1
|
Koeppl LH, Popadić D, Saleem-Batcha R, Germer P, Andexer JN. Structure, function and substrate preferences of archaeal S-adenosyl-L-homocysteine hydrolases. Commun Biol 2024; 7:380. [PMID: 38548921 PMCID: PMC10978960 DOI: 10.1038/s42003-024-06078-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
S-Adenosyl-L-homocysteine hydrolase (SAHH) reversibly cleaves S-adenosyl-L-homocysteine, the product of S-adenosyl-L-methionine-dependent methylation reactions. The conversion of S-adenosyl-L-homocysteine into adenosine and L-homocysteine plays an important role in the regulation of the methyl cycle. An alternative metabolic route for S-adenosyl-L-methionine regeneration in the extremophiles Methanocaldococcus jannaschii and Thermotoga maritima has been identified, featuring the deamination of S-adenosyl-L-homocysteine to S-inosyl-L-homocysteine. Herein, we report the structural characterisation of different archaeal SAHHs together with a biochemical analysis of various SAHHs from all three domains of life. Homologues deriving from the Euryarchaeota phylum show a higher conversion rate with S-inosyl-L-homocysteine compared to S-adenosyl-L-homocysteine. Crystal structures of SAHH originating from Pyrococcus furiosus in complex with SLH and inosine as ligands, show architectural flexibility in the active site and offer deeper insights into the binding mode of hypoxanthine-containing substrates. Altogether, the findings of our study support the understanding of an alternative metabolic route for S-adenosyl-L-methionine and offer insights into the evolutionary progression and diversification of SAHHs involved in methyl and purine salvage pathways.
Collapse
Affiliation(s)
- Lars-Hendrik Koeppl
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Désirée Popadić
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Raspudin Saleem-Batcha
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Philipp Germer
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Jennifer N Andexer
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
| |
Collapse
|
2
|
Fu Y, Li X, Pan B, Niu Y, Zhang B, Zhao X, Nie J, Yang J. Effects of H19/SAHH/DNMT1 on the oxidative DNA damage related to benzo[a]pyrene exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11706-11718. [PMID: 36098921 DOI: 10.1007/s11356-022-22936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The mechanisms that long noncoding RNA (lncRNA) H19 binding to S-adenosylhomocysteine hydrolase (SAHH) interacted with DNA methyltransferase 1 (DNMT1) and then regulated DNA damage caused by polycyclic aromatic hydrocarbons (PAHs) remain unclear. A total of 146 occupational workers in a Chinese coke-oven plant in 2014 were included in the final analyses. We used high-performance liquid chromatography mass spectrometry (HPLC-MS) equipped to detect urine biomarkers of PAHs exposure, including 2-hydroxynaphthalene (2-NAP), 2-hydroxyfluorene (2-FLU), 9-hydroxyphenanthrene (9-PHE) and 1-hydroxypyrene (1-OHP). The levels of SAM and SAH in plasma were detected by HPLC-ultraviolet. By constructing various BEAS-2B cell models exposed to 16 μM benzo[a]pyrene (BaP) for 24 h, toxicological parameters reflecting distinct mechanisms were evaluated. We documented that urinary 1-hydroxypyrene (1-OHP) levels were positively associated with blood H19 RNA expression (OR: 1.51, 95% CI: 1.03-2.19), but opposite to plasma SAHH activity (OR: 0.63, 95% CI: 0.41-0.98) in coke oven workers. Moreover, by constructing various BEAS-2B cell models exposed to benzo[a]pyrene (BaP), we investigated that H19 binding to SAHH exaggerated DNMT1 expressions and activity. Suppression of H19 enhanced the interaction of SAHH and DNMT1 in BaP-treated cells, decreased eight-oxoguanine DNA glycosylase 1 (OGG1) methylation, reduced oxidative DNA damage and lessened S phase arrest. However, SAHH or DNMT1 single knockdown and SAHH/DNMT1 double knockdown showed the opposite trend. A H19/SAHH/DNMT1 axis was involved in OGG1 methylation, oxidative DNA damage and cell cycle arrest by carcinogen BaP.
Collapse
Affiliation(s)
- Ye Fu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- Department of Preventive Medicine, School of Public Health, Hubei University of Medicine, Shiyan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Xuejing Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Baolong Pan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- General Hospital of Taiyuan Iron & Steel (Group) Co., Ltd, Taiyuan, China
| | - Yingying Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Bin Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Xinyu Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China
| | - Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, China.
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, China.
| |
Collapse
|
3
|
Zheng Y, Chen CC, Ko TP, Xiao X, Yang Y, Huang CH, Qian G, Shao W, Guo RT. Crystal structures of S-adenosylhomocysteine hydrolase from the thermophilic bacterium Thermotoga maritima. J Struct Biol 2015; 190:135-42. [PMID: 25791616 DOI: 10.1016/j.jsb.2015.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/18/2015] [Accepted: 03/04/2015] [Indexed: 11/17/2022]
Abstract
S-adenosylhomocysteine (SAH) hydrolase catalyzes the reversible hydrolysis of SAH into adenosine and homocysteine by using NAD(+) as a cofactor. The enzyme from Thermotoga maritima (tmSAHH) has great potentials in industrial applications because of its hyperthermophilic properties. Here, two crystal structures of tmSAHH in complex with NAD(+) show both open and closed conformations despite the absence of bound substrate. Each subunit of the tetrameric enzyme is composed of three domains, namely the catalytic domain, the NAD(+)-binding domain and the C-terminal domain. The NAD(+) binding mode is clearly observed and a substrate analogue can also be modeled into the active site, where two cysteine residues in mesophilic enzymes are replaced by serine and threonine in tmSAHH. Notably, the C-terminal domain of tmSAHH lacks the second loop region of mesophilic SAHH, which is important in NAD(+) binding, and thus exposes the bound cofactor to the solvent. The difference explains the higher NAD(+) requirement of tmSAHH because of the reduced affinity. Furthermore, the feature of missing loop is consistently observed in thermophilic bacterial and archaeal SAHHs, and may be related to their thermostability.
Collapse
Affiliation(s)
- Yingying Zheng
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chun-Chi Chen
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Xiansha Xiao
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yunyun Yang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chun-Hsiang Huang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guojun Qian
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang 212013, China
| | - Weilan Shao
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang 212013, China.
| | - Rey-Ting Guo
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
4
|
A thermostable S-adenosylhomocysteine hydrolase from Thermotoga maritima: properties and its application on S-adenosylhomocysteine production with enzymatic cofactor regeneration. Enzyme Microb Technol 2014; 64-65:33-7. [PMID: 25152414 DOI: 10.1016/j.enzmictec.2014.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 11/20/2022]
Abstract
S-adenosylhomocysteine (SAH) is an effective sedative, a good sleep modulator, and a new anticonvulsant. SAH can be synthesized from adenosine and homocysteine by using microbial S-adenosylhomocysteine hydrolase (SAHase). The extremely thermostable SAHase and lactate dehydrogenase (LDH) from Thermotoga maritima were successfully overexpressed in Escherichia coli, and purified by heat treatments. The SAHase exhibited the highest activity at 85 °C and pH 8.0 with a specific activity of 6.2 U/mg when NAD concentration was 1mM. However, optimal SAHase reaction conditions shifted to 100 °C and pH 11.2, and its specific activity increased to 36.8 U/mg after NAD concentration was raised to 8mM. Biosynthesis of SAH at 85 °C largely increased the adenosine solubility which was a limiting factor for improving the titer of product. At 85 °C and pH 8.0, 24 μmol of SAH was obtained when 0.5mg of SAHase was applied to a 10 ml reaction mixture. The SAH production was further increased to 153 μmol by adding LDH and pyruvate into the reaction mixture for NAD regeneration. Therefore, extremely thermostable enzymes SAHase and LDH from T. maritima form an efficient NAD consumption and regeneration system for SAH biosynthesis. This method has great potential for industrial-scale enzymatic production of SAH.
Collapse
|
5
|
Du Q, Wang L, Zhou D, Yang H, Gong C, Pan W, Zhang D. Allelic variation within the S-adenosyl-L-homocysteine hydrolase gene family is associated with wood properties in Chinese white poplar (Populus tomentosa). BMC Genet 2014; 15 Suppl 1:S4. [PMID: 25079429 PMCID: PMC4118623 DOI: 10.1186/1471-2156-15-s1-s4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background S-adenosyl-l-homocysteine hydrolase (SAHH) is the only eukaryotic enzyme capable of S-adenosyl-l-homocysteine (SAH) catabolism for the maintenance of cellular transmethylation potential. Recently, biochemical and genetic studies in herbaceous species have obtained important discoveries in the function of SAHH, and an extensive characterization of SAHH family in even one tree species is essential, but currently lacking. Results Here, we first identified the SAHH family from Populus tomentosa using molecular cloning method. Phylogenetic analyses of 28 SAHH proteins from dicotyledons, monocotyledons, and lower plants revealed that the sequences formed two monophyletic groups: the PtrSAHHA with PtoSAHHA and PtrSAHHB with PtoSAHHB. Examination of tissue-specific expression profiles of the PtoSAHH family revealed similar expression patterns; high levels of expression in xylem were found. Nucleotide diversity and linkage disequilibrium (LD) in the PtoSAHH family, sampled from P. tomentosa natural distribution, revealed that PtoSAHH harbors high single-nucleotide polymorphism (SNP) diversity (π=0.01059±0.00122 and 0.00930±0.00079,respectively) and low LD (r2 > 0.1, within 800 bp and 2,200 bp, respectively). Using an LD-linkage analysis approach, two noncoding SNPs (PtoSAHHB_1065 and PtoSAHHA_2203) and the corresponding haplotypes were found to significantly associate with α-cellulose content, and a nonsynonymous SNP (PtoSAHHB_410) within the SAHH signature motifs showed significant association with fiber length, with an average of 3.14% of the phenotypic variance explained. Conclusions The present study demonstrates that PtoSAHHs were split off prior to the divergence of interspecies in Populus, and SAHHs may play a key role promoting transmethylation reactions in the secondary cell walls biosynthesis in trees. Hence, our findings provide insights into SAHH function and evolution in woody species and also offer a theoretical basis for marker-aided selection breeding to improve the wood quality of Populus.
Collapse
|
6
|
Lozada-Ramírez JD, Sánchez-Ferrer A, García-Carmona F. Recombinant S-adenosylhomocysteine hydrolase from Thermotoga maritima: cloning, overexpression, characterization, and thermal purification studies. Appl Biochem Biotechnol 2013; 170:639-53. [PMID: 23588970 DOI: 10.1007/s12010-013-0218-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 04/01/2013] [Indexed: 01/24/2023]
Abstract
S-Adenosylhomocysteine hydrolase (SAHase) encoded by sahase gene is a determinant when catalyzing the reversible conversion of adenosine and homocysteine to S-adenosylhomocysteine in most living organisms. The sahase gene was isolated from the genome of the highly thermostable anaerobic bacteria Thermotoga maritima, and then it was cloned, characterized, overexpressed using Escherichia coli, and partially purified by thermal precipitation. The thermal purification of the recombinant SAHase resulted in changes in the circular dichroism spectra. As a result of this analysis, it was possible to determine the structural changes in the composition of the α-helix and β-sheet content of the recombinant enzyme after purification. Moreover, a predicted secondary structure and 3D structural model was rendered by comparative molecular modeling to further understand the molecular function of this protein including its attractive biotechnological use.
Collapse
Affiliation(s)
- J D Lozada-Ramírez
- Department of Chemical and Biological Sciences, School of Sciences, Universidad de las Américas Puebla, Santa Catarina Mártir Cholula 72820, Puebla, México.
| | | | | |
Collapse
|
7
|
Ctrnáctá V, Stejskal F, Keithly JS, Hrdý I. Characterization ofS-adenosylhomocysteine hydrolase fromCryptosporidium parvum. FEMS Microbiol Lett 2007; 273:87-95. [PMID: 17559404 DOI: 10.1111/j.1574-6968.2007.00795.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The S-adenosylhomocysteine hydrolase from the apicomplexan Cryptosporidium parvum (CpSAHH) has been characterized. CpSAHH is a single-copy, intronless gene of 1479 bp encoding a protein of 493 amino acids with a molecular mass of 55.6 kDa. Reverse transcriptase-polymerase chain reaction analysis confirmed that CpSAHH is expressed both in intracellular stages (in C. parvum-infected HCT-8 cells 24 h after infection) and in sporozoites. CpSAHH was expressed in Escherichia coli TB1 cells as a fusion with maltose-binding protein. The recombinant fusion was cleaved by Factor Xa and the enzymatic activity of both the fusion protein and the purified separated CpSAHH was measured. The enzymatic activity of CpSAHH was inhibited by d-eritadenine, S-DHPA and Ara-A.
Collapse
Affiliation(s)
- Vlasta Ctrnáctá
- Department of Tropical Medicine, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | | | |
Collapse
|
8
|
Immobilization and characterization of a thermostable β-xylosidase to generate a reusable biocatalyst. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2006.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Porcelli M, Moretti MA, Concilio L, Forte S, Merlino A, Graziano G, Cacciapuoti G. S-adenosylhomocysteine hydrolase from the archaeon Pyrococcus furiosus: biochemical characterization and analysis of protein structure by comparative molecular modeling. Proteins 2006; 58:815-25. [PMID: 15645450 DOI: 10.1002/prot.20381] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
S-adenosylhomocysteine hydrolase (AdoHcyHD) is an ubiquitous enzyme that catalyzes the breakdown of S-adenosylhomocysteine, a powerful inhibitor of most transmethylation reactions, to adenosine and L-homocysteine. AdoHcyHD from the hyperthermophilic archaeon Pyrococcus furiosus (PfAdoHcyHD) was cloned, expressed in Escherichia coli, and purified. The enzyme is thermoactive with an optimum temperature of 95 degrees C, and thermostable retaining 100% residual activity after 1 h at 90 degrees C and showing an apparent melting temperature of 98 degrees C. The enzyme is a homotetramer of 190 kDa and contains four cysteine residues per subunit. Thiol groups are not involved in the catalytic process whereas disulfide bond(s) could be present since incubation with 0.8 M dithiothreitol reduces enzyme activity. Multiple sequence alignment of hyperthermophilic AdoHcyHD reveals the presence of two cysteine residues in the N-terminus of the enzyme conserved only in members of Pyrococcus species, and shows that hyperthermophilic AdoHcyHD lack eight C-terminal residues, thought to be important for structural and functional properties of the eukaryotic enzyme. The homology-modeled structure of PfAdoHcyHD shows that Trp220, Tyr181, Tyr184, and Leu185 of each subunit and Ile244 from a different subunit form a network of hydrophobic and aromatic interactions in the central channel formed at the subunits interface. These contacts partially replace the interactions of the C-terminal tail of the eukaryotic enzyme required for tetramer stability. Moreover, Cys221 and Lys245 substitute for Thr430 and Lys426, respectively, of the human enzyme in NAD-binding. Interestingly, all these residues are fairly well conserved in hyperthermophilic AdoHcyHDs but not in mesophilic ones, thus suggesting a common adaptation mechanism at high temperatures.
Collapse
Affiliation(s)
- Marina Porcelli
- Dipartimento di Biochimica e Biofisica F. Cedrangolo, Seconda Università di Napoli, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
10
|
Collazo E, Couture JF, Bulfer S, Trievel RC. A coupled fluorescent assay for histone methyltransferases. Anal Biochem 2005; 342:86-92. [PMID: 15958184 DOI: 10.1016/j.ab.2005.04.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 04/06/2005] [Indexed: 11/18/2022]
Abstract
Histone methyltransferases (HMTs) catalyze the S-adenosylmethionine (AdoMet)-dependent methylation of lysines and arginines in the nucleosomal core histones H3 and H4 and the linker histone H1b. Methylation of these residues regulates either transcriptional activation or silencing, depending on the residue modified and its degree of methylation. Despite an intense interest in elucidating the functions of HMTs in transcriptional regulation, these enzymes have remained challenging to quantitatively assay. To characterize the substrate specificity of HMTs, we have developed a coupled-fluorescence-based assay for AdoMet-dependent methyltransferases. This assay utilizes S-adenosylhomocysteine hydrolase (SAHH) to hydrolyze the methyltransfer product S-adenosylhomocysteine (AdoHcy) to homocysteine (Hcy) and adenosine (Ado). The Hcy concentration is then determined through conjugation of its free sulfhydryl moiety to a thiol-sensitive fluorophore. Using this assay, we have determined the kinetic parameters for the methylation of a synthetic histone H3 peptide (corresponding to residues 1-15 of the native protein) by Schizosaccharomyces pombe CLR4, an H3 Lys-9-specific methyltransferase. The fluorescent SAHH-coupled assay allows rapid and facile determination of HMT kinetics and can be adapted to measure the enzymatic activity of a wide variety of AdoMet-dependent methyltransferases.
Collapse
Affiliation(s)
- Evys Collazo
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0606, USA
| | | | | | | |
Collapse
|
11
|
Frankenberg RJ, Hsu TS, Yakota H, Kim R, Clark DS. Chemical denaturation and elevated folding temperatures are required for wild-type activity and stability of recombinant Methanococcus jannaschii 20S proteasome. Protein Sci 2001; 10:1887-96. [PMID: 11514679 PMCID: PMC2253205 DOI: 10.1110/ps.ps.05801] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The 20S proteasome from the extreme thermophile Methanococcus jannaschii (Mj) was purified and sequenced to facilitate production of the recombinant proteasome in E. coli. The recombinant proteasome remained in solution at a purity level of 80-85% (according to SDS PAGE) following incubation of cell lysates at 70 degrees C. Temperature-activity profiles indicated that the temperature optima of the wild-type and recombinant enzymes differed substantially, with optimal activities occurring at 119 degrees C and 95 degrees C, respectively. To ameliorate this discrepancy, two recombinant enzyme preparations were produced, each of which included denaturation of the proteasome by 4 M urea followed by high-temperature (85 degrees C) dialysis. The wild-type temperature optimum was restored, but only if proteasome subunits were denatured and refolded prior to assembly (a preparation designated as alpha & beta). In contrast, when proteasome assembly preceded denaturation (designated alpha + beta) the optimum temperature was raised to a lesser degree. Moreover, the alpha & beta and alpha + beta preparations had apparent thermal half-lives at 114 degrees C of 54.2 and 26.2 min, respectively, and the thermostability of the less stable enzyme was more sensitive to a reduction in pH. Attainment of wild-type activity and stability thus required the proper folding of both the alpha- and beta-subunits prior to proteasome assembly. Consistent with this behavior, dual-scanning calorimetry (DSC) measurements revealed differences in the reassembly efficiency of the two proteasome preparations. The ability to produce structural conformers with dramatically different thermal optima and thermostabilities may facilitate the determination of molecular forces and structural motifs responsible for enzyme thermostablity and high-temperature activity.
Collapse
Affiliation(s)
- R J Frankenberg
- Joint Graduate Group in Bioengineering, University of California, San Francisco/University of California, Berkeley, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|