1
|
Rankin GO, Racine CR, Valentovic MA, Anestis DK. Nephrotoxic Potential of Putative 3,5-Dichloroaniline (3,5-DCA) Metabolites and Biotransformation of 3,5-DCA in Isolated Kidney Cells from Fischer 344 Rats. Int J Mol Sci 2020; 22:ijms22010292. [PMID: 33396638 PMCID: PMC7796304 DOI: 10.3390/ijms22010292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 12/28/2020] [Indexed: 11/24/2022] Open
Abstract
The current study was designed to explore the in vitro nephrotoxic potential of four 3,5-dichloroaniline (3,5-DCA) metabolites (3,5-dichloroacetanilide, 3,5-DCAA; 3,5-dichlorophenylhydroxylamine, 3,5-DCPHA; 2-amino-4,6-dichlorophenol, 2-A-4,6-DCP; 3,5-dichloronitrobenzene, 3,5-DCNB) and to determine the renal metabolism of 3,5-DCA in vitro. In cytotoxicity testing, isolated kidney cells (IKC) from male Fischer 344 rats (~4 million/mL, 3 mL) were exposed to a metabolite (0–1.5 mM; up to 90 min) or vehicle. Of these metabolites, 3,5-DCPHA was the most potent nephrotoxicant, with 3,5-DCNB intermediate in nephrotoxic potential. 2-A-4,6-DCP and 3,5-DCAA were not cytotoxic. In separate experiments, 3,5-DCNB cytotoxicity was reduced by pretreating IKC with antioxidants and cytochrome P450, flavin monooxygenase and peroxidase inhibitors, while 3,5-DCPHA cytotoxicity was attenuated by two nucleophilic antioxidants (glutathione and N-acetyl-L-cysteine). Incubation of IKC with 3,5-DCA (0.5–1.0 mM, 90 min) produced only 3,5-DCAA and 3,5-DCNB as detectable metabolites. These data suggest that 3,5-DCNB and 3,5-DCPHA are potential nephrotoxic metabolites and may contribute to 3,5-DCA induced nephrotoxicity in vivo. In addition, the kidney can bioactivate 3,5-DCNB to toxic metabolites, and 3,5-DCPHA appears to generate reactive metabolites to contribute to 3,5-DCA nephrotoxicity. In vitro, N-oxidation of 3,5-DCA appears to be the primary mechanism of bioactivation of 3,5-DCA to nephrotoxic metabolites.
Collapse
|
2
|
Rankin GO, Tyree C, Pope D, Tate J, Racine C, Anestis DK, Brown KC, Dial M, Valentovic MA. Role of Free Radicals and Biotransformation in Trichloronitrobenzene-Induced Nephrotoxicity In Vitro. Int J Mol Sci 2017; 18:ijms18061165. [PMID: 28561793 PMCID: PMC5485989 DOI: 10.3390/ijms18061165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/12/2017] [Accepted: 05/24/2017] [Indexed: 11/25/2022] Open
Abstract
This study determined the comparative nephrotoxic potential of four trichloronitrobenzenes (TCNBs) (2,3,4-; 2,4,5-; 2,4,6-; and 3,4,5-TCNB) and explored the effects of antioxidants and biotransformation inhibitors on TCNB-induced cytotoxicity in isolated renal cortical cells (IRCC) from male Fischer 344 rats. IRCC were incubated with a TCNB up to 1.0 mM for 15–120 min. Pretreatment with an antioxidant or cytochrome P450 (CYP), flavin monooxygenase (FMO), or peroxidase inhibitor was used in some experiments. Among the four TCNBs, the order of decreasing nephrotoxic potential was approximately 3,4,5- > 2,4,6- > 2,3,4- > 2,4,5-TCNB. The four TCNBs exhibited a similar profile of attenuation of cytotoxicity in response to antioxidant pretreatments. 2,3,4- and 3,4,5-TCNB cytotoxicity was attenuated by most of the biotransformation inhibitors tested, 2,4,5-TCNB cytotoxicity was only inhibited by isoniazid (CYP 2E1 inhibitor), and 2,4,6-TCNB-induced cytotoxicity was inhibited by one CYP inhibitor, one FMO inhibitor, and one peroxidase inhibitor. All of the CYP specific inhibitors tested offered some attenuation of 3,4,5-TCNB cytotoxicity. These results indicate that 3,4,5-TCNB is the most potent nephrotoxicant, free radicals play a role in the TCNB cytotoxicity, and the role of biotransformation in TCNB nephrotoxicity in vitro is variable and dependent on the position of the chloro groups.
Collapse
Affiliation(s)
- Gary O Rankin
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Connor Tyree
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Deborah Pope
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Jordan Tate
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Christopher Racine
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Dianne K Anestis
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Mason Dial
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Monica A Valentovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
3
|
Racine CR, Ferguson T, Preston D, Ward D, Ball J, Anestis D, Valentovic M, Rankin GO. The role of biotransformation and oxidative stress in 3,5-dichloroaniline (3,5-DCA) induced nephrotoxicity in isolated renal cortical cells from male Fischer 344 rats. Toxicology 2016; 341-343:47-55. [PMID: 26808022 DOI: 10.1016/j.tox.2016.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
Among the mono- and dichloroanilines, 3,5-dichloroaniline (3,5-DCA) is the most potent nephrotoxicant in vivo and in vitro. However, the role of renal biotransformation in 3,5-DCA induced nephrotoxicity is unknown. The current study was designed to determine the in vitro nephrotoxic potential of 3,5-DCA in isolated renal cortical cells (IRCC) obtained from male Fischer 344 rats, and the role of renal bioactivation and oxidative stress in 3,5-DCA nephrotoxicity. IRCC (∼ 4 million cells/ml) from male rats were exposed to 3,5-DCA (0-1.0mM) for up to 120 min. In IRCC, 3,5-DCA was cytotoxic at 1.0mM by 60 min as evidenced by the increased release of lactate dehydrogenase (LDH), but 120 min was required for 3,5-DCA 0.5mM to increase LDH release. In subsequent studies, IRCC were exposed to a pretreatment (antioxidant or enzyme inhibitor) prior to exposure to 3,5-DCA (1.0mM) for 90 min. Cytotoxicity induced by 3,5-DCA was attenuated by pretreatment with inhibitors of flavin-containing monooxygenase (FMO; methimazole, N-octylamine), cytochrome P450 (CYP; piperonyl butoxide, metyrapone), or peroxidase (indomethacin, mercaptosuccinate) enzymes. Use of more selective CYP inhibitors suggested that the CYP 2C family contributed to 3,5-DCA bioactivation. Antioxidants (glutathione, N-acetyl-l-cysteine, α-tocopherol, ascorbate, pyruvate) also attenuated 3,5-DCA nephrotoxicity, but oxidized glutathione levels and the oxidized/reduced glutathione ratios were not increased. These results indicate that 3,5-DCA may be activated via several renal enzyme systems to toxic metabolites, and that free radicals, but not oxidative stress, contribute to 3,5-DCA induced nephrotoxicity in vitro.
Collapse
Affiliation(s)
- Christopher R Racine
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Travis Ferguson
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Debbie Preston
- Department of Pediatrics, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Dakota Ward
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - John Ball
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Dianne Anestis
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Monica Valentovic
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Gary O Rankin
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
4
|
3,4,5-Trichloroaniline nephrotoxicity in vitro: potential role of free radicals and renal biotransformation. Int J Mol Sci 2014; 15:20900-12. [PMID: 25402648 PMCID: PMC4264202 DOI: 10.3390/ijms151120900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/17/2014] [Accepted: 11/03/2014] [Indexed: 01/08/2023] Open
Abstract
Chloroanilines are widely used in the manufacture of drugs, pesticides and industrial intermediates. Among the trichloroanilines, 3,4,5-trichloroaniline (TCA) is the most potent nephrotoxicant in vivo. The purpose of this study was to examine the nephrotoxic potential of TCA in vitro and to determine if renal biotransformation and/or free radicals contributed to TCA cytotoxicity using isolated renal cortical cells (IRCC) from male Fischer 344 rats as the animal model. IRCC (~4 million cells/mL; 3 mL) were incubated with TCA (0, 0.1, 0.25, 0.5 or 1.0 mM) for 60–120 min. In some experiments, IRCC were pretreated with an antioxidant or a cytochrome P450 (CYP), flavin monooxygenase (FMO), cyclooxygenase or peroxidase inhibitor prior to incubation with dimethyl sulfoxide (control) or TCA (0.5 mM) for 120 min. At 60 min, TCA did not induce cytotoxicity, but induced cytotoxicity as early as 90 min with 0.5 mM or higher TCA and at 120 min with 0.1 mM or higher TCA, as evidenced by increased lactate dehydrogenase (LDH) release. Pretreatment with the CYP inhibitor piperonyl butoxide, the cyclooxygenase inhibitor indomethacin or the peroxidase inhibitor mercaptosuccinate attenuated TCA cytotoxicity, while pretreatment with FMO inhibitors or the CYP inhibitor metyrapone had no effect on TCA nephrotoxicity. Pretreatment with an antioxidant (α-tocopherol, glutathione, ascorbate or N-acetyl-l-cysteine) also reduced or completely blocked TCA cytotoxicity. These results indicate that TCA is directly nephrotoxic to IRCC in a time and concentration dependent manner. Bioactivation of TCA to toxic metabolites by CYP, cyclooxygenase and/or peroxidase contributes to the mechanism of TCA nephrotoxicity. Lastly, free radicals play a role in TCA cytotoxicity, although the exact nature of the origin of these radicals remains to be determined.
Collapse
|
5
|
Rankin GO, Sweeney A, Racine C, Ferguson T, Preston D, Anestis DK. 4-Amino-2-chlorophenol: Comparative in vitro nephrotoxicity and mechanisms of bioactivation. Chem Biol Interact 2014; 222:126-32. [PMID: 25446496 DOI: 10.1016/j.cbi.2014.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 08/29/2014] [Accepted: 10/06/2014] [Indexed: 11/27/2022]
Abstract
Chlorinated anilines are nephrotoxicants both in vivo and in vitro. The mechanism of chloroaniline nephrotoxicity may occur via more than one mechanism, but aminochlorophenol metabolites appear to contribute to the adverse in vivo effects. The purpose of this study was to compare the nephrotoxic potential of 4-aminophenol (4-AP), 4-amino-2-chlorophenol (4-A2CP), 4-amino-3-chlorophenol (4-A3CP) and 4-amino-2,6-dichlorophenol (4-A2,6DCP) using isolated renal cortical cells (IRCC) from male Fischer 344 rats as the model and to explore renal bioactivation mechanisms for 4-A2CP. For these studies, IRCC (∼4×10(6)cells/ml) were incubated with an aminophenol (0.5 or 1.0mM) or vehicle for 60min at 37°C with shaking. In some experiments, cells were pretreated with an antioxidant or cytochrome P450 (CYP), flavin-containing monooxygenase (FMO), peroxidase or cyclooxygenase inhibitor prior to 4-A2CP (1.0mM). Lactate dehydrogenase (LDH) release served as a measure of cytotoxicity. The order of decreasing nephrotoxic potential in IRCC was 4-A2,6-DCP>4-A2CP>4-AP>4-A3CP. The cytotoxicity induced by 4-A2CP was reduced by pretreatment with the peroxidase inhibitor mercaptosuccinic acid, and some antioxidants (ascorbate, glutathione, N-acetyl-l-cysteine) but not by others (α-tocopherol, DPPD). In addition, pretreatment with the iron chelator deferoxamine, several CYP inhibitors (except for the general CYP inhibitor piperonyl butoxide), FMO inhibitors or indomethacin (a cyclooxygenase inhibitor) failed to attenuate 4-A2CP cytotoxicity. These results demonstrate that the number and ring position of chloro groups can influence the nephrotoxic potential of 4-aminochlorophenols. In addition, 4-A2CP may be bioactivated by cyclooxygenase and peroxidases, and free radicals appear to play a role in 4-A2CP cytotoxicity.
Collapse
Affiliation(s)
- Gary O Rankin
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States.
| | - Adam Sweeney
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Christopher Racine
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Travis Ferguson
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Deborah Preston
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Dianne K Anestis
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| |
Collapse
|
6
|
Rankin GO, Hong SK, Anestis DK, Ball JG, Valentovic MA. Mechanistic aspects of 4-amino-2,6-dichlorophenol-induced in vitro nephrotoxicity. Toxicology 2007; 245:123-9. [PMID: 18243470 DOI: 10.1016/j.tox.2007.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 12/13/2007] [Accepted: 12/18/2007] [Indexed: 10/22/2022]
Abstract
4-Amino-2,6-dichlorophenol (ADCP) is a potent acute nephrotoxicant in vivo inducing prominent renal corticomedullary necrosis. In vitro, ADCP exposure increases lactate dehydrogenase (LDH) release from rat renal cortical slices at 0.05 mM or greater. The purpose of this study was to examine the ability of antioxidants, cytochrome P450 (CYP) and flavin adenine dinucleotide monooxygenase (FMO) activity modulators, indomethacin, glutathione and inhibitors of glutathione conjugate metabolism to attenuate ADCP cytotoxicity in vitro. Renal cortical slices prepared from untreated male Fischer 344 rats (N=4/group) were preincubated at 37 degrees C under a 100% oxygen atmosphere with an inhibitor or vehicle for 5-30 min. ADCP (0.05-0.5mM) or vehicle was added and incubations continued for 120 min. At the end of the incubation period, LDH release was measured as an index of nephrotoxicity. ADCP cytotoxicity was partially attenuated by ascorbate (1.0 or 2.0mM), but not by N,N'-diphenyl-p-phenylenediamine (DPPD), alpha-tocopherol or deferoxamine. Inhibitors of CYP (metyrapone, piperonyl butoxide and isoniazid) and FMO activity modulators (methimazole, N-octylamine) had no effect on ADCP cytotoxicity. Indomethacin or glutathione 1.0mM completely and partially blocked ADCP 0.1 and 0.5mM cytotoxicity, respectively. N-acetylcysteine, AOAA (an inhibitor of cysteine conjugate beta-lyase) and probenecid (an organic anion transport inhibitor), but not AT-125 (an inhibitor of gamma-glutamyl transferase), partially attenuated ADCP 0.1mM cytotoxicity. Overall, these results suggest that reactive metabolites may be produced from ADCP primarily via a co-oxidation-mediated mechanism. The difference in the ability of ascorbate and glutathione to attenuate ADCP-induced cytotoxicity in vitro in kidney cells could indicate that alkylation via the reactive benzoquinoneimine metabolite might be responsible for cytotoxicity rather than a free radical-mediated mechanism.
Collapse
Affiliation(s)
- Gary O Rankin
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | | | | | | | | |
Collapse
|
7
|
Stern ST, Bruno MK, Horton RA, Hill DW, Roberts JC, Cohen SD. Contribution of acetaminophen-cysteine to acetaminophen nephrotoxicity II. Possible involvement of the γ-glutamyl cycle. Toxicol Appl Pharmacol 2005; 202:160-71. [PMID: 15629191 DOI: 10.1016/j.taap.2004.06.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 06/07/2004] [Indexed: 11/22/2022]
Abstract
Acetaminophen (APAP) nephrotoxicity has been observed both in humans and research animals. Our recent investigations have focused on the possible involvement of glutathione-derived APAP metabolites in APAP nephrotoxicity and have demonstrated that administration of acetaminophen-cysteine (APAP-CYS) potentiated APAP-induced renal injury with no effects on APAP-induced liver injury. Additionally, APAP-CYS treatment alone resulted in a dose-responsive renal GSH depletion. This APAP-CYS-induced renal GSH depletion could interfere with intrarenal detoxification of APAP or its toxic metabolite N-acetyl-p-benzoquinoneimine (NAPQI) and may be the mechanism responsible for the potentiation of APAP nephrotoxicity. Renal-specific GSH depletion has been demonstrated in mice and rats following administration of amino acid gamma-glutamyl acceptor substrates for gamma-glutamyl transpeptidase (gamma-GT). The present study sought to determine if APAP-CYS-induced renal glutathione depletion is the result of disruption of the gamma-glutamyl cycle through interaction with gamma-GT. The results confirmed that APAP-CYS-induced renal GSH depletion was antagonized by the gamma-glutamyl transpeptidase (gamma-GT) inhibitor acivicin. In vitro analysis demonstrated that APAP-CYS is a gamma-glutamyl acceptor for both murine and bovine renal gamma-GT. Analysis of urine from mice pretreated with acivicin and then treated with APAP, APAP-CYS, or acetaminophen-glutathione identified a gamma-glutamyl-cysteinyl-acetaminophen metabolite. These findings are consistent with the hypothesis that APAP-CYS contributes to APAP nephrotoxicity by depletion of renal GSH stores through interaction with the gamma-glutamyl cycle.
Collapse
Affiliation(s)
- Stephan T Stern
- Toxicology Program, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06268, USA
| | | | | | | | | | | |
Collapse
|
8
|
Li W, Choy DF, Lam MS, Morgan T, Sullivan ME, Post JM. Use of cultured cells of kidney origin to assess specific cytotoxic effects of nephrotoxins. Toxicol In Vitro 2003; 17:107-13. [PMID: 12537968 DOI: 10.1016/s0887-2333(02)00128-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During drug discovery, assessment of renal safety for a compound is important for further development of a candidate drug. In this study, we describe an in vitro cell-based assay capable of discerning nephrotoxicity. Three cell types, two of kidney origin and one of liver origin, were used to examine the effects of nephrotoxins. The cell types were the porcine normal kidney tubular epithelial cell line (LLC-PK1), the primary human renal proximal tubular epithelial cells (hRPTEC) and the human liver cell line (HepG2). Cytotoxicity was measured using a luciferin/luciferase assay that measures cellular ATP levels. Four known nephrotoxins, 4-aminophenol, cisplatin, cyclosporin A and paraquat, were tested in this cell-based assay to evaluate cytotoxicity on drug exposure. Kidney-derived LLC-PK1 cells and hRPTECs were found to be sensitive to selected nephrotoxins while liver-derived HepG2 cells were insensitive. Human RPTEC cells obtained from three individual donors demonstrated highly reproducible effects on drug exposure. With respect to drug discovery efforts, integration of the cell models described here are valuable for evaluation of nephrotoxic potentials during lead selection and optimization processes.
Collapse
Affiliation(s)
- W Li
- Department of Pharmacology, Berlex Biosciences, Richmond, CA 94804, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Valentovic M, Ball JG, Stoll S, Rankin GO. 3,4-Dichlorophenylhydroxylamine cytotoxicity in renal cortical slices from Fischer 344 rats. Toxicology 2001; 162:149-56. [PMID: 11369111 DOI: 10.1016/s0300-483x(01)00356-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
3,4-Dichlorophenylhydroxylamine (3,4-CPHA) is the N-hydroxyl metabolite of 3,4-dichloroaniline. 3,4-Dichloroaniline is a breakdown product of the herbicide Propanil. Previous work has shown that 3,4-dichloroaniline is acutely toxic to the kidney and bladder. The purpose of this study was to examine the in vitro toxicity of 3,4-dichlorophenylhydroxylamine. Renal cortical slices were prepared from male Fischer 344 rats (190-250 g) and were incubated with 0-0.5 mM 3,4-CPHA for 30-120 min under oxygen and constant shaking. 3,4-CPHA produced a concentration and time dependent alteration in lactate dehydrogenase (LDH) leakage, organic ion accumulation and pyruvate stimulated gluconeogenesis. Glutathione levels were diminished within 60 min below control values by 0.1 and 0.5 mM 3,4-CPHA. A 30 min pretreatment with 0.1 mM deferoxamine did not alter 3,4-CPHA toxicity. Alterations in pyruvate stimulated gluconeogenesis and LDH leakage were comparable between vehicle and deferoxamine pretreated tissues. Other studies examined the effect of (1 mM) glutathione, 2 mM ascorbic acid and 1 mM dithiothreitol (DTT) on toxicity. Pretreatment for 30 min with vehicle or 1 mM DTT induced comparable changes in LDH leakage and pyruvate stimulated gluconeogenesis. Pretreatment for 30 min with 1 mM glutathione or 2 mM ascorbic acid reduced 3,4-CPHA toxicity. LDH leakage was not elevated as markedly in renal slices pretreated with glutathione relative to slices pretreated with vehicle. These results indicate that 3,4-CPHA toxicity is through an iron independent mechanism. 3,4-CPHA cytotoxicity was reduced by pretreatment with glutathione or ascorbic acid suggesting formation of a reactive intermediate.
Collapse
Affiliation(s)
- M Valentovic
- Department of Pharmacology, Marshall University School of Medicine, 1542 Spring Valley Drive, Huntington, WV 25704-9388, USA.
| | | | | | | |
Collapse
|