1
|
Fujiki K. [Involvement of Notch1 and ALK4/5 Signaling Pathways in Renal Tubular Cell Death: Their Application to Clarification of Cadmium Toxicity]. Nihon Eiseigaku Zasshi 2021; 75. [PMID: 33342936 DOI: 10.1265/jjh.20007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Renal tubular cell death is caused by various extracellular stresses including toxic amounts of cadmium, an occupational and environmental pollutant metal, and is responsible for renal dysfunction. While cadmium exposure disrupts many intracellular signaling pathways, the molecular mechanism underlying cadmium-induced renal tubular cell death has not yet been fully elucidated. We have recently identified two important intracellular signaling pathways that promote cadmium-induced renal tubular cell death: the Notch1 signaling and activin receptor-like kinase (ALK) 4/5 signaling (also known as the activin-transforming growth factor β receptor pathways). In this review paper, we introduce our previous experimental findings, focusing on Notch1 and ALK4/5 signaling pathways, which may uncover the molecular mechanisms involved in cadmium-induced renal tubular cell death.
Collapse
Affiliation(s)
- Kota Fujiki
- Department of Hygiene and Public Health, Tokyo Women's Medical University
| |
Collapse
|
2
|
Farkhondeh T, Afshari R, Mehrpour O, Samarghandian S. Mercury and Atherosclerosis: Cell Biology, Pathophysiology, and Epidemiological Studies. Biol Trace Elem Res 2020; 196:27-36. [PMID: 31529242 DOI: 10.1007/s12011-019-01899-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022]
Abstract
Today atherosclerosis is considered as a main cause of death in the worldwide. There is a significant association between heavy metal exposure and atherosclerosis. In this study, we discussed the scientific literature about the effect of mercury on the pathogenesis of atherosclerosis. We also considered the epidemiological studies on mercury as a risk factor for atherosclerosis. Web of Science, Google Scholar, Medline, PubMed, and Scopus were searched by using the following keywords to 2019: (cardiovascular diseases OR atherosclerosis OR endothelial dysfunction) AND (mercury). Mercury has the potential to act as one of the novel risk factors for atherosclerosis development. The findings have indicated the role of mercury in the pathogenesis of atherosclerosis, vascular endothelial dysfunction, oxidative stress, inflammation, and dyslipidemia. Mercury can induce atherosclerosis indirectly via increasing the total cholesterol, triglycerides, and LDL-C levels as well as decreasing the HDL-C level. Mercury can be considered as a risk factor in the atherosclerosis progression. However, more studies are required to find the exact mechanisms involved in the pathogenesis of atherosclerosis induced by mercury.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Reza Afshari
- BC Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Omid Mehrpour
- Rocky Mountain Poison and Drug Safety, Denver Health, Denver, CO, USA
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
3
|
Effect of exogenous TGF-β1 on the cadmium-induced nephrotoxicity by inhibiting apoptosis of proximal tubular cells through PI3K-AKT-mTOR signaling pathway. Chem Biol Interact 2017; 269:25-32. [DOI: 10.1016/j.cbi.2017.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/21/2017] [Indexed: 01/04/2023]
|
4
|
Jo C, Koh YH. Cadmium induces N-cadherin cleavage via ERK-mediated γ-secretase activation in C6 astroglia cells. Toxicol Lett 2013; 222:117-21. [PMID: 23876460 DOI: 10.1016/j.toxlet.2013.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/13/2013] [Accepted: 07/11/2013] [Indexed: 11/17/2022]
Abstract
N-cadherin has known to be involved in tumor progression and metastasis. However, it is still obscure about the signaling pathway involving in the processing of N-cadherin. Thus, we examined which signaling pathway plays a major role in the processing of N-cadherin in C6 glioma cells following treatment of cadmium (Cd), a highly ubiquitous heavy metal. A cleavage product of N-cadherin, N-cad/CTF2 was observed by the treatment of Cd to C6 cells in a time and concentration-dependent manner. The production of N-cad/CTF2 was inhibited by pretreatment of γ-secretase inhibitors or siRNA transfection of nicastrin, indicating that γ-secretase is involved in the cleavage. Interestingly, Cd could activate both ERK and JNK signaling pathways in C6 cells; however, γ-secretase-mediated N-cad/CTF2 production by Cd was completely blocked by MEK1/2 inhibitors PD184352 and U0126, but not by a JNK inhibitor SP600125, demonstrating that the ERK signaling pathway plays a major role in the cleavage. In addition, pretreatment of an antioxidant or Ca²⁺ blocker blocked the production of N-cad/CTF2 by Cd together with the inhibition of ERK1/2 phosphorylation. Collectively, these results suggest that Cd increases intracellular Ca²⁺ or ROS, which induces γ-secretase-dependent N-cad/CTF2 production via the activation of the ERK signaling pathway in C6 glial cells.
Collapse
Affiliation(s)
- Chulman Jo
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2(i)-ro, Gangoe-myeon, Cheongwon-gun, Chungcheongbuk-do 363-951, Republic of Korea
| | | |
Collapse
|
5
|
Peña C, Hernández-Fonseca JP, Rincón J, Pedreañez A, Viera N, Mosquera J. Pro-inflammatory role of angiotensin II in mercuric chloride-induced nephropathy in rats. J Immunotoxicol 2012; 10:125-32. [PMID: 22822941 DOI: 10.3109/1547691x.2012.699478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mercuric chloride (HgCl₂), which induces kidney toxicity, constitutes a potential threat to human health. In addition to direct toxic effects, kidney inflammatory events take place during the HgCl₂-induced nephropathy. There is no information currently available about the role of angiotensin II (Ang II) in this inflammatory process. Accordingly, the aim of this study was to determine the expression of Ang II and Ang II-associated inflammatory molecules, i.e. intercellular adhesion molecule-1 (ICAM-1), inducible nitric oxide synthase (iNOS), and mono-cyte/macrophage infiltration (ED-1), in HgCl₂-induced nephropathy. Three groups of Sprague Dawley rats that were to receive HgCl₂ (2.5 mg HgCl₂/kg BW, by gavage) were utilized: one had received Losartan at 30 mg/kg BW; one had received Enalapril at 30 mg/kg BW; and one had received distilled water, in each case daily for 3 days prior to the HgCl₂ exposure. For these studies, an extra set of controls treated with saline solution in place of HgCl₂ and water in place of the test drugs was employed. Renal biopsies were obtained 96 h after HgCl₂ injection and the expressions of Ang II, ICAM-1, iNOS, and ED-1 were analyzed by indirect immunoflourescence while tubular damage was assessed via histopathology. An increased expression of Ang II, ICAM-1, iNOS, and ED-1 as well as increases in tubular necrosis were observed in all HgCl₂-animals. Treatments with Losartan or Enalapril diminished the induced expressions as well as the extent of tubular damage. The data here suggest that Ang II is involved in the pro-inflammatory events during HgCl₂-induced nephropathy, and that this is probably mediated, in part, by Ang II receptors Type 1 (AT-1).
Collapse
Affiliation(s)
- Caterina Peña
- Cátedra de Genética, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | | | | | | | | | | |
Collapse
|
6
|
Soodvilai S, Nantavishit J, Muanprasat C, Chatsudthipong V. Renal organic cation transporters mediated cadmium-induced nephrotoxicity. Toxicol Lett 2011; 204:38-42. [DOI: 10.1016/j.toxlet.2011.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/04/2011] [Accepted: 04/05/2011] [Indexed: 12/21/2022]
|
7
|
Assessment of toxic elements' content in swine kidneys: Pathomorphological analysis. ARCHIVE OF ONCOLOGY 2010. [DOI: 10.2298/aoo1002017m] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: In order to ensure the safety of consumers in Serbia, the toxic elements' (Cd, Hg, As, Pb) content in swine kidneys collected from three different sites in Serbia (n=90), were determined by atomic absorption spectrometry. Also, in order to find information on the effects of accumulation of toxic elements in swine kidneys, histopathological examination of kidneys was carried out. Methods: Determination of toxic elements (Cd, Hg, As, Pb) in swine kidneys was performed by atomic absorption spectrometry. For microscopic examination, kidney samples were fixed in 10% neutral buffered formalin and absolute alcohol for 5 to 7 days, processed by routine methods, sectioned at 5-8 ?m, and stained with hematoxylin and eosin (HE) for light microscopy. Results: The presence of mercury was found in 33.3% of kidney samples in the range of 0.005-0.055 mg/kg, while presence of cadmium was found in less degree (27.7%) but in higher content (0.05-1,23 mg/kg). The presence of arsenic was found only in one sample, while presence of lead was not found. The metal-to-metal correlation analysis supported the theory that there were different sources of contamination. Histopathological examination of kidneys confirms tubulopathies with edema and cell vacuolization. In addition, hemorrhages and necrosis of proximal kidney tubules' cells were found. Conclusion: This study shows the presence of toxic elements in pigs butchered in Serbia at levels comparable to those reported in other countries., and consequently do not represent any concern from a consumer safety point of view. The lack of strong correlation between histopathological changes and incidence of toxic elements found in our trial may explain the possible synergism among toxic elements and other nephrotoxic compounds, which enhances the toxicity, especially in cases of low contamination.
Collapse
|
8
|
Toxicological assessment of toxic element residues in swine kidney and its role in public health risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2009; 6:3127-42. [PMID: 20049251 PMCID: PMC2800339 DOI: 10.3390/ijerph6123127] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 11/18/2009] [Accepted: 11/26/2009] [Indexed: 11/17/2022]
Abstract
In order to ensure the safety of consumers in Serbia the prevalence of toxic elements (As, Cd, Hg, Pb) in swine kidney collected from three different areas in Serbia (n = 90) was determined by atomic absorption spectrometry. Also, in order to find information on the effects of accumulation of toxic elements on swine kidney, pathohistological examination of the kidneys was performed. The presence of mercury was found in 33.3% of kidney samples in the range of 0.005-0.055 mg/kg, while the presence of cadmium was detected less often (27.7%) but in larger amounts (0.05-1.23 mg/kg). The presence of arsenic was found only in one sample, while no lead was found. The results of the metal-to-metal correlation analysis supported there were the result of different sources of contamination. Pathohistological examination of kidneys confirms tubulopathies with oedema and cell vacuolization. In addition, haemorrhages and necrosis of proximal kidney tubule cells were found. This study demonstrates that toxic elements in Serbian slaughtered pigs are found at levels comparable to those reported in other countries, and consequently the levels reported in this study do not represent a concern from a consumer safety point of view. The lack of a strong correlation between histopathological changes and the incidence of toxic elements found in this study might be explained as the result of synergism among toxic elements and other nephrotoxic compounds which enhance the toxicity of the individual toxins even at the relatively low mean concentrations observed in this study.
Collapse
|
9
|
Bens M, Vandewalle A. Cell models for studying renal physiology. Pflugers Arch 2008; 457:1-15. [DOI: 10.1007/s00424-008-0507-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 03/22/2008] [Indexed: 12/24/2022]
|
10
|
Prozialeck WC, Edwards JR. Cell adhesion molecules in chemically-induced renal injury. Pharmacol Ther 2007; 114:74-93. [PMID: 17316817 PMCID: PMC1913814 DOI: 10.1016/j.pharmthera.2007.01.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 01/05/2007] [Indexed: 01/15/2023]
Abstract
Cell adhesion molecules are integral cell-membrane proteins that maintain cell-cell and cell-substrate adhesion and in some cases act as regulators of intracellular signaling cascades. In the kidney, cell adhesion molecules, such as the cadherins, the catenins, the zonula occludens protein-1 (ZO-1), occludin and the claudins are essential for maintaining the epithelial polarity and barrier integrity that are necessary for the normal absorption/excretion of fluid and solutes. A growing volume of evidence indicates that these cell adhesion molecules are important early targets for a variety of nephrotoxic substances including metals, drugs, and venom components. In addition, it is now widely appreciated that molecules, such as intracellular adhesion molecule-1 (ICAM-1), integrins, and selectins play important roles in the recruitment of leukocytes and inflammatory responses that are associated with nephrotoxic injury. This review summarizes the results of recent in vitro and in vivo studies indicating that these cell adhesion molecules may be primary molecular targets in many types of chemically-induced renal injury. Some of the specific agents that are discussed include cadmium (Cd), mercury (Hg), bismuth (Bi), cisplatin, aminoglycoside antibiotics, S-(1,2-dichlorovinyl)-l-cysteine (DCVC), and various venom toxins. This review also includes a discussion of the various mechanisms, by which these substances can affect cell adhesion molecules in the kidney.
Collapse
Affiliation(s)
- Walter C Prozialeck
- Department of Pharmacology, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States.
| | | |
Collapse
|
11
|
The vascular endothelium as a target of cadmium toxicity. Life Sci 2006; 79:1493-506. [PMID: 16765992 DOI: 10.1016/j.lfs.2006.05.007] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 04/18/2006] [Accepted: 05/10/2006] [Indexed: 12/16/2022]
Abstract
Cadmium (Cd) is an important industrial and environmental pollutant that can produce a wide variety of adverse effects in humans and animals. A growing volume of evidence indicates that the vascular endothelium may be one of the primary targets of Cd toxicity in vivo. Studies over the past 20 years have shown that Cd, at relatively low, sublethal concentrations, can target vascular endothelial cells at a variety of molecular levels, including cell adhesion molecules, metal ion transporters and protein kinase signaling pathways. The purpose of this review is to summarize the results of these recent studies and to discuss the implications of these findings with regard to the mechanisms of Cd toxicity in specific organs including the lung, liver, kidney, testis and heart. In addition the possible roles of the vascular endothelium in mediating the tumor promoting and anticarcinogenic effects of Cd are discussed.
Collapse
|
12
|
Läck AK, Floyd DW, McCool BA. Chronic ethanol ingestion modulates proanxiety factors expressed in rat central amygdala. Alcohol 2005; 36:83-90. [PMID: 16396741 PMCID: PMC1557647 DOI: 10.1016/j.alcohol.2005.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 07/11/2005] [Accepted: 07/12/2005] [Indexed: 11/25/2022]
Abstract
Withdrawal anxiety following chronic ethanol exposure is often associated with relapse in recovering alcoholics. It is likely that brain regions regulating anxiety-like behaviors adapt during chronic ethanol exposure to ultimately regulate such behaviors. The central amygdala contains numerous neurotransmitter systems that have been implicated in the regulation of anxiety-like behavior, including corticotropin releasing factor (CRF) and NMDA-type glutamate receptors. Chronic ethanol exposure causes functional adaptations in both CRF and NMDA receptors that are likely to regulate anxiety-like behaviors expressed during withdrawal. However, the molecular mechanisms governing these adaptations remain unexplored. We therefore evaluated these neurotransmitter systems in Sprague-Dawley rats during chronic ingestion of an ethanol-containing liquid diet. Quantitative real-time reverse transcription-PCR demonstrated that preproCRF mRNA was significantly upregulated by chronic ethanol exposure, whereas mRNA expression of CRF binding protein did not change. There were also no significant changes observed in any of the NMDA subunit mRNAs, although there was a trend toward greater NR2A mRNA expression during chronic ethanol exposure. Using Western blotting analysis we measured NMDA receptor subunit protein expression. Chronic ethanol exposure did not affect protein levels of the NR1 and NR2B subunits. Like the mRNA measures, chronic ethanol exposure did influence NR2A protein levels but the effects were modest. Our results demonstrate that NMDA receptor subunit mRNA and protein expressions are not strongly influenced by exposure to chronic ethanol. This suggests that the functional NMDA receptor adaptations identified in previous studies [Roberto, M., Schweitzer, P., Madamba, S. G., Stouffer, D. G., Parsons, L. H., & Siggins, G. R. (2004). Acute and chronic ethanol exposure alter glutamatergic transmission in rat central amygdala: an in vitro and in vivo analysis. J Neurosci 24, 1594-1603] are likely to be mediated by post-translational events. In contrast, enhanced levels of CRF during/after chronic ethanol exposure are likely to be mediated by increased levels of prepro CRF mRNA. Together, our findings suggest that adaptations to chronic ethanol exposure by proanxiety factors expressed in the central nucleus appear to be mediated by distinct cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Anna K. Läck
- Department of Physiology and Pharmacology and the
- Alcohol Research Training Program, Wake Forest University School of Medicine, Winston-Salem NC 27157, U.S.A
| | | | - Brian A. McCool
- Department of Physiology and Pharmacology and the
- Corresponding Author: Brian A. McCool, Ph.D., Department of Physiology and Pharmacology, Medical Center Blvd., Wake Forest University School of Medicine, Winston-Salem NC 27157, Tel: +1-336-716-8608, Fax: +1-336-716-8501, e-mail:
| |
Collapse
|
13
|
DuBois DW, Parrish AR, Trzeciakowski JP, Frye GD. Binge ethanol exposure delays development of GABAergic miniature postsynaptic currents in septal neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 152:199-212. [PMID: 15351508 DOI: 10.1016/j.devbrainres.2004.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/28/2004] [Indexed: 12/11/2022]
Abstract
Whole cell GABA(A)R currents of septal neurons isolated from rat pups increase rapidly during the first weeks of life when inhibitory synapses are forming. Early postnatal binge ethanol intubation on days 4-9 delays this maturational up-regulation in septal neurons isolated several days later suggesting inhibitory synapse formation could be disrupted [S.-H. Hsiao, J.L. Acevedo, D.W. DuBois, K.R. Smith, J.R. West, G.D. Frye, Early postnatal ethanol intubation blunts GABA(A) receptor upregulation and modifies 3alpha-hydroxy-5alpha-pregnan-20-one sensitivity in rat MS/DB neurons, Brain Res. Dev. Brain Res. 130 (2001) 25-40]. Surprisingly, whole cell GABA(A)R function does not increase rapidly when septal neurons are grown for the same period in vitro and is not blunted by comparable ethanol exposure of the cultures [S.-H. Hsiao, D.W. DuBois, R.C. Miranda, G.D. Frye, Critically timed ethanol exposure reduces GABA(A)R function on septal neurons developing in vivo but not in vitro, Brain Res Dev. Brain Res. 1008 (2004) 69-80]. Because GABAergic miniature postsynaptic currents (mPSCs) show parallel patterns of maturation whether cortical neurons are growing in vivo or in vitro [D.D. Dunning, C.L. Hoover, I. Soltesz, M.A. Smith, D.K. ODowd, GABA(A) receptor-mediated miniature postsynaptic currents and alpha-subunit expression in developing cortical neurons, J. Neurophysiol. 82 (1999) 3286-3297], we examined the impact of binge ethanol exposure on synaptic receptors activated by these currents in septal cultures. Binge ethanol treatment of embryonic septal neurons over 6-11 days in vitro (DIV) slightly reduced GABA(A)R-mediated mPSC amplitude and frequency, but also substantially slowed decay kinetics when mPSCs were recorded later on DIV 13-18. Decreased frequency and slowed mPSC decay kinetics after ethanol were consistent with parameters measured in immature neurons. Untreated septal neurons exhibited decreased mPSC amplitude and frequency with acute 30-100 mM ethanol, without changing decay kinetics suggesting a direct inhibition of postsynaptic receptors. Sustained inhibition of GABA(A)Rs with 100 microM picrotoxin on DIV 6-11 decreased mPSC amplitude and frequency and slowed decay kinetics similar to binge ethanol exposure. These results suggest that binge ethanol exposure delays mPSC maturation by interfering with trophic postsynaptic GABA(A)R signaling during the early development of septal neurons.
Collapse
Affiliation(s)
- Dustin W DuBois
- Department of Medical Pharmacology and Toxicology, Texas A&M University System Health Science Center, College Station, TX 77843-1114, United States
| | | | | | | |
Collapse
|
14
|
Jeong EM, Moon CH, Kim CS, Lee SH, Baik EJ, Moon CK, Jung YS. Cadmium stimulates the expression of ICAM-1 via NF-kappaB activation in cerebrovascular endothelial cells. Biochem Biophys Res Commun 2004; 320:887-92. [PMID: 15240131 DOI: 10.1016/j.bbrc.2004.05.218] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Indexed: 11/23/2022]
Abstract
Cadmium (Cd), a ubiquitous heavy metal, has been shown to accumulate in the central nervous system, especially outside of the blood-brain barrier (BBB), suggesting a potential toxicity to nervous tissue. Thus, we investigated the effect of Cd on intercellular adhesion molecule-1 (ICAM-1) expression, as an indicator of BBB injury, in mouse brain microvessel endothelial cells (bEnd.3 cells). The treatment with Cd increased the expression of ICAM-1 at the levels of protein and mRNA, and these increases were almost completely inhibited by a specific NF-kappaB inhibitor SN50. The treatment with Cd induced the translocation of NF-kappaB from cytosolic to membrane fraction and increased DNA binding activity of NF-kappaB, and this NF-kappaB activation was inhibited by SN50. Interestingly, Cd did not trigger the degradation of IkappaBalpha, suggesting that Cd-induced ICAM-1 expression is mediated through IkappaBalpha degradation-independent pathway. Instead, tyrosine phosphorylation of IkappaBalpha was significantly elevated by Cd treatment, and this elevation was blocked by genistein, a protein tyrosine kinase inhibitor. In summary, the present results suggest that Cd stimulates the expression of ICAM-1 in bEnd.3 cells, via NF-kappaB activation that is mediated by the tyrosine phosphorylation of IkappaBalpha.
Collapse
Affiliation(s)
- Euy-Myoung Jeong
- Department of Physiology, School of Medicine, Ajou University, Suwon 442-749, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|