1
|
Dinkelbach L, Südmeyer M, Hartmann CJ, Roeber S, Arzberger T, Felsberg J, Ferrea S, Moldovan AS, Amunts K, Schnitzler A, Caspers S. Somatosensory area 3b is selectively unaffected in corticobasal syndrome: combining MRI and histology. Neurobiol Aging 2020; 94:89-100. [PMID: 32593032 DOI: 10.1016/j.neurobiolaging.2020.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/04/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
An increasing number of neuroimaging studies addressing patients with corticobasal syndrome use macroscopic definitions of brain regions. As a closer link to functionally relevant units, we aimed at identifying magnetic resonance-based atrophy patterns in regions defined by probability maps of cortical microstructure. For this purpose, three analyses were conducted: (1) Whole-brain cortical thickness was compared between 36 patients with corticobasal syndrome and 24 controls. A pattern of pericentral atrophy was found, covering primary motor area 4, premotor area 6, and primary somatosensory areas 1, 2, and 3a. Within the central region, only area 3b was without atrophy. (2) In 18 patients, longitudinal measures with follow-ups of up to 59 months (mean 21.3 ± 15.4) were analyzed. Areas 1, 2, and 6 showed significantly faster atrophy rates than primary somatosensory area 3b. (3) In an individual autopsy case, longitudinal in vivo morphometry and postmortem pathohistology were conducted. The rate of magnetic resonance-based atrophy was significantly correlated with tufted-astrocyte load in those cytoarchitectonically defined regions also seen in the group study, with area 3b being selectively unaffected.
Collapse
Affiliation(s)
- Lars Dinkelbach
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Institute for Anatomy I, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Martin Südmeyer
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Neurology, Ernst von Bergmann Klinikum, Potsdam, Germany
| | - Christian Johannes Hartmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Neurology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Sigrun Roeber
- Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Jörg Felsberg
- Department of Neuropathology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Stefano Ferrea
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Alexia-Sabine Moldovan
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Neurology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Department of Neurology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute for Anatomy I, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
2
|
Liachenko S, Ramu J, Paule MG, Hanig J. Comparison of quantitative T 2 and ADC mapping in the assessment of 3-nitropropionic acid-induced neurotoxicity in rats. Neurotoxicology 2018; 65:52-59. [PMID: 29427612 DOI: 10.1016/j.neuro.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/05/2018] [Indexed: 10/18/2022]
Abstract
To assess the relative performance of MRI T2 relaxation and ADC mapping as potential biomarkers of neurotoxicity, a model of 3-nitropropionic acid (NP)-induced neurodegeneration in rats was employed. Male Sprague-Dawley rats received NP (N = 20, 16-20 mg/kg, ip or sc) or saline (N = 6, 2 ml/kg, ip) daily for 3 days. MRI was performed using a 7 T system employing quantitative T2 and ADC mapping based on spin echo pulse sequence. All maps were skull stripped and co-registered and the changes were quantified using baseline subtraction and anatomical segmentation. Following the in vivo portion of the study, rat brains were histologically examined. Four NP-treated rats were considered responders based on their MRI and histology data. T2 values always increased in the presence of toxicity, while ADC changes were bidirectional, decreasing in some lesion areas and increasing in others. In contrast to T2 in some cases, ADC did not change. The effect sizes of T2 and ADC signals suggestive of neurotoxicity were 2.64 and 1.66, respectively, and the variability of averaged T2 values among anatomical regions was consistently lower than that for ADC. The histopathology data confirmed the presence of neurotoxicity, however, a more detailed assessment of the correlation of MRI with histology is needed. T2 mapping provides more sensitive and specific information than ADC about changes in the rat brain thought to be associated with neurotoxicity due to a higher signal-to-noise ratio, better resolution, and unidirectional changes, and presents a better opportunity for biomarker development.
Collapse
Affiliation(s)
- Serguei Liachenko
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States.
| | - Jaivijay Ramu
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Merle G Paule
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Joseph Hanig
- Center for Drug Evaluation and Research, US Food and Drug Administration, White Oak, MD, United States
| |
Collapse
|
4
|
Stefanova N, Tison F, Reindl M, Poewe W, Wenning GK. Animal models of multiple system atrophy. Trends Neurosci 2005; 28:501-6. [PMID: 16043239 DOI: 10.1016/j.tins.2005.07.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/27/2005] [Accepted: 07/12/2005] [Indexed: 11/29/2022]
Abstract
Multiple system atrophy (MSA) is a fatal neurodegenerative disorder presenting with autonomic failure and motor impairment, primarily comprising L-dopa-resistant parkinsonism but occasionally involving cerebellar ataxia. These features result from progressive multisystem neuronal loss that is associated with oligodendroglial alpha-synuclein inclusions. The growing number of animal models for MSA reflects the search for a preclinical test-bed for elucidating MSA pathogenesis and for developing novel therapeutic interventions. Here, the currently available MSA animal models will be reviewed and leads for future research will be identified.
Collapse
Affiliation(s)
- Nadia Stefanova
- Clinical Department of Neurology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
5
|
Puschban Z, Stefanova N, Petersén A, Winkler C, Brundin P, Poewe W, Wenning GK. Evidence for dopaminergic re-innervation by embryonic allografts in an optimized rat model of the Parkinsonian variant of multiple system atrophy. Brain Res Bull 2005; 68:54-8. [PMID: 16325004 DOI: 10.1016/j.brainresbull.2005.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Embryonic transplantation has been considered as an alternative treatment strategy for drug resistant parkinsonian symptoms in multiple system atrophy. So far our group has created a number of animal models of striatonigral degeneration, the core pathology underlying progressive Parkinsonism associated with multiple system atrophy, as testbed for neurorestaurative and neuroprotective approaches. Using embryonic allografts of either nigral, striatal, or combined nigro-striatal tissue we were able to consistently show graft survival in a denervated and lesioned striatum as well as improvement of rotational behaviour. However, due to severe lesions of the striatum and the chosen time window of 3-6 weeks between lesion and grafting, severe gliosis led to demarcation of the graft and prevented re-innervation of the remaining adult striatum. The aim of the present study was to modify our "double toxin-double lesion" rat model by reducing the dose of quinolinic acid injected into the striatum from 150 to 75 nmol and shortening the interval between lesion and grafting to 1-2 weeks. Injection of 75 nmol quinolinic acid still led to a significant reduction of DARPP-32 positive neurons and volume in the striatum. Analysis of embryonic mesencephalic grafts revealed survival of dopaminergic neurons and outgrowth of fibres re-innervating the adult striatum. Rotation behaviour was improved in the graft group. Considering embryonic transplantation a possible future antiparkinson therapeutic intervention in multiple system atrophy patients our data stress the necessity of optimal patient selection, i.e. early stage disease with limited striatal dysfunction.
Collapse
Affiliation(s)
- Zoe Puschban
- Experimental Neurodegeneration Laboratory, Department of Neurology, University Hospital Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
6
|
Modo M, Roberts TJ, Sandhu JK, Williams SCR. In vivo monitoring of cellular transplants by magnetic resonance imaging and positron emission tomography. Expert Opin Biol Ther 2004; 4:145-55. [PMID: 14998774 DOI: 10.1517/14712598.4.2.145] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cellular loss is a common pathological observation in many disease conditions. Recent evidence that these cells can be replaced has generated huge excitement over possible clinical applications. The use of stem or progenitor cells, which can differentiate into site-appropriate phenotypes required to "repair" the damaged tissue, has already demonstrated potential in animal models, but many aspects of this novel treatment strategy require further elucidation. Most importantly, the monitoring of the safety of cellular transplants in patients remains a challenge. Traditional histological methods do not address the dynamic nature of transplant-induced recovery and highlight the necessity of in vivo imaging to probe the survival, migration and functional consequences of transplanted cells. This paper reviews how non-invasive imaging technology can be used to serially assess intact living organisms in order to visualise and monitor cellular transplants.
Collapse
Affiliation(s)
- Michel Modo
- Neuroimaging Research Group P042, Department of Neurology, Institute of Psychiatry, King's College London, De Crespigny Park, London SE5 8AF, U.K.
| | | | | | | |
Collapse
|
7
|
Lee WT, Chang C. Magnetic resonance imaging and spectroscopy in assessing 3-nitropropionic acid-induced brain lesions: an animal model of Huntington’s disease. Prog Neurobiol 2004; 72:87-110. [PMID: 15063527 DOI: 10.1016/j.pneurobio.2004.02.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Accepted: 02/03/2004] [Indexed: 10/26/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease, in which there is progressive motor and cognitive deterioration, and for which the pathogenesis of neuronal death remains controversial. Mitochondrial toxins like 3-nitropropionic acid (3-NP) and malonate, functioning as the inhibitors of the complex II of mitochondrial respiratory chain, have been found to effectively induce specific behavioral changes and selective striatal lesions in rats and non-human primates mimicking those in HD. Furthermore, several kinds of transgenic mouse models of HD have been recently developed, and used in the development and assessment of novel treatments for HD. In the past, most studies evaluating the animal models for HD were based on histological changes or in vitro neuronal cultures. With the emergence of advanced magnetic resonance technologies, non-invasive magnetic resonance imaging (MRI) and spectroscopy provide more detail of cerebral alterations, including the changes of cerebral structure, function and metabolites. These studies support the hypothesis that mitochondrial dysfunction with increased excitation of N-methyl-D-aspartate (NMDA) receptors can replicate the neurobehavioral changes, selective brain injury and neurochemical alterations in HD. The present review focuses on our work as well as that of others regarding 3-NP-induced neurotoxicity and other animal models of HD. Using both conventional and advanced MRI and spectroscopy, we summarize the pathogenesis and possible therapeutic strategies in chemical and transgenic models of HD. The results show magnetic resonance techniques to be powerful techniques in the evaluation of pathogenesis and therapeutic intervention for both chemical and transgenic models of HD.
Collapse
Affiliation(s)
- Wang-Tso Lee
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | |
Collapse
|