French West Indies, Fort-de-France, France.,INSERM UMR-S 1144: Therapeutic Optimization in Neuropsychopharmacology, Université de Paris, Paris, France
| | - Jean-Claude Baron
- Department of Neurology, Sainte-Anne Hospital, Université de Paris, Paris, France.,INSERM U1266: Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
| |
Collapse
|
24
|
Dos Santos Cardoso F, Dos Santos JCC, Gonzalez-Lima F, Araújo BHS, Lopes-Martins RÁB, Gomes da Silva S. Effects of Chronic Photobiomodulation with Transcranial Near-Infrared Laser on Brain Metabolomics of Young and Aged Rats. Mol Neurobiol 2021; 58:2256-2268. [PMID: 33417219 DOI: 10.1007/s12035-020-02247-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/03/2020] [Indexed: 12/25/2022]
Abstract
Since laser photobiomodulation has been found to enhance brain energy metabolism and cognition, we conducted the first metabolomics study to systematically analyze the metabolites modified by brain photobiomodulation. Aging is often accompanied by cognitive decline and susceptibility to neurodegeneration, including deficits in brain energy metabolism and increased susceptibility of nerve cells to oxidative stress. Changes in oxidative stress and energetic homeostasis increase neuronal vulnerability, as observed in diseases related to brain aging. We evaluated and compared the cortical and hippocampal metabolic pathways of young (4 months old) and aged (20 months old) control rats with those of rats exposed to transcranial near-infrared laser over 58 consecutive days. Statistical analyses of the brain metabolomics data indicated that chronic transcranial photobiomodulation (1) significantly enhances the metabolic pathways of young rats, particularly for excitatory neurotransmission and oxidative metabolism, and (2) restores the altered metabolic pathways of aged rats towards levels found in younger rats, mainly in the cerebral cortex. These novel metabolomics findings may help complement other laser-induced neurocognitive, neuroprotective, anti-inflammatory, and antioxidant effects described in the literature.
Collapse
Affiliation(s)
- Fabrízio Dos Santos Cardoso
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Av. Cândido Xavier de Almeida e Souza, 200, Mogi das Cruzes, SP, CEP 08780-911, Brazil.,Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Júlio César Claudino Dos Santos
- Laboratory of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Francisco Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Bruno Henrique Silva Araújo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Rodrigo Álvaro Brandão Lopes-Martins
- Laboratory of Biophotonics and Experimental Therapeutics, Institute of Research and Development, University of Vale do Paraíba (UNIVAP), São José dos Campos, SP, Brazil
| | - Sérgio Gomes da Silva
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Av. Cândido Xavier de Almeida e Souza, 200, Mogi das Cruzes, SP, CEP 08780-911, Brazil. .,Centro Universitário UNIFAMINAS (UNIFAMINAS), Muriaé, MG, Brazil. .,Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil.
| |
Collapse
|
25
|
Yan X, Hu Y, Wang B, Wang S, Zhang X. Metabolic Dysregulation Contributes to the Progression of Alzheimer's Disease. Front Neurosci 2020; 14:530219. [PMID: 33250703 PMCID: PMC7674854 DOI: 10.3389/fnins.2020.530219] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease. Numerous studies have demonstrated a critical role for dysregulated glucose metabolism in its pathogenesis. In this review, we summarize metabolic alterations in aging brain and AD-related metabolic deficits associated with glucose metabolism dysregulation, glycolysis dysfunction, tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS) deficits, and pentose phosphate pathway impairment. Additionally, we discuss recent treatment strategies targeting metabolic defects in AD, including their limitations, in an effort to encourage the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yue Hu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Sijian Wang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
26
|
Zorina II, Fokina EA, Zakharova IO, Bayunova LV, Shpakov AO. Characteristics of Changes in Lipid Peroxidation and Na+/K+-ATPase Activity in the Cortex of Old Rats in Conditions of Two-Vessel Cerebral Ischemia/Reperfusion. ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s2079057020020162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Hermann B, Salah AB, Perlbarg V, Valente M, Pyatigorskaya N, Habert MO, Raimondo F, Stender J, Galanaud D, Kas A, Puybasset L, Perez P, Sitt JD, Rohaut B, Naccache L. Habituation of auditory startle reflex is a new sign of minimally conscious state. Brain 2020; 143:2154-2172. [PMID: 32582938 PMCID: PMC7364741 DOI: 10.1093/brain/awaa159] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/05/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Neurological examination of non-communicating patients relies on a few decisive items that enable the crucial distinction between vegetative state (VS)-also coined unresponsive wakefulness syndrome (UWS)-and minimally conscious state. Over the past 10 years, this distinction has proven its diagnostic value as well as its important prognostic value on consciousness recovery. However, clinicians are currently limited by three factors: (i) the current behavioural repertoire of minimally conscious state items is limited and restricted to a few cognitive domains in the goldstandard revised version of the Coma Recovery Scale; (ii) a proportion of ∼15-20% clinically VS/UWS patients are actually in a richer state than VS/UWS as evidenced by functional brain imaging; and (iii) the neurophysiological and cognitive interpretation of each minimally conscious state item is still unclear and debated. In the current study we demonstrate that habituation of the auditory startle reflex (hASR) tested at bedside constitutes a novel, simple and powerful behavioural sign that can accurately distinguish minimally conscious state from VS/UWS. In addition to enlarging the minimally conscious state items repertoire, and therefore decreasing the low sensitivity of current behavioural measures, we also provide an original and rigorous description of the neurophysiological basis of hASR through a combination of functional (high density EEG and 18F-fluorodeoxyglucose PET imaging) and structural (diffusion tensor imaging MRI) measures. We show that preservation of hASR is associated with the functional and structural integrity of a brain-scale fronto-parietal network, including prefrontal regions related to control of action and inhibition, and meso-parietal areas associated with minimally conscious and conscious states. Lastly, we show that hASR predicts 6-month improvement of consciousness. Taken together, our results show that hASR is a cortically-mediated behaviour, and suggest that it could be a new clinical item to clearly and accurately identify non-communicating patients who are in the minimally conscious state.
Collapse
Affiliation(s)
- Bertrand Hermann
- Institut du Cerveau et de la Moelle épinière - ICM, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France
- Department of Neurology, Groupe hospitalier Pitié-Salpêtrière, AP-HP, F-75013, Paris, France
- Faculté de Médecine Pitié-Salpêtrière, Sorbonne Universités, UPMC Université Paris 06, Paris, France
| | - Amina Ben Salah
- Institut du Cerveau et de la Moelle épinière - ICM, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France
| | - Vincent Perlbarg
- Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIB, F-75006, Paris, France
- BrainTale SAS, F-75013, Paris, France
| | - Mélanie Valente
- Institut du Cerveau et de la Moelle épinière - ICM, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France
- Department of Clinical Neurophysiology, Groupe hospitalier Pitié-Salpêtrière, AP-HP, F-75013, Paris, France
| | - Nadya Pyatigorskaya
- Institut du Cerveau et de la Moelle épinière - ICM, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France
- Faculté de Médecine Pitié-Salpêtrière, Sorbonne Universités, UPMC Université Paris 06, Paris, France
- Department of Neuroradiology, Groupe hospitalier Pitié-Salpêtrière, AP-HP, F-75013, Paris, France
| | - Marie-Odile Habert
- Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIB, F-75006, Paris, France
- Department of Nuclear Medicine, Groupe hospitalier Pitié-Salpêtrière, AP-HP, F-75013, Paris, France
| | - Federico Raimondo
- Institut du Cerveau et de la Moelle épinière - ICM, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Belgium
| | - Johan Stender
- Institut du Cerveau et de la Moelle épinière - ICM, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France
| | - Damien Galanaud
- Institut du Cerveau et de la Moelle épinière - ICM, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France
- Faculté de Médecine Pitié-Salpêtrière, Sorbonne Universités, UPMC Université Paris 06, Paris, France
- Department of Neuroradiology, Groupe hospitalier Pitié-Salpêtrière, AP-HP, F-75013, Paris, France
| | - Aurélie Kas
- Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIB, F-75006, Paris, France
- Department of Nuclear Medicine, Groupe hospitalier Pitié-Salpêtrière, AP-HP, F-75013, Paris, France
| | - Louis Puybasset
- Faculté de Médecine Pitié-Salpêtrière, Sorbonne Universités, UPMC Université Paris 06, Paris, France
- Sorbonne Université, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale, LIB, F-75006, Paris, France
- Department of Anesthesia and Critical Care, Multidisciplinary Intensive Care Unit, Groupe hospitalier Pitié-Salpêtrière, AP-HP, F-75013, Paris, France
| | - Pauline Perez
- Institut du Cerveau et de la Moelle épinière - ICM, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France
| | - Jacobo D Sitt
- Institut du Cerveau et de la Moelle épinière - ICM, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France
| | - Benjamin Rohaut
- Institut du Cerveau et de la Moelle épinière - ICM, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France
- Department of Neurology, Groupe hospitalier Pitié-Salpêtrière, AP-HP, F-75013, Paris, France
- Faculté de Médecine Pitié-Salpêtrière, Sorbonne Universités, UPMC Université Paris 06, Paris, France
- Department of Neurology, Columbia University, New York, NY 10027, USA
| | - Lionel Naccache
- Institut du Cerveau et de la Moelle épinière - ICM, Inserm U1127, CNRS UMR 7225, F-75013, Paris, France
- Department of Neurology, Groupe hospitalier Pitié-Salpêtrière, AP-HP, F-75013, Paris, France
- Faculté de Médecine Pitié-Salpêtrière, Sorbonne Universités, UPMC Université Paris 06, Paris, France
- Department of Clinical Neurophysiology, Groupe hospitalier Pitié-Salpêtrière, AP-HP, F-75013, Paris, France
| |
Collapse
|
28
|
Garabadu D, Agrawal N, Sharma A, Sharma S. Mitochondrial metabolism: a common link between neuroinflammation and neurodegeneration. Behav Pharmacol 2020; 30:642-652. [PMID: 31625975 DOI: 10.1097/fbp.0000000000000505] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neurodegenerative disorders have been considered as a growing health concern for decades. Increasing risk of neurodegenerative disorders creates a socioeconomic burden to both patients and care givers. Mitochondria are organelle that are involved in both neuroinflammation and neurodegeneration. There are few reports on the effect of mitochondrial metabolism on the progress of neurodegeneration and neuroinflammation. Therefore, the present review summarizes the potential contribution of mitochondrial metabolic pathways in the pathogenesis of neuroinflammation and neurodegeneration. Mitochondrial pyruvate metabolism plays a critical role in the pathogenesis of neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. However, there its potential contribution in other neurodegenerative disorders is as yet unproven. The mitochondrial pyruvate carrier and pyruvate dehydrogenase can modulate mitochondrial pyruvate metabolism to attenuate neuroinflammation and neurodegeneration. Further, it has been observed that the mitochondrial citric acid cycle can regulate the pathogenesis of neuroinflammation and neurodegeneration. Additional research should be undertaken to target tricarboxylic acid cycle enzymes to minimize the progress of neuroinflammation and neurodegeneration. It has also been observed that the mitochondrial urea cycle can potentially contribute to the progression of neurodegenerative disorders. Therefore, targeting this pathway may control the mitochondrial dysfunction-induced neuroinflammation and neurodegeneration. Furthermore, the mitochondrial malate-aspartate shuttle could be another target to control mitochondrial dysfunction-induced neuroinflammation and neurodegeneration in neurodegenerative disorders.
Collapse
Affiliation(s)
- Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | | | | | | |
Collapse
|
29
|
Tanaka H, Tarumi T, Rittweger J. Aging and Physiological Lessons from Master Athletes. Compr Physiol 2019; 10:261-296. [PMID: 31853968 DOI: 10.1002/cphy.c180041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sedentary aging is often characterized by physical dysfunction and chronic degenerative diseases. In contrast, masters athletes demonstrate markedly greater physiological function and more favorable levels of risk factors for cardiovascular disease, osteoporosis, frailty, and cognitive dysfunction than their sedentary counterparts. In many cases, age-related deteriorations of physiological functions as well as elevations in risk factors that are typically observed in sedentary adults are substantially attenuated or even absent in masters athletes. Older masters athletes possess greater functional capacity at any given age than their sedentary peers. Impressive profiles of older athletes provide insight into what is possible in human aging and place aging back into the domain of "physiology" rather than under the jurisdiction of "clinical medicine." In addition, these exceptional aging athletes can serve as a role model for the promotion of physical activity at all ages. The study of masters athletes has provided useful insight into the positive example of successful aging. To further establish and propagate masters athletics as a role model for our aging society, future research and action are needed. © 2020 American Physiological Society. Compr Physiol 10:261-296, 2020.
Collapse
Affiliation(s)
- Hirofumi Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, USA
| | - Takashi Tarumi
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.,Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA
| | - Jörn Rittweger
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
30
|
Abdelkarim D, Zhao Y, Turner MP, Sivakolundu DK, Lu H, Rypma B. A neural-vascular complex of age-related changes in the human brain: Anatomy, physiology, and implications for neurocognitive aging. Neurosci Biobehav Rev 2019; 107:927-944. [DOI: 10.1016/j.neubiorev.2019.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/02/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023]
|
31
|
Jamadar SD, Ward PGD, Li S, Sforazzini F, Baran J, Chen Z, Egan GF. Simultaneous task-based BOLD-fMRI and [18-F] FDG functional PET for measurement of neuronal metabolism in the human visual cortex. Neuroimage 2019; 189:258-266. [DOI: 10.1016/j.neuroimage.2019.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/01/2018] [Accepted: 01/03/2019] [Indexed: 01/24/2023] Open
|
32
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
33
|
Castellano CA, Hudon C, Croteau E, Fortier M, St-Pierre V, Vandenberghe C, Nugent S, Tremblay S, Paquet N, Lepage M, Fülöp T, Turcotte ÉE, Dionne IJ, Potvin O, Duchesne S, Cunnane SC. Links Between Metabolic and Structural Changes in the Brain of Cognitively Normal Older Adults: A 4-Year Longitudinal Follow-Up. Front Aging Neurosci 2019; 11:15. [PMID: 30828297 PMCID: PMC6384269 DOI: 10.3389/fnagi.2019.00015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
We aimed to longitudinally assess the relationship between changing brain energy metabolism (glucose and acetoacetate) and cognition during healthy aging. Participants aged 71 ± 5 year underwent cognitive evaluation and quantitative positron emission tomography (PET) and magnetic resonance imaging (MRI) scans at baseline (N = 25) and two (N = 25) and four (N = 16) years later. During the follow-up, the rate constant for brain extraction of glucose (Kglc) declined by 6%–12% mainly in the temporo-parietal lobes and cingulate gyri (p ≤ 0.05), whereas brain acetoacetate extraction (Kacac) and utilization remained unchanged in all brain regions (p ≥ 0.06). Over the 4 years, cognitive results remained within the normal age range but an age-related decline was observed in processing speed. Kglc in the caudate was directly related to performance on several cognitive tests (r = +0.41 to +0.43, allp ≤ 0.04). Peripheral insulin resistance assessed by the homeostasis model assessment of insulin resistance (HOMA-IR) was significantly inversely related to Kglc in the thalamus (r = −0.44, p = 0.04) and in the caudate (r = −0.43, p = 0.05), and also inversely related to executive function, attention and processing speed (r = −0.45 to −0.53, all p ≤ 0.03). We confirm in a longitudinal setting that the age-related decline in Kglc is directly associated with declining performance on some tests of cognition but does not significantly affect Kacac.
Collapse
Affiliation(s)
- Christian-Alexandre Castellano
- Research Center on Aging, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie (CIUSSS) de L'Estrie-Centre hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Carol Hudon
- Centre de Recherche sur le Vieillissement (CERVO) Brain Research Centre, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de la Capitale-Nationale, Québec, QC, Canada.,School of Psychology, Université Laval, Québec, QC, Canada
| | - Etienne Croteau
- Research Center on Aging, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie (CIUSSS) de L'Estrie-Centre hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada.,Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mélanie Fortier
- Research Center on Aging, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie (CIUSSS) de L'Estrie-Centre hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Valérie St-Pierre
- Research Center on Aging, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie (CIUSSS) de L'Estrie-Centre hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Camille Vandenberghe
- Research Center on Aging, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie (CIUSSS) de L'Estrie-Centre hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Scott Nugent
- Centre de Recherche sur le Vieillissement (CERVO) Brain Research Centre, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de la Capitale-Nationale, Québec, QC, Canada
| | - Sébastien Tremblay
- Sherbrooke Molecular Imaging Center, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nancy Paquet
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Martin Lepage
- Sherbrooke Molecular Imaging Center, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada.,CR-Centre hospitalier Universitaire de Sherbrooke (CHUS), Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie (CIUSSS) de l'Estrie-Centre hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Tamàs Fülöp
- Research Center on Aging, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie (CIUSSS) de L'Estrie-Centre hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Éric E Turcotte
- Sherbrooke Molecular Imaging Center, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada.,CR-Centre hospitalier Universitaire de Sherbrooke (CHUS), Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie (CIUSSS) de l'Estrie-Centre hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Isabelle J Dionne
- Research Center on Aging, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie (CIUSSS) de L'Estrie-Centre hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada.,Faculty of Physical Activity Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Olivier Potvin
- Centre de Recherche sur le Vieillissement (CERVO) Brain Research Centre, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de la Capitale-Nationale, Québec, QC, Canada
| | - Simon Duchesne
- Centre de Recherche sur le Vieillissement (CERVO) Brain Research Centre, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de la Capitale-Nationale, Québec, QC, Canada.,Department of Radiology, Université Laval, Québec, QC, Canada
| | - Stephen C Cunnane
- Research Center on Aging, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie (CIUSSS) de L'Estrie-Centre hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada.,Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
34
|
Hernandez AR, Hernandez CM, Campos K, Truckenbrod L, Federico Q, Moon B, McQuail JA, Maurer AP, Bizon JL, Burke SN. A Ketogenic Diet Improves Cognition and Has Biochemical Effects in Prefrontal Cortex That Are Dissociable From Hippocampus. Front Aging Neurosci 2018; 10:391. [PMID: 30559660 PMCID: PMC6286979 DOI: 10.3389/fnagi.2018.00391] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022] Open
Abstract
Age-related cognitive decline has been linked to a diverse set of neurobiological mechanisms, including bidirectional changes in proteins critical for neuron function. Importantly, these alterations are not uniform across the brain. For example, the hippocampus (HPC) and prefrontal cortex (PFC) show distinct patterns of dysfunction in advanced age. Because higher cognitive functions require large–scale interactions across prefrontal cortical and hippocampal networks, selectively targeting an alteration within one region may not broadly restore function to improve cognition. One mechanism for decline that the PFC and HPC share, however, is a reduced ability to utilize glucose for energy metabolism. Although this suggests that therapeutic strategies bypassing the need for neuronal glycolysis may be beneficial for treating cognitive aging, this approach has not been empirically tested. Thus, the current study used a ketogenic diet (KD) as a global metabolic strategy for improving brain function in young and aged rats. After 12 weeks, rats were trained to perform a spatial alternation task through an asymmetrical maze, in which one arm was closed and the other was open. Both young and aged KD-fed rats showed resilience against the anxiogenic open arm, training to alternation criterion performance faster than control animals. Following alternation testing, rats were trained to perform a cognitive dual task that required working memory while simultaneously performing a bi-conditional association task (WM/BAT), which requires PFC–HPC interactions. All KD-fed rats also demonstrated improved performance on WM/BAT. At the completion of behavioral testing, tissue punches were collected from the PFC for biochemical analysis. KD-fed rats had biochemical alterations within PFC that were dissociable from previous results in the HPC. Specifically, MCT1 and MCT4, which transport ketone bodies, were significantly increased in KD-fed rats compared to controls. GLUT1, which transports glucose across the blood brain barrier, was decreased in KD-fed rats. Contrary to previous observations within the HPC, the vesicular glutamate transporter (VGLUT1) did not change with age or diet within the PFC. The vesicular GABA transporter (VGAT), however, was increased within PFC similar to HPC. These data suggest that KDs could be optimal for enhancing large-scale network function that is critical for higher cognition.
Collapse
Affiliation(s)
- Abbi R Hernandez
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Caesar M Hernandez
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Keila Campos
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Leah Truckenbrod
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Quinten Federico
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Brianna Moon
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Joseph A McQuail
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Andrew P Maurer
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Jennifer L Bizon
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sara N Burke
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Institute on Aging, University of Florida, Gainesville, FL, United States
| |
Collapse
|
35
|
Ferrucci M, Biagioni F, Ryskalin L, Limanaqi F, Gambardella S, Frati A, Fornai F. Ambiguous Effects of Autophagy Activation Following Hypoperfusion/Ischemia. Int J Mol Sci 2018; 19:ijms19092756. [PMID: 30217100 PMCID: PMC6163197 DOI: 10.3390/ijms19092756] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/07/2023] Open
Abstract
Autophagy primarily works to counteract nutrient deprivation that is strongly engaged during starvation and hypoxia, which happens in hypoperfusion. Nonetheless, autophagy is slightly active even in baseline conditions, when it is useful to remove aged proteins and organelles. This is critical when the mitochondria and/or proteins are damaged by toxic stimuli. In the present review, we discuss to that extent the recruitment of autophagy is beneficial in counteracting brain hypoperfusion or, vice-versa, its overactivity may per se be detrimental for cell survival. While analyzing these opposite effects, it turns out that the autophagy activity is likely not to be simply good or bad for cell survival, but its role varies depending on the timing and amount of autophagy activation. This calls for the need for an appropriate autophagy tuning to guarantee a beneficial effect on cell survival. Therefore, the present article draws a theoretical pattern of autophagy activation, which is hypothesized to define the appropriate timing and intensity, which should mirrors the duration and severity of brain hypoperfusion. The need for a fine tuning of the autophagy activation may explain why confounding outcomes occur when autophagy is studied using a rather simplistic approach.
Collapse
Affiliation(s)
- Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | | | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | | | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli (IS), Italy.
| |
Collapse
|
36
|
Schütze M, de Souza Costa D, de Paula JJ, Malloy-Diniz LF, Malamut C, Mamede M, de Miranda DM, Brammer M, Romano-Silva MA. Use of machine learning to predict cognitive performance based on brain metabolism in Neurofibromatosis type 1. PLoS One 2018; 13:e0203520. [PMID: 30192842 PMCID: PMC6128556 DOI: 10.1371/journal.pone.0203520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 08/22/2018] [Indexed: 12/12/2022] Open
Abstract
Neurofibromatosis Type 1 (NF1) can cause a wide range of cognitive deficits, but its underlying nature is still unknown. We investigated the correlation between cognitive performance and specific patterns of resting-state brain metabolism in a NF1 sample. Sixteen individuals diagnosed with NF1 underwent 18F-FDG PET/CT brain imaging followed by a neuropsychological assessment. Principal component analysis was performed on 17 measures of cognitive function and a machine learning approach based on Gaussian Process Regression was used to individually predict the components that represented most of the variance in the neuropsychological data. The accuracy of the method was estimated using leave-one-out cross-validation and its significance through permutation testing. We found that only the first component could be accurately predicted from resting state metabolism (r = 0.926, p<0.001). Multiple and heterogeneous measures contribute to the first component, mainly WISC/WAIS Procedure and Verbal IQ, verbal memory and fluency. Considering the accurate prediction of measures of neuropsychological performance based on brain metabolism in NF1 patients, this suggests an underlying metabolic pattern that relates to cognitive performance in this group.
Collapse
Affiliation(s)
- Manuel Schütze
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- * E-mail:
| | - Danielle de Souza Costa
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jonas Jardim de Paula
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leandro Fernandes Malloy-Diniz
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carlos Malamut
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centro de Desenvolvimento da Tecnologia Nuclear, Comissão Nacional de Energia Nuclear, Belo Horizonte, Brazil
| | - Marcelo Mamede
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Anatomia e Imagem, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Débora Marques de Miranda
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michael Brammer
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Neuroimaging, Institute of Psychiatry, London, United Kingdom
| | - Marco Aurélio Romano-Silva
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
37
|
Marin MA, Carmichael ST. Stroke in CNS white matter: Models and mechanisms. Neurosci Lett 2018; 684:193-199. [PMID: 30098384 DOI: 10.1016/j.neulet.2018.07.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/03/2018] [Accepted: 07/30/2018] [Indexed: 12/14/2022]
Abstract
White matter stroke (WMS) is a debilitating disorder, which is characterized by the formation of ischemic lesions along subcortical white matter tracts of the central nervous system. Initial infarction during the early stages of the disease is often asymptomatic and is thus considered a form of silent stroke. However, over time lesions accumulate, resulting in severe cognitive and motor decline of which there are no known therapies. Functional imaging and post mortem analysis of patients demonstrates a loss of oligodendrocytes and the subsequent damage of myelin as a primary hallmark of WMS lesions. Though the adult mammalian brain maintains the capacity to regenerate adult oligodendrocytes, this process is blocked in the infarcted white matter thereby preventing remyelination. Recent evidence suggests that activation of neural circuits via motor training or direct stimulation drives oligodendrogenesis and de novo myelin synthesis, opening a potential avenue for therapy in WMS.
Collapse
Affiliation(s)
- Miguel Alejandro Marin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 9009, United States.
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 9009, United States.
| |
Collapse
|
38
|
Longitudinal effects of aging on 18F-FDG distribution in cognitively normal elderly individuals. Sci Rep 2018; 8:11557. [PMID: 30068919 PMCID: PMC6070529 DOI: 10.1038/s41598-018-29937-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/18/2018] [Indexed: 11/25/2022] Open
Abstract
Previous studies of aging effects on fluorine-18-labeled fluorodeoxyglucose (18F-FDG) distribution have employed cross-sectional designs. We examined aging effects on 18F-FDG distribution using both cross-sectional and longitudinal assessments. We obtained two 18F-FDG positron emission tomography scans at two different time points from 107 cognitively normal elderly participants. The participants’ mean ages at baseline and second scans were 67.9 and 75.7, respectively. The follow-up period ranged from 4 to 11 years with a mean of 7.8 years. The voxel-wise analysis revealed significant clusters in which 18F-FDG uptake was decreased between baseline and second scans (p < 0.05, family-wise error corrected) in the anterior cingulate cortex (ACC), posterior cingulate cortex/precuneus (PCC/PC), and lateral parietal cortex (LPC). The cross-sectional analysis of 18F-FDG uptake and age showed significant correlations in the ACC (p = 0.016) but not the PCC/PC (p = 0.240) at baseline, and in the ACC (p = 0.004) and PCC/PC (p = 0.002) at the second scan. The results of longitudinal assessments suggested that 18F-FDG uptake in the ACC, PCC/PC, and LPC decreased with advancing age in cognitively normal elderly individuals, and those of the cross-sectional assessments suggested that the trajectories of age-associated 18F-FDG decreases differed between the ACC and PCC/PC.
Collapse
|
39
|
Zhang N, Gordon ML, Ma Y, Chi B, Gomar JJ, Peng S, Kingsley PB, Eidelberg D, Goldberg TE. The Age-Related Perfusion Pattern Measured With Arterial Spin Labeling MRI in Healthy Subjects. Front Aging Neurosci 2018; 10:214. [PMID: 30065646 PMCID: PMC6056623 DOI: 10.3389/fnagi.2018.00214] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 06/25/2018] [Indexed: 01/12/2023] Open
Abstract
Aim: To analyze age-related cerebral blood flow (CBF) using arterial spin labeling (ASL) MRI in healthy subjects with multivariate principal component analysis (PCA). Methods: 50 healthy subjects (mean age 45.8 ± 18.5 years, range 21-85) had 3D structural MRI and pseudo-continuous ASL MRI at resting state. The relationship between CBF and age was examined with voxel-based univariate analysis using multiple regression and two-sample t-test (median age 41.8 years as a cut-off). An age-related CBF pattern was identified using multivariate PCA. Results: Age correlated negatively with CBF especially anteriorly and in the cerebellum. After adjusting by global value, CBF was relatively decreased with aging in certain regions and relatively increased in others. The age-related CBF pattern showed relative reductions in frontal and parietal areas and cerebellum, and covarying increases in temporal and occipital areas. Subject scores of this pattern correlated negatively with age (R2 = 0.588; P < 0.001) and discriminated between the older and younger subgroups (P < 0.001). Conclusion: A distinct age-related CBF pattern can be identified with multivariate PCA using ASL MRI.
Collapse
Affiliation(s)
- Nan Zhang
- The Litwin-Zucker Research Center, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Marc L. Gordon
- The Litwin-Zucker Research Center, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hofstra University, Hepstead, NY, United States
| | - Yilong Ma
- Center for Neurosciences, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Bradley Chi
- Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hofstra University, Hepstead, NY, United States
| | - Jesus J. Gomar
- The Litwin-Zucker Research Center, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Shichun Peng
- Center for Neurosciences, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Peter B. Kingsley
- Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hofstra University, Hepstead, NY, United States
- Department of Radiology, North Shore University Hospital, Northwell Health, Manhasset, NY, United States
| | - David Eidelberg
- Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hofstra University, Hepstead, NY, United States
- Center for Neurosciences, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Terry E. Goldberg
- The Litwin-Zucker Research Center, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hofstra University, Hepstead, NY, United States
| |
Collapse
|
40
|
Choi H, Kang H, Lee DS. Predicting Aging of Brain Metabolic Topography Using Variational Autoencoder. Front Aging Neurosci 2018; 10:212. [PMID: 30050430 PMCID: PMC6052253 DOI: 10.3389/fnagi.2018.00212] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/22/2018] [Indexed: 11/13/2022] Open
Abstract
Predicting future brain topography can give insight into neural correlates of aging and neurodegeneration. Due to variability in the aging process, it has been challenging to precisely estimate brain topographical change according to aging. Here, we predict age-related brain metabolic change by generating future brain 18F-Fluorodeoxyglucose PET. A cross-sectional PET dataset of cognitively normal subjects with different age was used to develop a generative model. The model generated PET images using age information and characteristic individual features. Predicted regional metabolic changes were correlated with the real changes obtained by follow-up data. This model was applied to produce a brain metabolism aging movie by generating PET at different ages. Normal population distribution of brain metabolic topography at each age was estimated as well. In addition, a generative model using APOE4 status as well as age as inputs revealed a significant effect of APOE4 status on age-related metabolic changes particularly in the calcarine, lingual cortex, hippocampus, and amygdala. It suggested APOE4 could be a factor affecting individual variability in age-related metabolic degeneration in normal elderly. This predictive model may not only be extended to understanding the cognitive aging process, but apply to the development of a preclinical biomarker for various brain disorders.
Collapse
Affiliation(s)
- Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyejin Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Korea Brain Research Institute, Daegu, South Korea
| | | |
Collapse
|
41
|
Wilson CA, Saklofske DH. The relationship between trait emotional intelligence, resiliency, and mental health in older adults: the mediating role of savouring. Aging Ment Health 2018; 22:646-654. [PMID: 28282726 DOI: 10.1080/13607863.2017.1292207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The present study explores savouring, defined as the process of attending to positive experiences, as a mediator in the relationships between resiliency, trait emotional intelligence (EI), and subjective mental health in older adults. Following Fredrickson's Broaden and Build Theory of positive emotions, the present study aims to extend our understanding of the underlying processes that link resiliency and trait EI with self-reported mental health in older adulthood. METHOD A sample of 149 adults aged 65 and over (M = 73.72) were recruited from retirement homes and community groups. Participants completed measures of resiliency, savouring, trait EI, and subjective mental health either online or in a paper format. RESULTS Path analysis revealed that savouring fully mediated the relationship between resiliency and mental health. However, trait EI did not significantly predict mental health in this sample. CONCLUSION These findings provided partial support for the Broaden and Build Theory of positive emotions. As anticipated, savouring imitated the broadening effect of positive emotions by mediating the relationship between resiliency and mental health. However, savouring failed to reflect the undoing effect of positive emotions and did not mediate the relationship between EI and mental health. These findings have implications for positive psychology exercises and may be a simple, yet effective means of improving the life quality of older adults.
Collapse
Affiliation(s)
- Claire A Wilson
- a Department of Psychology , University of Western Ontario , London , ON N6A 5C2, Canada
| | - Donald H Saklofske
- a Department of Psychology , University of Western Ontario , London , ON N6A 5C2, Canada
| |
Collapse
|
42
|
Tarumi T, Zhang R. Cerebral blood flow in normal aging adults: cardiovascular determinants, clinical implications, and aerobic fitness. J Neurochem 2018; 144:595-608. [PMID: 28986925 PMCID: PMC5874160 DOI: 10.1111/jnc.14234] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/05/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022]
Abstract
Senescence is a leading cause of mortality, disability, and non-communicable chronic diseases in older adults. Mounting evidence indicates that the presence of cardiovascular disease and risk factors elevates the incidence of both vascular cognitive impairment and Alzheimer's disease (AD). Age-related declines in cardiovascular function may impair cerebral blood flow (CBF) regulation, leading to the disruption of neuronal micro-environmental homeostasis. The brain is the most metabolically active organ with limited intracellular energy storage and critically depends on CBF to sustain neuronal metabolism. In patients with AD, cerebral hypoperfusion, increased CBF pulsatility, and impaired blood pressure control during orthostatic stress have been reported, indicating exaggerated, age-related decline in both cerebro- and cardiovascular function. Currently, AD lacks effective treatments; therefore, the development of preventive strategy is urgently needed. Regular aerobic exercise improves cardiovascular function, which in turn may lead to a better CBF regulation, thus reducing the dementia risk. In this review, we discuss the effects of aging on cardiovascular regulation of CBF and provide new insights into the vascular mechanisms of cognitive impairment and potential effects of aerobic exercise training on CBF regulation. This article is part of the Special Issue "Vascular Dementia".
Collapse
Affiliation(s)
- Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (8200 Walnut Hill Ln, Dallas, TX, USA 75231)
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center (5323 Harry Hines Blvd, TX, USA 75390)
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (8200 Walnut Hill Ln, Dallas, TX, USA 75231)
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center (5323 Harry Hines Blvd, TX, USA 75390)
- Department of Internal Medicine, University of Texas Southwestern Medical Center (5323 Harry Hines Blvd, TX, USA 75390)
| |
Collapse
|
43
|
|
44
|
Probasco JC, Solnes L, Nalluri A, Cohen J, Jones KM, Zan E, Javadi MS, Venkatesan A. Decreased occipital lobe metabolism by FDG-PET/CT: An anti-NMDA receptor encephalitis biomarker. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 5:e413. [PMID: 29159205 PMCID: PMC5688263 DOI: 10.1212/nxi.0000000000000413] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/28/2017] [Indexed: 01/17/2023]
Abstract
Objective: To compare brain metabolism patterns on fluorodeoxyglucose (FDG)-PET/CT in anti–NMDA receptor and other definite autoimmune encephalitis (AE) and to assess how these patterns differ between anti–NMDA receptor neurologic disability groups. Methods: Retrospective review of clinical data and initial dedicated brain FDG-PET/CT studies for neurology inpatients with definite AE, per published consensus criteria, treated at a single academic medical center over a 10-year period. Z-score maps of FDG-PET/CT were made using 3-dimensional stereotactic surface projections in comparison to age group–matched controls. Brain region mean Z scores with magnitudes ≥2.00 were interpreted as significant. Comparisons were made between anti–NMDA receptor and other definite AE patients as well as among patients with anti–NMDA receptor based on modified Rankin Scale (mRS) scores at the time of FDG-PET/CT. Results: The medial occipital lobes were markedly hypometabolic in 6 of 8 patients with anti–NMDA receptor encephalitis and as a group (Z = −4.02, interquartile range [IQR] 2.14) relative to those with definite AE (Z = −2.32, 1.46; p = 0.004). Among patients with anti–NMDA receptor encephalitis, the lateral and medial occipital lobes were markedly hypometabolic for patients with mRS 4–5 (lateral occipital lobe Z = −3.69, IQR 1; medial occipital lobe Z = −4.08, 1) compared with those with mRS 0–3 (lateral occipital lobe Z = −0.83, 2; p < 0.0005; medial occipital lobe Z = −1.07, 2; p = 0.001). Conclusions: Marked medial occipital lobe hypometabolism by dedicated brain FDG-PET/CT may serve as an early biomarker for discriminating anti–NMDA receptor encephalitis from other AE. Resolution of lateral and medial occipital hypometabolism may correlate with improved neurologic status in anti–NMDA receptor encephalitis.
Collapse
Affiliation(s)
- John C Probasco
- Department of Neurology (J.C.P., A.N., J.C., A.V.), Johns Hopkins Encephalitis Center; Department of Neurology (J.C.P.), Johns Hopkins Center for Refractory Status Epilepticus and Neuroinflammation; and Russell H. Morgan Department of Radiology and Radiological Sciences (L.S., K.M.J., E.Z., M.S.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lilja Solnes
- Department of Neurology (J.C.P., A.N., J.C., A.V.), Johns Hopkins Encephalitis Center; Department of Neurology (J.C.P.), Johns Hopkins Center for Refractory Status Epilepticus and Neuroinflammation; and Russell H. Morgan Department of Radiology and Radiological Sciences (L.S., K.M.J., E.Z., M.S.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Abhinav Nalluri
- Department of Neurology (J.C.P., A.N., J.C., A.V.), Johns Hopkins Encephalitis Center; Department of Neurology (J.C.P.), Johns Hopkins Center for Refractory Status Epilepticus and Neuroinflammation; and Russell H. Morgan Department of Radiology and Radiological Sciences (L.S., K.M.J., E.Z., M.S.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jesse Cohen
- Department of Neurology (J.C.P., A.N., J.C., A.V.), Johns Hopkins Encephalitis Center; Department of Neurology (J.C.P.), Johns Hopkins Center for Refractory Status Epilepticus and Neuroinflammation; and Russell H. Morgan Department of Radiology and Radiological Sciences (L.S., K.M.J., E.Z., M.S.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Krystyna M Jones
- Department of Neurology (J.C.P., A.N., J.C., A.V.), Johns Hopkins Encephalitis Center; Department of Neurology (J.C.P.), Johns Hopkins Center for Refractory Status Epilepticus and Neuroinflammation; and Russell H. Morgan Department of Radiology and Radiological Sciences (L.S., K.M.J., E.Z., M.S.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elcin Zan
- Department of Neurology (J.C.P., A.N., J.C., A.V.), Johns Hopkins Encephalitis Center; Department of Neurology (J.C.P.), Johns Hopkins Center for Refractory Status Epilepticus and Neuroinflammation; and Russell H. Morgan Department of Radiology and Radiological Sciences (L.S., K.M.J., E.Z., M.S.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mehrbod S Javadi
- Department of Neurology (J.C.P., A.N., J.C., A.V.), Johns Hopkins Encephalitis Center; Department of Neurology (J.C.P.), Johns Hopkins Center for Refractory Status Epilepticus and Neuroinflammation; and Russell H. Morgan Department of Radiology and Radiological Sciences (L.S., K.M.J., E.Z., M.S.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Arun Venkatesan
- Department of Neurology (J.C.P., A.N., J.C., A.V.), Johns Hopkins Encephalitis Center; Department of Neurology (J.C.P.), Johns Hopkins Center for Refractory Status Epilepticus and Neuroinflammation; and Russell H. Morgan Department of Radiology and Radiological Sciences (L.S., K.M.J., E.Z., M.S.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
45
|
Thomsen MS, Routhe LJ, Moos T. The vascular basement membrane in the healthy and pathological brain. J Cereb Blood Flow Metab 2017; 37:3300-3317. [PMID: 28753105 PMCID: PMC5624399 DOI: 10.1177/0271678x17722436] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 12/24/2022]
Abstract
The vascular basement membrane contributes to the integrity of the blood-brain barrier (BBB), which is formed by brain capillary endothelial cells (BCECs). The BCECs receive support from pericytes embedded in the vascular basement membrane and from astrocyte endfeet. The vascular basement membrane forms a three-dimensional protein network predominantly composed of laminin, collagen IV, nidogen, and heparan sulfate proteoglycans that mutually support interactions between BCECs, pericytes, and astrocytes. Major changes in the molecular composition of the vascular basement membrane are observed in acute and chronic neuropathological settings. In the present review, we cover the significance of the vascular basement membrane in the healthy and pathological brain. In stroke, loss of BBB integrity is accompanied by upregulation of proteolytic enzymes and degradation of vascular basement membrane proteins. There is yet no causal relationship between expression or activity of matrix proteases and the degradation of vascular matrix proteins in vivo. In Alzheimer's disease, changes in the vascular basement membrane include accumulation of Aβ, composite changes, and thickening. The physical properties of the vascular basement membrane carry the potential of obstructing drug delivery to the brain, e.g. thickening of the basement membrane can affect drug delivery to the brain, especially the delivery of nanoparticles.
Collapse
Affiliation(s)
- Maj S Thomsen
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lisa J Routhe
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Torben Moos
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
46
|
Hoffman JD, Parikh I, Green SJ, Chlipala G, Mohney RP, Keaton M, Bauer B, Hartz AMS, Lin AL. Age Drives Distortion of Brain Metabolic, Vascular and Cognitive Functions, and the Gut Microbiome. Front Aging Neurosci 2017; 9:298. [PMID: 28993728 PMCID: PMC5622159 DOI: 10.3389/fnagi.2017.00298] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
Advancing age is the top risk factor for the development of neurodegenerative disorders, including Alzheimer's disease (AD). However, the contribution of aging processes to AD etiology remains unclear. Emerging evidence shows that reduced brain metabolic and vascular functions occur decades before the onset of cognitive impairments, and these reductions are highly associated with low-grade, chronic inflammation developed in the brain over time. Interestingly, recent findings suggest that the gut microbiota may also play a critical role in modulating immune responses in the brain via the brain-gut axis. In this study, our goal was to identify associations between deleterious changes in brain metabolism, cerebral blood flow (CBF), gut microbiome and cognition in aging, and potential implications for AD development. We conducted our study with a group of young mice (5-6 months of age) and compared those to old mice (18-20 months of age) by utilizing metabolic profiling, neuroimaging, gut microbiome analysis, behavioral assessments and biochemical assays. We found that compared to young mice, old mice had significantly increased levels of numerous amino acids and fatty acids that are highly associated with inflammation and AD biomarkers. In the gut microbiome analyses, we found that old mice had increased Firmicutes/Bacteroidetes ratio and alpha diversity. We also found impaired blood-brain barrier (BBB) function and reduced CBF as well as compromised learning and memory and increased anxiety, clinical symptoms often seen in AD patients, in old mice. Our study suggests that the aging process involves deleterious changes in brain metabolic, vascular and cognitive functions, and gut microbiome structure and diversity, all which may lead to inflammation and thus increase the risk for AD. Future studies conducting comprehensive and integrative characterization of brain aging, including crosstalk with peripheral systems and factors, will be necessary to define the mechanisms underlying the shift from normal aging to pathological processes in the etiology of AD.
Collapse
Affiliation(s)
- Jared D Hoffman
- Sanders-Brown Center on Aging, University of KentuckyLexington, KY, United States.,Depatment of Pharmacology and Nutritional Science, University of KentuckyLexington, KY, United States
| | - Ishita Parikh
- Sanders-Brown Center on Aging, University of KentuckyLexington, KY, United States
| | - Stefan J Green
- Research Resources Center, University of Illinois at ChicagoChicago, IL, United States
| | - George Chlipala
- Research Resources Center, University of Illinois at ChicagoChicago, IL, United States
| | | | | | - Bjoern Bauer
- Department of Pharmaceutical Sciences, University of KentuckyLexington, KY, United States
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of KentuckyLexington, KY, United States.,Depatment of Pharmacology and Nutritional Science, University of KentuckyLexington, KY, United States
| | - Ai-Ling Lin
- Sanders-Brown Center on Aging, University of KentuckyLexington, KY, United States.,Depatment of Pharmacology and Nutritional Science, University of KentuckyLexington, KY, United States.,Department of Engineering, University of KentuckyLexington, KY, United States
| |
Collapse
|
47
|
Liao X, Wang K, Lin K, Chan RCK, Zhang X. Neural Temporal Dynamics of Facial Emotion Processing: Age Effects and Relationship to Cognitive Function. Front Psychol 2017; 8:1110. [PMID: 28713312 PMCID: PMC5492800 DOI: 10.3389/fpsyg.2017.01110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/15/2017] [Indexed: 11/26/2022] Open
Abstract
This study used event-related potentials (ERPs) to investigate the effects of age on neural temporal dynamics of processing task-relevant facial expressions and their relationship to cognitive functions. Negative (sad, afraid, angry, and disgusted), positive (happy), and neutral faces were presented to 30 older and 31 young participants who performed a facial emotion categorization task. Behavioral and ERP indices of facial emotion processing were analyzed. An enhanced N170 for negative faces, in addition to intact right-hemispheric N170 for positive faces, was observed in older adults relative to their younger counterparts. Moreover, older adults demonstrated an attenuated within-group N170 laterality effect for neutral faces, while younger adults showed the opposite pattern. Furthermore, older adults exhibited sustained temporo-occipital negativity deflection over the time range of 200–500 ms post-stimulus, while young adults showed posterior positivity and subsequent emotion-specific frontal negativity deflections. In older adults, decreased accuracy for labeling negative faces was positively correlated with Montreal Cognitive Assessment Scores, and accuracy for labeling neutral faces was negatively correlated with age. These findings suggest that older people may exert more effort in structural encoding for negative faces and there are different response patterns for the categorization of different facial emotions. Cognitive functioning may be related to facial emotion categorization deficits observed in older adults. This may not be attributable to positivity effects: it may represent a selective deficit for the processing of negative facial expressions in older adults.
Collapse
Affiliation(s)
- Xiaoyan Liao
- Department of Psychology, School of Public Health, Southern Medical UniversityGuangzhou, China.,Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Kui Wang
- Neuropsychology and Applied Cognitive Neurosciences Laboratory, Institute of Psychology, Chinese Academy of SciencesBeijing, China.,CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China
| | - Kai Lin
- Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neurosciences Laboratory, Institute of Psychology, Chinese Academy of SciencesBeijing, China.,CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China
| | - Xiaoyuan Zhang
- Department of Psychology, School of Public Health, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
48
|
Nicholas CR, Hoscheidt SM, Clark LR, Racine AM, Berman SE, Koscik RL, Maritza Dowling N, Asthana S, Christian BT, Sager MA, Johnson SC. Positive affect predicts cerebral glucose metabolism in late middle-aged adults. Soc Cogn Affect Neurosci 2017; 12:993-1000. [PMID: 28402542 PMCID: PMC5472120 DOI: 10.1093/scan/nsx027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/01/2017] [Indexed: 11/13/2022] Open
Abstract
Positive affect is associated with a number of health benefits; however, few studies have examined the relationship between positive affect and cerebral glucose metabolism, a key energy source for neuronal function and a possible index of brain health. We sought to determine if positive affect was associated with cerebral glucose metabolism in late middle-aged adults (n = 133). Participants completed the positive affect subscale of the Center for Epidemiological Studies Depression Scale at two time points over a two-year period and underwent 18F-fluorodeoxyglucose-positron emission tomography scanning. After controlling for age, sex, perceived health status, depressive symptoms, anti-depressant use, family history of Alzheimer’s disease, APOE ε4 status and interval between visits, positive affect was associated with greater cerebral glucose metabolism across para-/limbic, frontal, temporal and parietal regions. Our findings provide evidence that positive affect in late midlife is associated with greater brain health in regions involved in affective processing and also known to be susceptible to early neuropathological processes. The current findings may have implications for interventions aimed at increasing positive affect to attenuate early neuropathological changes in at-risk individuals.
Collapse
Affiliation(s)
- Christopher R Nicholas
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI, USA.,Wisconsin Alzheimer's Institute University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Siobhan M Hoscheidt
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Lindsay R Clark
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI, USA.,Wisconsin Alzheimer's Institute University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Annie M Racine
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sara E Berman
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rebecca L Koscik
- Wisconsin Alzheimer's Institute University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - N Maritza Dowling
- Department of Biostatistics & Research, School of Nursing, George Washington University, Washington, DC, USA
| | - Sanjay Asthana
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI, USA.,Wisconsin Alzheimer's Institute University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bradley T Christian
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mark A Sager
- Wisconsin Alzheimer's Institute University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Geriatric Research Education and Clinical Center, Wm. S. Middleton Veterans Hospital, Madison, WI, USA.,Wisconsin Alzheimer's Institute University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Non-invasive neuroimaging methods have been developed as powerful tools for identifying in vivo brain functions for studies in humans and animals. Here we review the imaging biomarkers that are being used to determine the changes within brain metabolic and vascular functions induced by caloric restriction (CR), and their potential usefulness for future studies with dietary interventions in humans. RECENT FINDINGS CR causes an early shift in brain metabolism of glucose to ketone bodies, and enhances ATP production, neuronal activity and cerebral blood flow (CBF). With age, CR preserves mitochondrial activity, neurotransmission, CBF, and spatial memory. CR also reduces anxiety in aging mice. Neuroimaging studies in humans show that CR restores abnormal brain activity in the amygdala of women with obesity and enhances brain connectivity in old adults. SUMMARY Neuroimaging methods have excellent translational values and can be widely applied in future studies to identify dietary effects on brain functions in humans.
Collapse
|
50
|
Nam HY, Jun S, Pak K, Kim IJ. Concurrent Low Brain and High Liver Uptake on FDG PET Are Associated with Cardiovascular Risk Factors. Korean J Radiol 2017; 18:392-401. [PMID: 28246520 PMCID: PMC5313528 DOI: 10.3348/kjr.2017.18.2.392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022] Open
Abstract
Objective Concurrent low brain and high liver uptake are sometimes observed on fluorine-18-labeled fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET). We investigated the potential clinical significance of this uptake pattern related to metabolic syndrome (MS). Materials and Methods We retrospectively reviewed data from 264 consecutive males who had undergone general health check-ups, including FDG PET/CT scans. After an overnight fast, the men had their peripheral blood drawn and the levels of various laboratory parameters measured; an FDG PET/CT scan was performed on the same day. We measured the maximum standardized uptake values of the brain and liver from regions of interest manually placed over the frontal cortex at the level of the centrum semiovale and the right lobe of the liver parenchyma, respectively. Results Fasting blood glucose (FBG; odds ratio [OR] = 1.063, p < 0.001) and glycated hemoglobin (HbA1c; OR = 3.634, p = 0.010) were the strongest predictive factors for low brain FDG uptake, whereas waist circumference (OR = 1.200, p < 0.001) and γ-glutamyl transpeptidase (OR = 1.012, p = 0.001) were the strongest predictive factors for high liver uptake. Eleven subjects (4.2%) showed concurrent low brain and high liver FDG uptake, and all but one of these subjects (90.9%) had MS. Systolic blood pressure, waist circumference, FBG, triglyceride, alanine aminotransferase, insulin resistance (measured by homeostasis model assessment), insulin, HbA1c, and body mass index were higher in subjects with this FDG uptake pattern than in those without (all, p < 0.001). Conclusion Concurrent low brain and high liver FDG uptake were closely associated with MS. Moreover, subjects with this pattern had higher values for various cardiovascular risk factors than did those without.
Collapse
Affiliation(s)
- Hyun-Yeol Nam
- Department of Nuclear Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Korea
| | - Sungmin Jun
- Department of Nuclear Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan 49267, Korea
| | - Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea
| | - In Joo Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea
| |
Collapse
|