1
|
Laverde EE, Polyzos AA, Tsegay PP, Shaver M, Hutcheson JD, Balakrishnan L, McMurray CT, Liu Y. Flap Endonuclease 1 Endonucleolytically Processes RNA to Resolve R-Loops through DNA Base Excision Repair. Genes (Basel) 2022; 14:genes14010098. [PMID: 36672839 PMCID: PMC9859040 DOI: 10.3390/genes14010098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is an essential enzyme that removes RNA primers and base lesions during DNA lagging strand maturation and long-patch base excision repair (BER). It plays a crucial role in maintaining genome stability and integrity. FEN1 is also implicated in RNA processing and biogenesis. A recent study from our group has shown that FEN1 is involved in trinucleotide repeat deletion by processing the RNA strand in R-loops through BER, further suggesting that the enzyme can modulate genome stability by facilitating the resolution of R-loops. However, it remains unknown how FEN1 can process RNA to resolve an R-loop. In this study, we examined the FEN1 cleavage activity on the RNA:DNA hybrid intermediates generated during DNA lagging strand processing and BER in R-loops. We found that both human and yeast FEN1 efficiently cleaved an RNA flap in the intermediates using its endonuclease activity. We further demonstrated that FEN1 was recruited to R-loops in normal human fibroblasts and senataxin-deficient (AOA2) fibroblasts, and its R-loop recruitment was significantly increased by oxidative DNA damage. We showed that FEN1 specifically employed its endonucleolytic cleavage activity to remove the RNA strand in an R-loop during BER. We found that FEN1 coordinated its DNA and RNA endonucleolytic cleavage activity with the 3'-5' exonuclease of APE1 to resolve the R-loop. Our results further suggest that FEN1 employed its unique tracking mechanism to endonucleolytically cleave the RNA strand in an R-loop by coordinating with other BER enzymes and cofactors during BER. Our study provides the first evidence that FEN1 endonucleolytic cleavage can result in the resolution of R-loops via the BER pathway, thereby maintaining genome integrity.
Collapse
Affiliation(s)
- Eduardo E. Laverde
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA
| | - Aris A. Polyzos
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Pawlos P. Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA
| | - Mohammad Shaver
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Lata Balakrishnan
- Department of Biology, Indiana-Purdue University, Indianapolis, IN 46202, USA
| | - Cynthia T. McMurray
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Correspondence:
| |
Collapse
|
2
|
Howard MJ, Rodriguez Y, Wilson SH. DNA polymerase β uses its lyase domain in a processive search for DNA damage. Nucleic Acids Res 2017; 45:3822-3832. [PMID: 28119421 PMCID: PMC5397181 DOI: 10.1093/nar/gkx047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
DNA polymerase (Pol) β maintains genome fidelity by catalyzing DNA synthesis and removal of a reactive DNA repair intermediate during base excision repair (BER). Situated within the middle of the BER pathway, Pol β must efficiently locate its substrates before damage is exacerbated. The mechanisms of damage search and location by Pol β are largely unknown, but are critical for understanding the fundamental features of the BER pathway. We developed a processive search assay to determine if Pol β has evolved a mechanism for efficient DNA damage location. These assays revealed that Pol β scans DNA using a processive hopping mechanism and has a mean search footprint of ∼24 bp at predicted physiological ionic strength. Lysines within the lyase domain are required for processive searching, revealing a novel function for the lyase domain of Pol β. Application of our processive search assay into nucleosome core particles revealed that Pol β is not processive in the context of a nucleosome, and its single-turnover activity is reduced ∼500-fold, as compared to free DNA. These data suggest that the repair footprint of Pol β mainly resides within accessible regions of the genome and that these regions can be scanned for damage by Pol β.
Collapse
Affiliation(s)
- Michael J Howard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709-2233, USA
| | - Yesenia Rodriguez
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709-2233, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709-2233, USA
| |
Collapse
|
3
|
Beard WA, Shock DD, Batra VK, Prasad R, Wilson SH. Substrate-induced DNA polymerase β activation. J Biol Chem 2014; 289:31411-22. [PMID: 25261471 DOI: 10.1074/jbc.m114.607432] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerases and substrates undergo conformational changes upon forming protein-ligand complexes. These conformational adjustments can hasten or deter DNA synthesis and influence substrate discrimination. From structural comparison of binary DNA and ternary DNA-dNTP complexes of DNA polymerase β, several side chains have been implicated in facilitating formation of an active ternary complex poised for chemistry. Site-directed mutagenesis of these highly conserved residues (Asp-192, Arg-258, Phe-272, Glu-295, and Tyr-296) and kinetic characterization provides insight into the role these residues play during correct and incorrect insertion as well as their role in conformational activation. The catalytic efficiencies for correct nucleotide insertion for alanine mutants were wild type ∼ R258A > F272A ∼ Y296A > E295A > D192A. Because the efficiencies for incorrect insertion were affected to about the same extent for each mutant, the effects on fidelity were modest (<5-fold). The R258A mutant exhibited an increase in the single-turnover rate of correct nucleotide insertion. This suggests that the wild-type Arg-258 side chain generates a population of non-productive ternary complexes. Structures of binary and ternary substrate complexes of the R258A mutant and a mutant associated with gastric carcinomas, E295K, provide molecular insight into intermediate structural conformations not appreciated previously. Although the R258A mutant crystal structures were similar to wild-type enzyme, the open ternary complex structure of E295K indicates that Arg-258 stabilizes a non-productive conformation of the primer terminus that would decrease catalysis. Significantly, the open E295K ternary complex binds two metal ions indicating that metal binding cannot overcome the modified interactions that have interrupted the closure of the N-subdomain.
Collapse
Affiliation(s)
- William A Beard
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - David D Shock
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Vinod K Batra
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Rajendra Prasad
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Samuel H Wilson
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| |
Collapse
|
4
|
Brown JA, Pack LR, Fowler JD, Suo Z. Presteady state kinetic investigation of the incorporation of anti-hepatitis B nucleotide analogues catalyzed by noncanonical human DNA polymerases. Chem Res Toxicol 2011; 25:225-33. [PMID: 22132702 DOI: 10.1021/tx200458s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Antiviral nucleoside analogues have been developed to inhibit the enzymatic activities of the hepatitis B virus (HBV) polymerase, thereby preventing the replication and production of HBV. However, the usage of these analogues can be limited by drug toxicity because the 5'-triphosphates of these nucleoside analogues (nucleotide analogues) are potential substrates for human DNA polymerases to incorporate into host DNA. Although they are poor substrates for human replicative DNA polymerases, it remains to be established whether these nucleotide analogues are substrates for the recently discovered human X- and Y-family DNA polymerases. Using presteady state kinetic techniques, we have measured the substrate specificity values for human DNA polymerases β, λ, η, ι, κ, and Rev1 incorporating the active forms of the following anti-HBV nucleoside analogues approved for clinical use: adefovir, tenofovir, lamivudine, telbivudine, and entecavir. Compared to the incorporation of a natural nucleotide, most of the nucleotide analogues were incorporated less efficiently (2 to >122,000) by the six human DNA polymerases. In addition, the potential for entecavir and telbivudine, two drugs which possess a 3'-hydroxyl, to become embedded into human DNA was examined by primer extension and DNA ligation assays. These results suggested that telbivudine functions as a chain terminator, while entecavir was efficiently extended by the six enzymes and was a substrate for human DNA ligase I. Our findings suggested that incorporation of anti-HBV nucleotide analogues catalyzed by human X- and Y-family polymerases may contribute to clinical toxicity.
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | | |
Collapse
|
5
|
Pre-steady-state kinetic analysis of the incorporation of anti-HIV nucleotide analogs catalyzed by human X- and Y-family DNA polymerases. Antimicrob Agents Chemother 2010; 55:276-83. [PMID: 21078938 DOI: 10.1128/aac.01229-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) are an important class of antiviral drugs used to manage infections by human immunodeficiency virus, which causes AIDS. Unfortunately, these drugs cause unwanted side effects, and the molecular basis of NRTI toxicity is not fully understood. Putative routes of NRTI toxicity include the inhibition of human nuclear and mitochondrial DNA polymerases. A strong correlation between mitochondrial toxicity and NRTI incorporation catalyzed by human mitochondrial DNA polymerase has been established both in vitro and in vivo. However, it remains to be determined whether NRTIs are substrates for the recently discovered human X- and Y-family DNA polymerases, which participate in DNA repair and DNA lesion bypass in vivo. Using pre-steady-state kinetic techniques, we measured the substrate specificity constants for human DNA polymerases β, λ, η, ι, κ, and Rev1 incorporating the active, 5'-phosphorylated forms of tenofovir, lamivudine, emtricitabine, and zidovudine. For the six enzymes, all of the drug analogs were incorporated less efficiently (40- to >110,000-fold) than the corresponding natural nucleotides, usually due to a weaker binding affinity and a slower rate of incorporation for the incoming nucleotide analog. In general, the 5'-triphosphate forms of lamivudine and zidovudine were better substrates than emtricitabine and tenofovir for the six human enzymes, although the substrate specificity profile depended on the DNA polymerase. Our kinetic results suggest NRTI insertion catalyzed by human X- and Y-family DNA polymerases is a potential mechanism of NRTI drug toxicity, and we have established a structure-function relationship for designing improved NRTIs.
Collapse
|
6
|
Wilson SH, Beard WA, Shock DD, Batra VK, Cavanaugh NA, Prasad R, Hou EW, Liu Y, Asagoshi K, Horton JK, Stefanick DF, Kedar PS, Carrozza MJ, Masaoka A, Heacock ML. Base excision repair and design of small molecule inhibitors of human DNA polymerase β. Cell Mol Life Sci 2010; 67:3633-47. [PMID: 20844920 PMCID: PMC3324036 DOI: 10.1007/s00018-010-0489-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
Abstract
Base excision repair (BER) can protect a cell after endogenous or exogenous genotoxic stress, and a deficiency in BER can render a cell hypersensitive to stress-induced apoptotic and necrotic cell death, mutagenesis, and chromosomal rearrangements. However, understanding of the mammalian BER system is not yet complete as it is extraordinarily complex and has many back-up processes that complement a deficiency in any one step. Due of this lack of information, we are unable to make accurate predictions on therapeutic approaches targeting BER. A deeper understanding of BER will eventually allow us to conduct more meaningful clinical interventions. In this review, we will cover historical and recent information on mammalian BER and DNA polymerase β and discuss approaches toward development and use of small molecule inhibitors to manipulate BER. With apologies to others, we will emphasize results obtained in our laboratory and those of our collaborators.
Collapse
Affiliation(s)
- Samuel H Wilson
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Beard WA, Shock DD, Batra VK, Pedersen LC, Wilson SH. DNA polymerase beta substrate specificity: side chain modulation of the "A-rule". J Biol Chem 2009; 284:31680-9. [PMID: 19759017 DOI: 10.1074/jbc.m109.029843] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apurinic/apyrimidinic (AP) sites are continuously generated in genomic DNA. Left unrepaired, AP sites represent noninstructional premutagenic lesions that are impediments to DNA synthesis. When DNA polymerases encounter an AP site, they generally insert dAMP. This preferential insertion is referred to as the A-rule. Crystallographic structures of DNA polymerase (pol) beta, a family X polymerase, with active site mismatched nascent base pairs indicate that the templating (i.e. coding) base is repositioned outside of the template binding pocket thereby diminishing interactions with the incorrect incoming nucleotide. This effectively produces an abasic site because the template pocket is devoid of an instructional base. However, the template pocket is not empty; an arginine residue (Arg-283) occupies the space vacated by the templating nucleotide. In this study, we analyze the kinetics of pol beta insertion opposite an AP site and show that the preferential incorporation of dAMP is lost with the R283A mutant. The crystallographic structures of pol beta bound to gapped DNA with an AP site analog (tertrahydrofuran) in the gap (binary complex) and with an incoming nonhydrolyzable dATP analog (ternary complex) were solved. These structures reveal that binding of the dATP analog induces a closed polymerase conformation, an unstable primer terminus, and an upstream shift of the templating residue even in the absence of a template base. Thus, dATP insertion opposite an abasic site and dATP misinsertions have common features.
Collapse
Affiliation(s)
- William A Beard
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
8
|
Brown JA, Duym WW, Fowler JD, Suo Z. Single-turnover kinetic analysis of the mutagenic potential of 8-oxo-7,8-dihydro-2'-deoxyguanosine during gap-filling synthesis catalyzed by human DNA polymerases lambda and beta. J Mol Biol 2007; 367:1258-69. [PMID: 17321545 DOI: 10.1016/j.jmb.2007.01.069] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 01/23/2007] [Accepted: 01/25/2007] [Indexed: 11/22/2022]
Abstract
In the presence of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) damage, many DNA polymerases exhibit a dual coding potential which facilitates efficient incorporation of matched dCTP or mismatched dATP. This also holds true for the insertion of 8-oxodGTP opposite template bases dC and dA. Employing single-turnover kinetic methods, we examined human DNA polymerase beta and its novel X-family homolog, human DNA polymerase lambda, to determine which nucleotide and template base was preferred when encountering 8-oxodG and 8-oxodGTP, respectively. While DNA polymerase beta preferentially incorporated dCTP over dATP, DNA polymerase lambda did not modulate a preference for either dCTP or dATP when opposite 8-oxodG in single-nucleotide gapped DNA, as incorporation proceeded with essentially equal efficiency and probability. Moreover, DNA polymerase lambda is more efficient than DNA polymerase beta to fill this oxidized single-nucleotide gap. Insertion of 8-oxodGTP by both DNA polymerases lambda and beta occurred predominantly against template dA, thereby reiterating how the asymmetrical design of the polymerase active site differentially accommodated the anti and syn conformations of 8-oxodG and 8-oxodGTP. Although the electronegative oxygen at the C8 position of 8-oxodG may induce DNA structural perturbations, human DNA ligase I was found to effectively ligate the incorporated 8-oxodGMP to a downstream strand, which sealed the nicked DNA. Consequently, the erroneous nucleotide incorporations catalyzed by DNA polymerases lambda and beta as well as the subsequent ligation catalyzed by a DNA ligase during base excision repair are a threat to genomic integrity.
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
9
|
Affiliation(s)
- William A Beard
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709-12233, USA
| | | |
Collapse
|
10
|
Abstract
DNA polymerase beta plays an essential role in the base excision repair pathway necessary to cleanse the genome of simple base lesions and abasic sites. Abasic sites arise in DNA from spontaneous base loss (depurination) and DNA-damage specific glycosylases that hydrolyze the N-glycosidic bond between the deoxyribose and the damaged base. DNA polymerase beta contributes two enzymatic activities: DNA synthesis and deoxyribose-phosphate removal through nucleotidyl transferase and lyase mechanisms, respectively. The active site for each of these activities resides on a distinct domain of the protein: 31-kDa polymerase domain and amino-terminal 8-kDa lyase domain. The simple organization of each domain and the ability to assay each activity have hastened our understanding of the faithful replication of DNA during repair synthesis and the flux of intermediates through single nucleotide base excision repair and its alternate pathways.
Collapse
Affiliation(s)
- William A Beard
- Enzymology Section, Laboratory of Structural Biology, NIEHS-NIH, North Carolina, USA
| | | | | |
Collapse
|
11
|
Oehlers LP, Heater SJ, Rains JD, Wells MC, David WM, Walter RB. Gene structure, purification and characterization of DNA polymerase beta from Xiphophorus maculatus. Comp Biochem Physiol C Toxicol Pharmacol 2004; 138:311-24. [PMID: 15533789 DOI: 10.1016/j.cca.2004.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2004] [Revised: 06/23/2004] [Accepted: 06/30/2004] [Indexed: 11/28/2022]
Abstract
Cloning of the Xiphophorus maculatus Polbeta gene and overexpression of the recombinant Polbeta protein has been performed. The organization of the XiphPolbeta introns and exons, including intron-exon boundaries, have been assigned and were found to be similar to that for human Polbeta with identical exon sizes except for exon XII coding for an additional two amino acid residues in Xiphophorus. The cDNA sequence encoding the 337-amino acid X. maculatus DNA polymerase beta (Polbeta) protein was subcloned into the Escherichia coli expression plasmid pET. Induction of transformed E. coli cells resulted in the high-level expression of soluble recombinant Polbeta, which catalyzed DNA synthesis on template-primer substrates. The steady-state Michaelis constants (Km) and catalytic efficiencies (kcat/Km) of the recombinant XiphPolbeta for nucleotide insertion opposite single-nucleotide gap DNA substrates were measured and compared with previously published values for recombinant human Polbeta. Steady-state in vitro Km and kcat/Km values for correct nucleotide insertion by XiphPolbeta and human Polbeta were similar, although the recombinant Xiphophorus protein exhibited 2.5-7-fold higher catalytic efficiencies for dGTP and dCTP insertion versus human Polbeta. In contrast, the recombinant XiphPolbeta displayed significantly lower fidelities than human Polbeta for dNTP insertion opposite a single-nucleotide gap at 37 degrees C.
Collapse
Affiliation(s)
- Leon P Oehlers
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | | | | | | | | | | |
Collapse
|
12
|
Heater SJ, Oehlers LP, Rains JD, Walter RB. DNA polymerase beta mRNA and protein expression in Xiphophorus fish. Comp Biochem Physiol C Toxicol Pharmacol 2004; 138:325-34. [PMID: 15533790 DOI: 10.1016/j.cca.2004.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 08/30/2004] [Accepted: 09/06/2004] [Indexed: 10/26/2022]
Abstract
Herein we report Xiphophorus DNA polymerase beta (XiphPolbeta) mRNA and protein expression levels in brain, liver, gill, and testes tissues from Xiphophorus maculatus, Xiphophorus helleri, and Xiphophorus couchianus parental line fish and two different tumor-bearing Xiphophorus interspecies hybrids. Polymerase beta protein levels in the Xiphophorus tissues were measured by Western blot, and mRNA was measured with a quantitative real time RT-PCR method which employed cRNA construction to produce accurate calibration curves. We found significant differences in both mRNA and protein levels between the tumor-bearing hybrid animals and the three parental species. However, there were no significant differences in either mRNA levels or protein expression observed between the parental species. Thus, interspecies hybridization results in dysregulation of Polbeta expression and this may manifest a modulation in DNA repair capability and susceptibility to latent tumorigenesis.
Collapse
Affiliation(s)
- Sheila J Heater
- Molecular Biosciences Research Group, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University Drive, San Marcos, TX 78666, USA
| | | | | | | |
Collapse
|
13
|
Ruggiero BL, Topal MD. Triplet repeat expansion generated by DNA slippage is suppressed by human flap endonuclease 1. J Biol Chem 2004; 279:23088-97. [PMID: 15037629 DOI: 10.1074/jbc.m313170200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human flap endonuclease 1 (h-FEN1) mutations have dramatic effects on repeat instability. Current models for repeat expansion predict that h-FEN1 protein prevents mutations by removing 5'-flaps generated at ends of Okazaki fragments by strand displacement synthesis. The models propose that hairpin formations within flaps containing repeats enable them to escape h-FEN1 cleavage. Friedreich's ataxia is caused by expansion mutations in a d(GAA)n repeat tract. Single-stranded d(GAA)n repeat tracts, however, do not form stable hairpins until the repeat tracts are quite long. Therefore, to understand how d(GAA)n repeat expansions survive h-FEN1 activity, we determined the effects of h-FEN1 on d(GAA)n repeat expansion during replication of a d(TTC)n repeat template. Replication initiated within the repeat tract generated significant expansion that was suppressed by the addition of h-FEN1 at the start of replication. The ability of h-FEN1 to suppress expansion implies that DNA slippage generates a 5'-flap in the nascent strand independent of strand displacement synthesis by an upstream polymerase. Delaying the addition of h-FEN1 to the replication reaction abolished the ability of h-FEN1 ability to suppress d(GAA)n repeat expansion products of all sizes, including sizes unable to hairpin. Use of model substrates demonstrated that h-FEN1 cleaves d(GAA)n 5'-flaps joined to double-stranded nonrepeat sequences but not those joined to double-stranded repeat tracts. The results provide evidence that, given the opportunity, short d(GAA)n repeat expansion products rearrange from 5'-flaps to stable internal loops inside the repeat tract. Long expansion products are predicted to form hairpinned flaps and internal loops. Once formed, these DNA conformations resist h-FEN1. The biological implications of the results are discussed.
Collapse
Affiliation(s)
- Bethany L Ruggiero
- Lineberger Comprehensive Cancer Center, University of North Carolina Medical School, Chapel Hill, North Carolina 27599-7295, USA
| | | |
Collapse
|
14
|
Beard WA, Shock DD, Yang XP, DeLauder SF, Wilson SH. Loss of DNA polymerase beta stacking interactions with templating purines, but not pyrimidines, alters catalytic efficiency and fidelity. J Biol Chem 2002; 277:8235-42. [PMID: 11756435 DOI: 10.1074/jbc.m107286200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structures of DNA polymerases bound with DNA reveal that the 5'-trajectory of the template strand is dramatically altered as it exits the polymerase active site. This distortion provides the polymerase access to the nascent base pair to interrogate proper Watson-Crick geometry. Upon binding a correct deoxynucleoside triphosphate, alpha-helix N of DNA polymerase beta is observed to form one face of the binding pocket for the new base pair. Asp-276 and Lys-280 stack with the bases of the incoming nucleotide and template, respectively. To determine the role of Lys-280, site-directed mutants were constructed at this position, and the proteins were expressed and purified, and their catalytic efficiency and fidelity were assessed. The catalytic efficiency for single-nucleotide gap filling with the glycine mutant (K280G) was strongly diminished relative to wild type for templating purines (>15-fold) due to a decreased binding affinity for the incoming nucleotide. In contrast, catalytic efficiency was hardly affected by glycine substitution for templating pyrimidines (<4-fold). The fidelity of the glycine mutant was identical to the wild type enzyme for misinsertion opposite a template thymidine, whereas the fidelity of misinsertion opposite a template guanine was modestly altered. The nature of the Lys-280 side-chain substitution for thymidine triphosphate insertion (templating adenine) indicates that Lys-280 "stabilizes" templating purines through van der Waals interactions.
Collapse
Affiliation(s)
- William A Beard
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|