1
|
Malecki PH, Bejger M, Rypniewski W, Vorgias CE. The Crystal Structure of a Streptomyces thermoviolaceus Thermophilic Chitinase Known for Its Refolding Efficiency. Int J Mol Sci 2020; 21:ijms21082892. [PMID: 32326166 PMCID: PMC7215727 DOI: 10.3390/ijms21082892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/27/2022] Open
Abstract
Analyzing the structure of proteins from extremophiles is a promising way to study the rules governing the protein structure, because such proteins are results of structural and functional optimization under well-defined conditions. Studying the structure of chitinases addresses an interesting aspect of enzymology, because chitin, while being the world’s second most abundant biopolymer, is also a recalcitrant substrate. The crystal structure of a thermostable chitinase from Streptomyces thermoviolaceus (StChi40) has been solved revealing a β/α-barrel (TIM-barrel) fold with an α+β insertion domain. This is the first chitinase structure of the multi-chitinase system of S. thermoviolaceus. The protein is also known to refold efficiently after thermal or chemical denaturation. StChi40 is structurally close to the catalytic domain of psychrophilic chitinase B from Arthrobacter TAD20. Differences are noted in comparison to the previously examined chitinases, particularly in the substrate-binding cleft. A comparison of the thermophilic enzyme with its psychrophilic homologue revealed structural features that could be attributed to StChi40’s thermal stability: compactness of the structure with trimmed surface loops and unique disulfide bridges, one of which is additionally stabilized by S–π interactions with aromatic rings. Uncharacteristically for thermophilic proteins, StChi40 has fewer salt bridges than its mesophilic and psychrophilic homologues.
Collapse
Affiliation(s)
- Piotr H. Malecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (P.H.M.); (M.B.)
| | - Magdalena Bejger
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (P.H.M.); (M.B.)
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (P.H.M.); (M.B.)
- Correspondence:
| | - Constantinos E. Vorgias
- Department of Biology, Section of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 15701 Zografou, Greece;
| |
Collapse
|
2
|
Suriya J, Bharathiraja S, Krishnan M, Manivasagan P, Kim SK. Extremozymes from Marine Actinobacteria. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 79:43-66. [PMID: 27770863 DOI: 10.1016/bs.afnr.2016.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Marine microorganisms that have the possibility to survive in diverse conditions such as extreme temperature, pH, pressure, and salinity are known as extremophiles. They produce biocatalysts so named as extremozymes that are active and stable at extreme conditions. These enzymes have numerous industrial applications due to its distinct properties. Till now, only a fraction of microorganisms on Earth have been exploited for screening of extremozymes. Novel techniques used for the cultivation and production of extremophiles, as well as cloning and overexpression of their genes in various expression systems, will pave the way to use these enzymes for chemical, food, pharmaceutical, and other industrial applications.
Collapse
Affiliation(s)
- J Suriya
- School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - S Bharathiraja
- CAS in Marine Biology, Annamalai University, Porto Novo, Tamil Nadu, India
| | - M Krishnan
- School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - P Manivasagan
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea
| | - S-K Kim
- Marine Bioprocess Research Center; Specialized Graduate School Science & Technology Convergence, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
3
|
An ammonium sulfate sensitive chitinase from Streptomyces sp. CS501. Arch Pharm Res 2014; 37:1522-9. [PMID: 25359199 DOI: 10.1007/s12272-014-0509-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
A chitinase from Streptomyces sp. CS501 was isolated from the Korean soil sample, purified by single-step chromatography, and biochemically characterized. The extracellular chitinase (Ch501) was purified to 4.60 fold with yield of 28.74 % using Sepharose Cl-6B column. The molecular mass of Ch501 was approximately 43 kDa as estimated by SDS-PAGE and zymography. The enzyme (Ch501) was found to be stable over a broad pH range (5.0-10.0) and temperature (up to 50 °C), and have an optimum temperature of 60 °C. N-terminal sequence of Ch501 was AAYDDAAAAA. Intriguingly, Ch501 was highly sensitive to ammonium sulfate but it's completely suppressed activity was recovered after desalting out. TLC analysis of Ch501 showed the production of N-acetyl D-glucosamine (GlcNAc) and Diacetylchitobiose (GlcNAc)2, as a principal hydrolyzed product. Ch501 shows antifungal activity against Fusarium solani and Aspergillus brasiliensis, which can be used for the biological control of fungus. As has been simple in purification, stable in a broad range of pH, ability to produce oligosaccharides, and antifungal activity showed that Ch501 has potential applications in industries as for chitooligosaccharides production used as prebiotics and/or for the biological control of plant pathogens in agriculture.
Collapse
|
4
|
Awad HM, El-Enshasy HA, Hanapi SZ, Hamed ER, Rosidi B. A new chitinase-producer strainStreptomyces glaucinigerWICC-A03: isolation and identification as a biocontrol agent for plants phytopathogenic fungi. Nat Prod Res 2014; 28:2273-7. [DOI: 10.1080/14786419.2014.939083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Shibasaki H, Uchimura K, Miura T, Kobayashi T, Usami R, Horikoshi K. Highly thermostable and surfactant-activated chitinase from a subseafloor bacterium, Laceyella putida. Appl Microbiol Biotechnol 2014; 98:7845-53. [DOI: 10.1007/s00253-014-5692-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
|
6
|
Cloning, Expression and Characterization of Thermophilic and Alkalophilic N-acetylglucosaminidase from Streptomyces sp. NK52 for the Targeted Production of N-acetylglucosamine. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s40011-013-0158-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Yu P, Xu M. Enhancing the enzymatic activity of the endochitinase by the directed evolution and its enzymatic property evaluation. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Xiayun J, Chen D, Shenle H, Wang W, Chen S, Zou S. Identification, characterization and functional analysis of a GH-18 chitinase from Streptomyces roseolus. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Carvalho RJ, Cabrera-Crespo J, Tanizaki MM, Gonçalves VM. Development of production and purification processes of recombinant fragment of pneumococcal surface protein A in Escherichia coli using different carbon sources and chromatography sequences. Appl Microbiol Biotechnol 2011; 94:683-94. [DOI: 10.1007/s00253-011-3649-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/28/2011] [Accepted: 10/17/2011] [Indexed: 11/24/2022]
|
10
|
Mokni-Tlili S, Ben Abdelmalek I, Jedidi N, Belghith H, Gargouri A, Abdennaceur H, Marzouki MN. Exploitation of biological wastes for the production of value-added hydrolases by Streptomyces sp. MSWC1 isolated from municipal solid waste compost. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2010; 28:828-837. [PMID: 20022900 DOI: 10.1177/0734242x09357078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Actinomycetes with the ability to degrade natural polysaccharides were isolated during a screening programme from soil, farmyard manure and municipal solid waste compost. One of the most potent isolates was identified as Streptomyces sp. MSWC1 using morphological and biochemical properties along with 16S rDNA partial sequence analysis. The highest enzyme production by Streptomyces was observed for the xylanase and chitinase activity on different carbon sources with an optimum of 12,100 IU ml(-1) and 110 IU ml(-1) at 3 days' culture on 1% of xylan and chitin, respectively. To meet the demand of industry, low-cost medium is required for the production of hydrolases by Streptomyces sp. Strain MSWC1 grown on manure, compost, and a natural carbon source was used to evaluate the re-utilisation of biological wastes for the production of value-added products. Despite the presence of a high amount of toxic heavy metals in the compost, Streptomyces produced interesting enzymes that have been biochemically characterized.
Collapse
Affiliation(s)
- Sonia Mokni-Tlili
- Laboratoire de Traitement et Recyclage des Eaux Usées, Centre des Recherches et des Technologies des Eaux, Technopole de Borj Cedria, Soliman, Tunisia
| | | | | | | | | | | | | |
Collapse
|
11
|
Molecular cloning, sequence analysis, expression and characterization of the endochitinase gene from Trichoderma sp. in Escherichia coli BL21. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9772-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Liquid chromatography of recombinant proteins and protein drugs. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 866:133-53. [DOI: 10.1016/j.jchromb.2008.01.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 12/17/2007] [Accepted: 01/18/2008] [Indexed: 01/12/2023]
|
13
|
Pyrpassopoulos S, Vlassi M, Tsortos A, Papanikolau Y, Petratos K, Vorgias CE, Nounesis G. Equilibrium heat-induced denaturation of chitinase 40 from Streptomyces thermoviolaceus. Proteins 2006; 64:513-23. [PMID: 16685709 DOI: 10.1002/prot.21003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
High-precision differential scanning calorimetry (DSC) and circular dichroism (CD) have been employed to study the thermal unfolding of chitinase 40 (Chi40) from Streptomyces thermoviolaceus. Chi40 belongs to family 18 of glycosyl hydrolase superfamily bearing a catalytic domain with a "TIM barrel"-like fold, which exhibits deviations from the (beta/alpha)8 fold. The thermal unfolding is reversible at pH = 8.0 and 9.0. The denatured state is characterized by extensive structural changes with respect to the native. The process is characterized by slow relaxation kinetics. Even slower refolding rates are recorded upon cooling. It is shown that the denaturation calorimetric data obtained at slow heating rate (0.17 K/min) are in excellent agreement with equilibrium data obtained by extrapolation of the experimental results to zero scanning rate. Analysis of the DSC results reveals that the experimental data can be successfully fitted using either a non-two-state sequential model involving one equilibrium intermediate, or an independent transitions model involving the unfolding of two Chi40 energetic domains to intermediate states. The stability of the native state with respect to the final denatured state is estimated, deltaG = 24.0 kcal/mol at 25 degrees C. The thermal results are in agreement with previous findings from chemical denaturation studies of a wide variety of (beta/alpha)8 barrel proteins, that their unfolding is a non-two-state process, always involving at least one unfolding intermediate.
Collapse
|
14
|
Hobel CFV, Hreggvidsson GO, Marteinsson VT, Bahrani-Mougeot F, Einarsson JM, Kristjánsson JK. Cloning, expression, and characterization of a highly thermostable family 18 chitinase from Rhodothermus marinus. Extremophiles 2004; 9:53-64. [PMID: 15583965 DOI: 10.1007/s00792-004-0422-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 08/27/2004] [Indexed: 10/26/2022]
Abstract
A family 18 chitinase gene chiA from the thermophile Rhodothermus marinus was cloned and expressed in Escherichia coli. The gene consisted of an open reading frame of 1,131 nucleotides encoding a protein of 377 amino acids with a calculated molecular weight of 42,341 Da. The deduced ChiA was a non-modular enzyme with one unique glycoside hydrolase family 18 catalytic domain. The catalytic domain exhibited 43% amino acid identity with Bacillus circulans chitinase C. Due to poor expression of ChiA, a signal peptide-lacking mutant, chiADeltasp, was designed and used subsequently. The optimal temperature and pH for chitinase activity of both ChiA and ChiADeltasp were 70 degrees C and 4.5-5, respectively. The enzyme maintained 100% activity after 16 h incubation at 70 degrees C, with half-lives of 3 h at 90 degrees C and 45 min at 95 degrees C. Results of activity measurements with chromogenic substrates, thin-layer chromatography, and viscosity measurements demonstrated that the chitinase is an endoacting enzyme releasing chitobiose as a major end product, although it acted as an exochitobiohydrolase with chitin oligomers shorter than five residues. The enzyme was fully inhibited by 5 mM HgCl2, but excess ethylenediamine tetraacetic acid relieved completely the inhibition. The enzyme hydrolyzed 73% deacetylated chitosan, offering an attractive alternative for enzymatic production of chitooligosaccharides at high temperature and low pH. Our results show that the R. marinus chitinase is the most thermostable family 18 chitinase isolated from Bacteria so far.
Collapse
|
15
|
Analysis of the expression of the Trichoderma harzianum ech42 gene in two isogenic clones of Escherichia coli by surface response methodology. Process Biochem 2004. [DOI: 10.1016/j.procbio.2003.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|