1
|
Kasho K, Miyoshi K, Yoshida M, Sakai R, Nakagawa S, Katayama T. Negative DNA supercoiling enhances DARS2 binding of DNA-bending protein IHF in the activation of Fis-dependent ATP-DnaA production. Nucleic Acids Res 2025; 53:gkae1291. [PMID: 39797733 PMCID: PMC11724364 DOI: 10.1093/nar/gkae1291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis. The IHF binding site is about equidistant between the DnaA and Fis binding sites within DARS2. The DARS2-IHF-Fis complex promotes ADP dissociation from DnaA and furnishes ATP-DnaA at the pre-initiation stage, which dissociates Fis in a negative-feedback manner. However, regulation for IHF binding as well as mechanistic roles of Fis and specific DNA structure at DARS2 remain largely unknown. We have discovered that negative DNA supercoiling of DARS2 is required for stimulating IHF binding and ADP dissociation from DnaA in vitro. Consistent with these, novobiocin, a DNA gyrase inhibitor, inhibits DARS2 function in vivo. Fis Gln68, an RNA polymerase-interaction site, is suggested to be required for interaction with DnaA and full DARS2 activation. Based on these and other results, we propose that DNA supercoiling activates DARS2 function by stimulating stable IHF binding and DNA loop formation, thereby directing specific Fis-DnaA interaction.
Collapse
Affiliation(s)
- Kazutoshi Kasho
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenya Miyoshi
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Mizuki Yoshida
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryuji Sakai
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Sho Nakagawa
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Hustmyer CM, Landick R. Bacterial chromatin proteins, transcription, and DNA topology: Inseparable partners in the control of gene expression. Mol Microbiol 2024; 122:81-112. [PMID: 38847475 PMCID: PMC11260248 DOI: 10.1111/mmi.15283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
DNA in bacterial chromosomes is organized into higher-order structures by DNA-binding proteins called nucleoid-associated proteins (NAPs) or bacterial chromatin proteins (BCPs). BCPs often bind to or near DNA loci transcribed by RNA polymerase (RNAP) and can either increase or decrease gene expression. To understand the mechanisms by which BCPs alter transcription, one must consider both steric effects and the topological forces that arise when DNA deviates from its fully relaxed double-helical structure. Transcribing RNAP creates DNA negative (-) supercoils upstream and positive (+) supercoils downstream whenever RNAP and DNA are unable to rotate freely. This (-) and (+) supercoiling generates topological forces that resist forward translocation of DNA through RNAP unless the supercoiling is constrained by BCPs or relieved by topoisomerases. BCPs also may enhance topological stress and overall can either inhibit or aid transcription. Here, we review current understanding of how RNAP, BCPs, and DNA topology interplay to control gene expression.
Collapse
Affiliation(s)
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison
- Department of Bacteriology, University of Wisconsin-Madison
| |
Collapse
|
3
|
Watson GD, Chan EW, Leake MC, Noy A. Structural interplay between DNA-shape protein recognition and supercoiling: The case of IHF. Comput Struct Biotechnol J 2022; 20:5264-5274. [PMID: 36212531 PMCID: PMC9519438 DOI: 10.1016/j.csbj.2022.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022] Open
|
4
|
Kasho K, Tanaka H, Sakai R, Katayama T. Cooperative DnaA Binding to the Negatively Supercoiled datA Locus Stimulates DnaA-ATP Hydrolysis. J Biol Chem 2016; 292:1251-1266. [PMID: 27941026 DOI: 10.1074/jbc.m116.762815] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/07/2016] [Indexed: 11/06/2022] Open
Abstract
Timely initiation of replication in Escherichia coli requires functional regulation of the replication initiator, ATP-DnaA. The cellular level of ATP-DnaA increases just before initiation, after which its level decreases through hydrolysis of DnaA-bound ATP, yielding initiation-inactive ADP-DnaA. Previously, we reported a novel DnaA-ATP hydrolysis system involving the chromosomal locus datA and named it datA-dependent DnaA-ATP hydrolysis (DDAH). The datA locus contains a binding site for a nucleoid-associating factor integration host factor (IHF) and a cluster of three known DnaA-binding sites, which are important for DDAH. However, the mechanisms underlying the formation and regulation of the datA-IHF·DnaA complex remain unclear. We now demonstrate that a novel DnaA box within datA is essential for ATP-DnaA complex formation and DnaA-ATP hydrolysis. Specific DnaA residues, which are important for interaction with bound ATP and for head-to-tail inter-DnaA interaction, were also required for ATP-DnaA-specific oligomer formation on datA Furthermore, we show that negative DNA supercoiling of datA stabilizes ATP-DnaA oligomers, and stimulates datA-IHF interaction and DnaA-ATP hydrolysis. Relaxation of DNA supercoiling by the addition of novobiocin, a DNA gyrase inhibitor, inhibits datA function in cells. On the basis of these results, we propose a mechanistic model of datA-IHF·DnaA complex formation and DNA supercoiling-dependent regulation for DDAH.
Collapse
Affiliation(s)
- Kazutoshi Kasho
- From the Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Tanaka
- From the Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryuji Sakai
- From the Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tsutomu Katayama
- From the Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
5
|
Jha JK, Ramachandran R, Chattoraj DK. Opening the Strands of Replication Origins-Still an Open Question. Front Mol Biosci 2016; 3:62. [PMID: 27747216 PMCID: PMC5043065 DOI: 10.3389/fmolb.2016.00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022] Open
Abstract
The local separation of duplex DNA strands (strand opening) is necessary for initiating basic transactions on DNA such as transcription, replication, and homologous recombination. Strand opening is commonly a stage at which these processes are regulated. Many different mechanisms are used to open the DNA duplex, the details of which are of great current interest. In this review, we focus on a few well-studied cases of DNA replication origin opening in bacteria. In particular, we discuss the opening of origins that support the theta (θ) mode of replication, which is used by all chromosomal origins and many extra-chromosomal elements such as plasmids and phages. Although the details of opening can vary among different origins, a common theme is binding of the initiator to multiple sites at the origin, causing stress that opens an adjacent and intrinsically unstable A+T rich region. The initiator stabilizes the opening by capturing one of the open strands. How the initiator binding energy is harnessed for strand opening remains to be understood.
Collapse
Affiliation(s)
- Jyoti K Jha
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | - Revathy Ramachandran
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | - Dhruba K Chattoraj
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
6
|
Anandan S, Oh SD, Yoon M, Ashokkumar M. Photoluminescence properties of sonochemically synthesized gold nanoparticles for DNA biosensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2010; 76:191-196. [PMID: 20363665 DOI: 10.1016/j.saa.2010.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 02/26/2010] [Accepted: 03/11/2010] [Indexed: 05/29/2023]
Abstract
The electronic interactions of sonochemically synthesized gold (Au) nanoparticles with AT- and GC-DNA were studied by measuring photoluminescence (PL) spectral properties and the inherent PL images of the Au nanoparticles incorporated with the single DNA molecules using a laser scanning confocal microscope. The Au-nanoparticles incorporated AT-DNA and GC-DNA exhibit confocal PL image. These results suggest a Lewis acid (Au)-Lewis base (N- or O-groups of DNA) type of interaction between Au nanoparticles and DNA.
Collapse
Affiliation(s)
- Sambandam Anandan
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Trichy 620015, Tamil Nadu, India.
| | | | | | | |
Collapse
|
7
|
Huo YX, Zhang YT, Xiao Y, Zhang X, Buck M, Kolb A, Wang YP. IHF-binding sites inhibit DNA loop formation and transcription initiation. Nucleic Acids Res 2009; 37:3878-86. [PMID: 19395594 PMCID: PMC2709558 DOI: 10.1093/nar/gkp258] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 04/05/2009] [Accepted: 04/07/2009] [Indexed: 11/22/2022] Open
Abstract
Transcriptional activation of enhancer and sigma(54)-dependent promoters requires efficient interactions between enhancer-binding proteins (EBP) and promoter bound sigma(54)-RNA polymerase (E sigma(54)) achieved by DNA looping, which is usually facilitated by the integration host factor (IHF). Since the lengths of the intervening region supporting DNA-loop formation are similar among IHF-dependent and IHF-independent promoters, the precise reason(s) why IHF is selectively important for the frequency of transcription initiation remain unclear. Here, using kinetic cyclization and in vitro transcription assays we show that, in the absence of IHF protein, the DNA fragments containing an IHF-binding site have much less looping-formation ability than those that lack an IHF-binding site. Furthermore, when an IHF consensus-binding site was introduced into the intervening region between promoter and enhancer of the target DNA fragments, loop formation and DNA-loop-dependent transcriptional activation are significantly reduced in a position-independent manner. DNA-looping-independent transcriptional activation was unaffected. The binding of IHF to its consensus site in the target promoters clearly restored efficient DNA looping formation and looping-dependent transcriptional activation. Our data provide evidence that one function for the IHF protein is to release a communication block set by intrinsic properties of the IHF DNA-binding site.
Collapse
Affiliation(s)
- Yi-Xin Huo
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P. R. China, Institut Pasteur, Molecular Genetics Unit and CNRS URA-2172, 25 rue du Dr Roux, 75724 Paris Cedex 15, France and Department of Life Sciences, Imperial College London, London SW72AZ, UK
| | - Yuan-Tao Zhang
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P. R. China, Institut Pasteur, Molecular Genetics Unit and CNRS URA-2172, 25 rue du Dr Roux, 75724 Paris Cedex 15, France and Department of Life Sciences, Imperial College London, London SW72AZ, UK
| | - Yan Xiao
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P. R. China, Institut Pasteur, Molecular Genetics Unit and CNRS URA-2172, 25 rue du Dr Roux, 75724 Paris Cedex 15, France and Department of Life Sciences, Imperial College London, London SW72AZ, UK
| | - Xiaodong Zhang
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P. R. China, Institut Pasteur, Molecular Genetics Unit and CNRS URA-2172, 25 rue du Dr Roux, 75724 Paris Cedex 15, France and Department of Life Sciences, Imperial College London, London SW72AZ, UK
| | - Martin Buck
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P. R. China, Institut Pasteur, Molecular Genetics Unit and CNRS URA-2172, 25 rue du Dr Roux, 75724 Paris Cedex 15, France and Department of Life Sciences, Imperial College London, London SW72AZ, UK
| | - Annie Kolb
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P. R. China, Institut Pasteur, Molecular Genetics Unit and CNRS URA-2172, 25 rue du Dr Roux, 75724 Paris Cedex 15, France and Department of Life Sciences, Imperial College London, London SW72AZ, UK
| | - Yi-Ping Wang
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P. R. China, Institut Pasteur, Molecular Genetics Unit and CNRS URA-2172, 25 rue du Dr Roux, 75724 Paris Cedex 15, France and Department of Life Sciences, Imperial College London, London SW72AZ, UK
| |
Collapse
|
8
|
Czapla L, Swigon D, Olson WK. Effects of the nucleoid protein HU on the structure, flexibility, and ring-closure properties of DNA deduced from Monte Carlo simulations. J Mol Biol 2008; 382:353-70. [PMID: 18586040 PMCID: PMC2679585 DOI: 10.1016/j.jmb.2008.05.088] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 05/20/2008] [Accepted: 05/26/2008] [Indexed: 11/22/2022]
Abstract
The histone-like HU (heat unstable) protein plays a key role in the organization and regulation of the Escherichia coli genome. The nonspecific nature of HU binding to DNA complicates analysis of the mechanism by which the protein contributes to the looping of DNA. Conventional models of the looping of HU-bound duplexes attribute the changes in biophysical properties of DNA brought about by the random binding of protein to changes in the effective parameters of an ideal helical wormlike chain. Here, we introduce a novel Monte Carlo approach to study the effects of nonspecific HU binding on the configurational properties of DNA directly. We randomly decorated segments of an ideal double-helical DNA with HU molecules that induce the bends and other structural distortions of the double helix find in currently available X-ray structures. We find that the presence of HU at levels approximating those found in the cell reduces the persistence length by roughly threefold compared with that of naked DNA. The binding of protein has particularly striking effects on the cyclization properties of short duplexes, altering the dependence of ring closure on chain length in a way that cannot be mimicked by a simple wormlike model and accumulating at higher-than-expected levels on successfully closed chains. Moreover, the uptake of protein on small minicircles depends on chain length, taking advantage of the HU-induced deformations of DNA structure to facilitate ligation. Circular duplexes with bound HU show much greater propensity than protein-free DNA to exist as negatively supercoiled topoisomers, suggesting a potential role of HU in organizing the bacterial nucleoid. The local bending and undertwisting of DNA by HU, in combination with the number of bound proteins, provide a structural rationale for the condensation of DNA and the observed expression levels of reporter genes in vivo.
Collapse
Affiliation(s)
- Luke Czapla
- Department of Chemistry & Chemical Biology, the State University of New Jersey, Wright-Rieman Laboratories, 610 Taylor Road, Piscataway, New Jersey 08854
| | - David Swigon
- Department of Mathematics, University of Pittsburgh, 519 Thackeray Hall, Pittsburgh, Pennsylvania 15260
| | - Wilma K. Olson
- Department of Chemistry & Chemical Biology, the State University of New Jersey, Wright-Rieman Laboratories, 610 Taylor Road, Piscataway, New Jersey 08854
- BioMaPS Institute for Quantitative Biology, Rutgers, the State University of New Jersey, Wright-Rieman Laboratories, 610 Taylor Road, Piscataway, New Jersey 08854
| |
Collapse
|
9
|
Benevides JM, Danahy J, Kawakami J, Thomas GJ. Mechanisms of Specific and Nonspecific Binding of Architectural Proteins in Prokaryotic Gene Regulation. Biochemistry 2008; 47:3855-62. [DOI: 10.1021/bi7009426] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James M. Benevides
- School of Biological Sciences, University of Missouri—Kansas City, 5100 Rockhill Road, Kansas City, Missouri 64110-2499
| | - Jessica Danahy
- School of Biological Sciences, University of Missouri—Kansas City, 5100 Rockhill Road, Kansas City, Missouri 64110-2499
| | - Jessica Kawakami
- School of Biological Sciences, University of Missouri—Kansas City, 5100 Rockhill Road, Kansas City, Missouri 64110-2499
| | - George J. Thomas
- School of Biological Sciences, University of Missouri—Kansas City, 5100 Rockhill Road, Kansas City, Missouri 64110-2499
| |
Collapse
|
10
|
Benevides JM, Serban D, Thomas GJ. Structural Perturbations Induced in Linear and Circular DNA by the Architectural Protein HU from Bacillus stearothermophilus. Biochemistry 2006; 45:5359-66. [PMID: 16618125 DOI: 10.1021/bi0523557] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HU is a small DNA-binding protein of eubacteria that is believed to induce or stabilize bending of the double helix and mediate nucleoid compaction in vivo. Although HU does not bind preferentially to specific DNA sequences, it is known to have high affinity for DNA sites containing structural anomalies, such as unpaired or mismatched bases, nicks, and four-way junctions. We have employed Raman spectroscopy to further investigate the structural basis of HU-DNA recognition in solution. Experiments were carried out on the homodimeric HU protein of Bacillus stearothermophilus (HUBst) and a 222-bp DNA fragment, which was isolated in linear (DNA(L222)) and circular (DNA(C222)) forms. In the absence of bound HUBst the Raman signatures of DNA(L222) and DNA(C222) are nearly superimposable, indicating that circularization produces no substantial change in the local B-DNA conformation. Conversely, the Raman signatures of DNA(L222) and DNA(C222) are perturbed significantly and specifically by HUBst binding. The HUBst-induced perturbations are markedly greater for the circularized DNA target. These results support an opportunistic molecular mechanism, in which HU binding is facilitated by intrinsic nonlinearity or flexibility in the DNA target. We propose that DNA segments which are bent or predisposed toward bending provide the high-affinity sites for HU attachment and nucleoid condensation. This model is consistent with the wide range of DNA bending angles reported in crystal structures of HU-DNA complexes.
Collapse
Affiliation(s)
- James M Benevides
- School of Biological Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, Missouri 64110-2499, USA
| | | | | |
Collapse
|
11
|
Olivares-Zavaleta N, Jáuregui R, Merino E. Genome analysis of Escherichia coli promoter sequences evidences that DNA static curvature plays a more important role in gene transcription than has previously been anticipated. Genomics 2006; 87:329-37. [PMID: 16413165 DOI: 10.1016/j.ygeno.2005.11.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 10/24/2005] [Accepted: 11/30/2005] [Indexed: 12/30/2022]
Abstract
We have performed a computer analysis to study the prevalence of DNA static curvature in the regulatory regions of Escherichia coli, detecting a large number of operons with curved DNA fragments in their 5' upstream regions. A statistical analysis reveals that all the global transcription factors identified so far in E. coli have a tendency to regulate operons with curved DNA sequences in their upstream regions. In addition to these global regulators, we also found that the PurR, ArgR, FruR, TyrR, and CytR specific regulators present a similar propensity. Interestingly, for these cases we found no previous reference describing a possible relationship with curved DNA regions. To validate our theoretical results, we performed site-directed mutagenesis to reduce the degree of DNA curvature in the regulatory sequences of the aroG, pyrC, and argCBH operons. The effects of these changes were measured by polyacrylamide gel electrophoresis assays and further evaluated in vivo by transcriptional fusions to a reporter gene. All our results point toward a more widespread role of curved DNA in gene transcription, a fact that has previously been underestimated.
Collapse
Affiliation(s)
- N Olivares-Zavaleta
- Department of Molecular Microbiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, 62271 Morelos, México
| | | | | |
Collapse
|
12
|
Semsey S, Virnik K, Adhya S. A gamut of loops: meandering DNA. Trends Biochem Sci 2005; 30:334-41. [PMID: 15950878 DOI: 10.1016/j.tibs.2005.04.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 03/29/2005] [Accepted: 04/22/2005] [Indexed: 11/18/2022]
Abstract
Nucleoprotein complexes comprising short DNA loops (150 base pairs or less) are involved in a wide variety of DNA transactions (e.g. transcription regulation, replication and recombination) in both prokaryotes and eukaryotes, and also can be useful in designing nanostructures. In these higher-order nucleoprotein complexes, proteins bound to spatially separated sites on a DNA interact with each other by looping out the relatively stiff intervening DNA. Recent technological developments have enabled determination of DNA trajectories in a few DNA-loop-containing regulatory complexes. Results show that, in a given system, a specific DNA trajectory is preferred over others.
Collapse
Affiliation(s)
- Szabolcs Semsey
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | | | | |
Collapse
|
13
|
Abstract
The energetic cost of bending short segments of DNA is very high. This bending is critical for the packaging of DNA and is exploited to regulate many cellular processes. In prokaryotes, IHF and HU are key architectural proteins present at high concentrations. New protein-DNA co-crystal structures, and the adaptation of advanced biophysical and biochemical techniques have led to an improved understanding of how these proteins interact with DNA. These techniques include time-resolved synchrotron X-ray footprinting, differential scanning calorimetry, isothermal titration calorimetry and single-molecule experiments.
Collapse
Affiliation(s)
- Kerren K Swinger
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
14
|
Yan J, Marko JF. Effects of DNA-distorting proteins on DNA elastic response. PHYSICAL REVIEW E 2003; 68:011905. [PMID: 12935174 DOI: 10.1103/physreve.68.011905] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Indexed: 11/07/2022]
Abstract
Many DNA-binding proteins distort the double helix, and therefore can be studied using single-molecule experiments to investigate how they modify double-helix polymer elasticity. We study this problem theoretically using discrete wormlike-chain models to describe the mechanics of protein-DNA composites. We consider the cases of nonspecific and specific (sequence-targeted) binding. We find that, in general, proteins which bend DNA can be described in terms of a reduction of bending persistence length as long as the binding strength is relatively weak (well below the dissociation point). For strong binding, the force response depends strongly on the bending stiffness of the DNA-protein complex. Since most DNA-bending proteins will cause local DNA untwisting, we also show how the constraint of DNA linking number modifies the observed elastic response. We also show how essentially the same model may be used to describe the binding of proteins and drugs which stiffen and stretch the double helix.
Collapse
Affiliation(s)
- Jie Yan
- Department of Physics, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7059, USA
| | | |
Collapse
|
15
|
Brunetti R, Prosseda G, Beghetto E, Colonna B, Micheli G. The looped domain organization of the nucleoid in histone-like protein defective Escherichia coli strains. Biochimie 2001; 83:873-82. [PMID: 11698109 DOI: 10.1016/s0300-9084(01)01331-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have investigated the major Escherichia coli histone-like proteins (H-NS, HU, FIS, and IHF) as putative factors involved in the maintenance of the overall DNA looped arrangement of the bacterial nucleoid. The long-range architecture of the chromosome has been studied by means of an assay based on in vivo genomic fragmentation mediated by endogenous DNA gyrase in the presence of oxolinic acid. The fragmentation products were analysed by CHEF electrophoresis. The results indicate that in vivo a large fraction of the bacterial chromatin constitutes an adequate substrate for the enzyme. DNA fragments released upon oxo-treatment span a size range from about 1000 kb to a limit-size of about 50 kb. The latter value is in excellent agreement with the average size reported for bacterial chromosomal domains. The DNA gyrase-mediated fragmentation does not appear to be significantly altered in strains depleted in histone-like proteins as compared to an E. coli wild type strain. This suggests that these proteins may not represent critical determinants for the maintenance of the supercoiled loop organisation of the E. coli chromosome.
Collapse
Affiliation(s)
- R Brunetti
- Centro Acidi Nucleici C.N.R., Università La Sapienza, P. le A. Moro 5, Rome 00185, Italy
| | | | | | | | | |
Collapse
|