1
|
Kumar N, Mathur A, Bunker SK, John PJ. Cell Cycle dysregulation on prenatal and postnatal Arsenic exposure in skin of Wistar rat neonates. Xenobiotica 2023:1-15. [PMID: 37449383 DOI: 10.1080/00498254.2023.2237102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
This study explores the effects of prenatal and postnatal (until weaning period) arsenic exposure given via pregnant females on Wistar rat neonates. Pregnant female rats were divided in four groups - control, low dose, moderate dose and high dose groups of sodium arsenite exposure during gestation and weaning period. Half of the neonates were sacrificed at day 1 of birth and other half at day 21 of birth. Cell cycle analysis in epidermal keratinocytes using flowcytometer revealed that there was a consistent increase in number of cells in G2/M phase from 0.04% in control group to 0.88%, 1.59% and 2.77% in low, moderate and high dose groups respectively for neonates sacrificed at day-1. Whereas, the increase in number of cells with increasing doses in G2/M phase of neonates sacrificed at day-21 was from 3.44% to 5.1%, 6.82%, and 9.17%. At postnatal day 21, mRNA expression of Cyclin A and B1, p53, Caspases 3, 7 and 9, and Bax were found to be up-regulated. Whereas that of Cyclin E, CDK 1 and 2 and Bcl2 were down regulated consistently in skin tissues of arsenic exposed groups.
Collapse
Affiliation(s)
- Navneet Kumar
- Centre for advanced studies, Department of Zoology, University of Rajasthan, Jaipur, India - 302004
| | - Astha Mathur
- Centre for advanced studies, Department of Zoology, University of Rajasthan, Jaipur, India - 302004
| | - Suresh Kumar Bunker
- Centre for advanced studies, Department of Zoology, University of Rajasthan, Jaipur, India - 302004
| | - Placheril J John
- Centre for advanced studies, Department of Zoology, University of Rajasthan, Jaipur, India - 302004
| |
Collapse
|
2
|
Banerjee M, Yaddanapudi K, States JC. Zinc supplementation prevents mitotic accumulation in human keratinocyte cell lines upon environmentally relevant arsenic exposure. Toxicol Appl Pharmacol 2022; 454:116255. [PMID: 36162444 PMCID: PMC9683715 DOI: 10.1016/j.taap.2022.116255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 12/01/2022]
Abstract
Disrupted cell cycle progression underlies the molecular pathogenesis of multiple diseases. Chronic exposure to inorganic arsenic (iAs) is a global health issue leading to multi-organ cancerous and non-cancerous diseases. Exposure to supratherapeutic concentrations of iAs causes cellular accumulation in G2 or M phase of the cell cycle in multiple cell lines by inducing cyclin B1 expression. It is not clear if iAs exposure at doses corresponding to serum levels of chronically exposed populations (∼100 nM) has any effect on cell cycle distribution. In the present study we investigated if environmentally relevant iAs exposure induced cell cycle disruption and mechanisms thereof employing two human keratinocyte cell lines (HaCaT and Ker-CT), flow cytometry, immunoblots and quantitative real-time PCR (qRT-PCR). iAs exposure (100 nM; 24 h) led to mitotic accumulation of cells in both cell lines, along with the stabilization of ANAPC11 ubiquitination targets cyclin B1 and securin, without affecting their steady state mRNA levels. This result suggested that induction of cyclin B1 and securin is modulated at the level of protein degradation. Moreover, zinc supplementation successfully prevented iAs-induced mitotic accumulation and stabilization of cyclin B1 and securin without affecting their mRNA levels. Together, these data suggest that environmentally relevant iAs exposure leads to mitotic accumulation possibly by displacing zinc from the RING finger subunit of anaphase promoting complex/cyclosome (ANAPC11), the cell cycle regulating E3 ubiquitin ligase. This early cell cycle disruptive effect of environmentally relevant iAs concentration could underpin the molecular pathogenesis of multiple diseases associated with chronic iAs exposure.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.
| | - Kavitha Yaddanapudi
- Immuno-Oncology Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA; Department of Microbiology/Immunology, University of Louisville, Louisville, KY, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
3
|
Speer RM, Zhou X, Volk LB, Liu KJ, Hudson LG. Arsenic and cancer: Evidence and mechanisms. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:151-202. [PMID: 36858772 PMCID: PMC10860672 DOI: 10.1016/bs.apha.2022.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Arsenic is a potent carcinogen and poses a significant health concern worldwide. Exposure occurs through ingestion of drinking water and contaminated foods and through inhalation due to pollution. Epidemiological evidence shows arsenic induces cancers of the skin, lung, liver, and bladder among other tissues. While studies in animal and cell culture models support arsenic as a carcinogen, the mechanisms of arsenic carcinogenesis are not fully understood. Arsenic carcinogenesis is a complex process due its ability to be metabolized and because of the many cellular pathways it targets in the cell. Arsenic metabolism and the multiple forms of arsenic play distinct roles in its toxicity and contribute differently to carcinogenic endpoints, and thus must be considered. Arsenic generates reactive oxygen species increasing oxidative stress and damaging DNA and other macromolecules. Concurrently, arsenic inhibits DNA repair, modifies epigenetic regulation of gene expression, and targets protein function due its ability to replace zinc in select proteins. While these mechanisms contribute to arsenic carcinogenesis, there remain significant gaps in understanding the complex nature of arsenic cancers. In the future improving models available for arsenic cancer research and the use of arsenic induced human tumors will bridge some of these gaps in understanding arsenic driven cancers.
Collapse
Affiliation(s)
- Rachel M Speer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Lindsay B Volk
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States; Stony Brook Cancer Center, Renaissance School of Medicine, State University of New York Stony Brook, Stony Brook, NY, United States.
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
4
|
Banerjee M, Ferragut Cardoso A, Al-Eryani L, Pan J, Kalbfleisch TS, Srivastava S, Rai SN, States JC. Dynamic alteration in miRNA and mRNA expression profiles at different stages of chronic arsenic exposure-induced carcinogenesis in a human cell culture model of skin cancer. Arch Toxicol 2021; 95:2351-2365. [PMID: 34032870 PMCID: PMC8241660 DOI: 10.1007/s00204-021-03084-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022]
Abstract
Chronic arsenic exposure causes skin cancer, although the underlying molecular mechanisms are not well defined. Altered microRNA and mRNA expression likely play a pivotal role in carcinogenesis. Changes in genome-wide differential expression of miRNA and mRNA at 3 strategic time points upon chronic sodium arsenite (As3+) exposure were investigated in a well-validated HaCaT cell line model of arsenic-induced cutaneous squamous cell carcinoma (cSCC). Quadruplicate independent HaCaT cell cultures were exposed to 0 or 100 nM As3+ for up to 28-weeks (wk). Cell growth was monitored throughout the course of exposure and epithelial-mesenchymal transition (EMT) was examined employing immunoblot. Differentially expressed miRNA and mRNA profiles were generated at 7, 19, and 28-wk by RNA-seq, followed by identification of differentially expressed mRNA targets of differentially expressed miRNAs through expression pairing at each time point. Pathway analyses were performed for total differentially expressed mRNAs and for the miRNA targeted mRNAs at each time point. RNA-seq predictions were validated by immunoblot of selected target proteins. While the As3+-exposed cells grew slower initially, growth was equal to that of unexposed cells by 19-wk (transformation initiation), and exposed cells subsequently grew faster than passage-matched unexposed cells. As3+-exposed cells had undergone EMT at 28-wk. Pathway analyses demonstrate dysregulation of carcinogenesis-related pathways and networks in a complex coordinated manner at each time point. Immunoblot data largely corroborate RNA-seq predictions in the endoplasmic reticulum stress (ER stress) pathway. This study provides a detailed molecular picture of changes occurring during the arsenic-induced transformation of human keratinocytes.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Ana Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Laila Al-Eryani
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- Knowledge Management and Special Projects Branch, Center for Strategic Scientific Initiatives (HNC1L), National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Biostatistics and Informatics Facility, Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA
| | - Theodore S Kalbfleisch
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
- Gluck Equine Research Center, University of Kentucky, Lexington, KY, USA
| | - Sudhir Srivastava
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Shesh N Rai
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
- Biostatistics and Informatics Facility, Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
5
|
Zhang ZH, Hong Q, Zhang ZC, Xing WY, Xu S, Tian QX, Ye QL, Wang H, Yu DX, Xie DD, Xu DX. ROS-mediated genotoxic stress is involved in NaAsO 2-induced cell cycle arrest, stemness enhancement and chemoresistance of prostate cancer cells in a p53-independent manner. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111436. [PMID: 33039867 DOI: 10.1016/j.ecoenv.2020.111436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Several epidemiological studies reported that chronic arsenic exposure increased risk of prostate cancer. This study aimed to investigate whether chronic NaAsO2 exposure elevates stemness and chemoresistance in prostate cancer cells. DU145 (wild-type p53) and PC-3 (p53-null) cells were exposed to NaAsO2 (2 μmol/L) for 30 generations. IC50s to docetaxel and cisplatin were increased in NaAsO2-exposed DU145 and PC-3 cells. The number of tumor spheres was elevated in NaAsO2-exposed DU145 and PC-3 cells. Nanog, SOX-2 and ALDH1A1, three markers of cancer stemness, were upregulated in NaAsO2-exposed PC-3 spheres. Moreover, NaAsO2-exposed DU145 and PC-3 cells were arrested in G2/M phase. Histone H2AX phosphorylation on Ser139, an indicator for DNA double-strand break, was upregulated in NaAsO2-exposed DU145 and PC-3 cells. ATM phosphorylation on Ser1981, a key sensor of genotoxic stress, was rapidly elevated in NaAsO2-exposed DU145 cells. Phosphor-p53, a downstream molecule of ATM signaling, and p21, a direct target of p53, were upregulated in NaAsO2-exposed DU145 cells. Unexpectedly, p21 was also elevated in NaAsO2-exposed p53-null PC-3 cells. Antioxidant NAC alleviated NaAsO2-induced ATM phosphorylation, cell cycle arrest, and subsequent stemness enhancement and chemoresistance in both DU145 and PC-3 cells. These results suggest that ROS-mediated genotoxic stress is involved in NaAsO2-induced cell cycle arrest, stemness enhancement and chemoresistance of prostate cancer cells in a p53-independent manner.
Collapse
Affiliation(s)
- Zhi-Hui Zhang
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230601, China
| | - Qian Hong
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230601, China
| | - Zhi-Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei 230032, China
| | - Wei-Yang Xing
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230601, China
| | - Shen Xu
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230601, China
| | - Qi-Xing Tian
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230601, China
| | - Qing-Lin Ye
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230601, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei 230032, China
| | - De-Xin Yu
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230601, China
| | - Dong-Dong Xie
- Department of Urology, Second Affiliated Hospital, Anhui Medical University, Hefei 230601, China.
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Laboratory of Environmental Toxicology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
6
|
Leggett CS, Doll MA, States JC, Hein DW. Acetylation of putative arylamine and alkylaniline carcinogens in immortalized human fibroblasts transfected with rapid and slow acetylator N-acetyltransferase 2 haplotypes. Arch Toxicol 2021; 95:311-319. [PMID: 33136180 PMCID: PMC7855884 DOI: 10.1007/s00204-020-02901-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Exposure to alkylanilines found in tobacco smoke and indoor air is associated with risk of bladder cancer. Genetic factors significantly influence the metabolism of arylamine carcinogens and the toxicological outcomes that result from exposure. We utilized nucleotide excision repair (NER)-deficient immortalized human fibroblasts to examine the effects of human N-acetyltransferase 1 (NAT1), CYP1A2, and common rapid (NAT2*4) and slow (NAT2*5B or NAT2*7B) acetylator human N-acetyltransferase 2 (NAT2) haplotypes on environmental arylamine and alkylaniline metabolism. We constructed SV40-transformed human fibroblast cells that stably express human NAT2 alleles (NAT2*4, NAT2*5B, or NAT2*7B) and human CYP1A2. Human NAT1 and NAT2 apparent kinetic constants were determined following recombinant expression of human NAT1 and NAT2 in yeast for the arylamines benzidine, 4-aminobiphenyl (ABP), and 2-aminofluorene (2-AF), and the alkylanilines 2,5-dimethylaniline (DMA), 3,4-DMA, 3,5-DMA, 2-6-DMA, and 3-ethylaniline (EA) compared with those of the prototype NAT1-selective substrate p-aminobenzoic acid and NAT2-selective substrate sulfamethazine. Benzidine, 3,4-DMA, and 2-AF were preferential human NAT1 substrates, while 3,5-DMA, 2,5-DMA, 3-EA, and ABP were preferential human NAT2 substrates. Neither recombinant human NAT1 or NAT2 catalyzed the N-acetylation of 2,6-DMA. Among the alkylanilines, N-acetylation of 3,5-DMA was substantially higher in human fibroblasts stably expressing NAT2*4 versus NAT2*5B and NAT2*7B. The results provide important insight into the role of the NAT2 acetylator polymorphism (in the presence of competing NAT1 and CYP1A2-catalyzed N-acetylation and N-hydroxylation) on the metabolism of putative alkyaniline carcinogens. The N-acetylation of two alkylanilines associated with urinary bladder cancer (3-EA and 3,5-DMA) was modified by NAT2 acetylator polymorphism.
Collapse
Affiliation(s)
- Carmine S Leggett
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
- American Association for Cancer Research, Washington, DC, USA
| | - Mark A Doll
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - David W Hein
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.
- University of Louisville Superfund Research Program, Louisville, KY, USA.
- University of Louisville Health Sciences Center, Kosair Charities CTR Room 303, 505 South Hancock Street, Louisville, KY, 40202, USA.
| |
Collapse
|
7
|
Al-Eryani L, Waigel S, Jala V, Jenkins SF, States JC. Cell cycle pathway dysregulation in human keratinocytes during chronic exposure to low arsenite. Toxicol Appl Pharmacol 2017; 331:130-134. [PMID: 28595984 PMCID: PMC5957280 DOI: 10.1016/j.taap.2017.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Arsenic is naturally prevalent in the earth's crust and widely distributed in air and water. Chronic low arsenic exposure is associated with several cancers in vivo, including skin cancer, and with transformation in vitro of cell lines including immortalized human keratinocytes (HaCaT). Arsenic also is associated with cell cycle dysregulation at different exposure levels in multiple cell lines. In this work, we analyzed gene expression in HaCaT cells to gain an understanding of gene expression changes contributing to transformation at an early time point. METHODS HaCaT cells were exposed to 0 or 100nM NaAsO2 for 7weeks. Total RNA was purified and analyzed by microarray hybridization. Differential expression with fold change≥|1.5| and p-value≤0.05 was determined using Partek Genomic Suite™ and pathway and network analyses using MetaCore™ software (FDR≤0.05). Cell cycle analysis was performed using flow cytometry. RESULTS 644 mRNAs were differentially expressed. Cell cycle/cell cycle regulation pathways predominated in the list of dysregulated pathways. Genes involved in replication origin licensing were enriched in the network. Cell cycle assay analysis showed an increase in G2/M compartment in arsenite-exposed cells. CONCLUSIONS Arsenite exposure induced differential gene expression indicating dysregulation of cell cycle control, which was confirmed by cell cycle analysis. The results suggest that cell cycle dysregulation is an early event in transformation manifested in cells unable to transit G2/M efficiently. Further study at later time points will reveal additional changes in gene expression related to transformation processes.
Collapse
Affiliation(s)
- Laila Al-Eryani
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States
| | - Sabine Waigel
- Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Venkatakrishna Jala
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| | - Samantha F Jenkins
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
8
|
Saha S, Rashid K, Sadhukhan P, Agarwal N, Sil PC. Attenuative role of mangiferin in oxidative stress-mediated liver dysfunction in arsenic-intoxicated murines. Biofactors 2016; 42:515-532. [PMID: 27018134 DOI: 10.1002/biof.1276] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 12/30/2022]
Abstract
Mangiferin (MAG), a natural xanthone mainly derived from mangoes, possesses great antioxidative potentials. The present study has been carried out to investigate the hepato-protective role of MAG, against arsenic (As)-induced oxidative damages in the murine liver. As, a well-known toxic metalloid, is ubiquitously found in nature and has been reported to affect nearly all the organs of the human body via oxidative impairment. Administration of As in the form of sodium arsenite (NaAsO2 ) at a dose of 10 mg/kg body weight for 3 months abruptly increased reactive oxygen species (ROS) level, led to oxidative stress and significantly depleted the first line of antioxidant defense system in the body. Moreover, As caused apoptosis in hepatocytes. Treatment with MAG at a dose of 40 mg/kg for body weight for 30 days simultaneously and separately after NaAsO2 administration decreased the ROS production and attenuated the alterations in the activities of all antioxidant indices. MAG also protected liver against the NaAsO2 -induced apoptosis and disintegrated hepatocytes, thus counteracting with As-induced toxicity. It could significantly inhibit the expression of different proapoptotic caspases and upregulate the expression of survival molecules such as Akt and Nrf2. On inhibiting Akt (by PI3K inhibitor, LY294002) and ERK1/2 (by ERK1/2 inhibitor, PD98059) specifically, caspase 3 got activated abolishing mangiferin's protective role on As-induced hepatotoxicity. So here, we have briefly elucidated the signaling cascades involved in As-induced apoptotic cell death in the liver and also the detailed cellular mechanism by which MAG provides protection to this organ. © 2016 BioFactors, 42(5):515-532, 2016.
Collapse
Affiliation(s)
- Sukanya Saha
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | | | - Namrata Agarwal
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India.
| |
Collapse
|
9
|
Örd D, Örd T, Biene T, Örd T. TRIB3 increases cell resistance to arsenite toxicity by limiting the expression of the glutathione-degrading enzyme CHAC1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2668-2680. [PMID: 27526673 DOI: 10.1016/j.bbamcr.2016.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/27/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023]
Abstract
Arsenic, a metalloid with cytotoxic and carcinogenic effects related to the disruption of glutathione homeostasis, induces the expression of ATF4, a central transcription factor in the cellular stress response. However, the interplay between factors downstream of ATF4 is incompletely understood. In this article, we investigate the role of Tribbles homolog 3 (TRIB3), a regulatory member of the ATF4 pathway, in determining cell sensitivity to arsenite. Our results show that arsenite potently upregulates Trib3 mRNA and protein in an ATF4-dependent manner in mouse embryonic fibroblasts. Trib3-deficient cells display increased susceptibility to arsenite-induced cell death, which is rescued by re-expressing TRIB3. In cells lacking TRIB3, arsenite stress leads to markedly elevated mRNA and protein levels of Chac1, a gene that encodes a glutathione-degrading enzyme and is not previously known to be repressed by TRIB3. Analysis of the Chac1 promoter identified two regulatory elements that additively mediate the induction of Chac1 by arsenite and ATF4, as well as the robust suppression of Chac1 by TRIB3. Crucially, Chac1 silencing enhances glutathione levels and eliminates the increased susceptibility of Trib3-deficient cells to arsenite stress. Moreover, Trib3-deficient cells demonstrate an increased rate of glutathione consumption, which is abolished by Chac1 knockdown. Taken together, these data indicate that excessive Chac1 expression is detrimental to arsenite-treated cell survival and that TRIB3 is critical for restraining the pro-death potential of Chac1 during arsenite stress, representing a novel mechanism of cell viability regulation that occurs within the ATF4 pathway.
Collapse
Affiliation(s)
- Daima Örd
- Estonian Biocentre, Riia 23b, 51010 Tartu, Estonia
| | - Tiit Örd
- Estonian Biocentre, Riia 23b, 51010 Tartu, Estonia; Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Tuuliki Biene
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Tõnis Örd
- Estonian Biocentre, Riia 23b, 51010 Tartu, Estonia.
| |
Collapse
|
10
|
Abstract
Arsenic is an enigmatic xenobiotic that causes a multitude of chronic diseases including cancer and also is a therapeutic with promise in cancer treatment. Arsenic causes mitotic delay and induces aneuploidy in diploid human cells. In contrast, arsenic causes mitotic arrest followed by an apoptotic death in a multitude of virally transformed cells and cancer cells. We have explored the hypothesis that these differential effects of arsenic exposure are related by arsenic disruption of mitosis and are differentiated by the target cell's ability to regulate or modify cell cycle checkpoints. Functional p53/CDKN1A axis has been shown to mitigate the mitotic block and to be essential to induction of aneuploidy. More recent preliminary data suggest that microRNA modulation of chromatid cohesion also may play a role in escape from mitotic block and in generation of chromosomal instability. Other recent studies suggest that arsenic may be useful in treatment of solid tumors when used in combination with other cytotoxic agents such as cisplatin.
Collapse
Affiliation(s)
- J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, 505 S. Hancock St, Louisville, KY, 40202, USA,
| |
Collapse
|
11
|
Chen YJ, Lai KC, Kuo HH, Chow LP, Yih LH, Lee TC. HSP70 colocalizes with PLK1 at the centrosome and disturbs spindle dynamics in cells arrested in mitosis by arsenic trioxide. Arch Toxicol 2014; 88:1711-23. [PMID: 24623308 DOI: 10.1007/s00204-014-1222-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 03/03/2014] [Indexed: 11/26/2022]
Abstract
Heat shock protein 70 (HSP70) has been shown to be a substrate of Polo-like kinase 1 (PLK1), and it prevents cells arrested in mitosis by arsenic trioxide (ATO) from dying. Here, we report that HSP70 participates in ATO-induced spindle elongation, which interferes with mitosis progression. Our results demonstrate that HSP70 and PLK1 colocalize at the centrosome in ATO-arrested mitotic cells. HSP70 located at the centrosome was found to be phosphorylated by PLK1 at Ser⁶³¹ and Ser⁶³³. Moreover, unlike wild-type HSP70 (HSP70(wt)) and its phosphomimetic mutant (HSP70(SS631,633DD)), a phosphorylation-resistant mutant of HSP70 (HSP70(SS631,633AA)) failed to localize at the centrosome. ATO-induced spindle elongation was abolished in cells overexpressing HSP70(SS631,633AA). Conversely, mitotic spindles in cells ectopically expressing HSP70(SS631,633DD) were more resistant to nocodazole-induced depolymerization than in those expressing HSP70(wt) or HSP70(SS631,633AA). In addition, inhibition of PLK1 significantly reduced HSP70 phosphorylation and induced early onset of apoptosis in ATO-arrested mitotic cells. Taken together, our results indicate that PLK1-mediated phosphorylation and centrosomal localization of HSP70 may interfere with spindle dynamics and prevent apoptosis of ATO-arrested mitotic cells.
Collapse
Affiliation(s)
- Yu-Ju Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | | | | | | | | | | |
Collapse
|
12
|
Muenyi CS, Trivedi AP, Helm CW, States JC. Cisplatin plus sodium arsenite and hyperthermia induces pseudo-G1 associated apoptotic cell death in ovarian cancer cells. Toxicol Sci 2014; 139:74-82. [PMID: 24519527 DOI: 10.1093/toxsci/kfu029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cisplatin is effective against solid tumors including ovarian cancer. However, inherent or acquired cisplatin resistance limits clinical success. We recently demonstrated that a combination of sodium arsenite (NaAsO2) and hyperthermia sensitizes p53-expressing ovarian cancer cells to cisplatin by modulating DNA repair pathway and enhancing platinum accumulation. However, it is not understood how this combination therapy modulates cell cycle following platinum-DNA damage. The goal of the present study was to determine if NaAsO2 and hyperthermia alter cisplatin-induced G2 arrest and cause mitotic arrest and mitotic catastrophe. Human epithelial ovarian cancer cells (A2780 and A2780/CP70) were treated with cisplatin ± 20 μM NaAsO2 at 37 or 39°C for 1 h. Cisplatin ± NaAsO2 at 37 or 39°C caused cells to accumulate in G2/M compartment at 36 h after treatment. Western blot analysis of cyclin A and cyclin B suggested that combined NaAsO2, hyperthermia, and cisplatin induced mitotic arrest. However, we observed < 3% mitotic index and phosphorylation of histone H3 on serine 10 was undetectable. These results did not confirm mitotic arrest. BUBR1 (BUB1B) also was not phosphorylated, suggesting disrupted mitotic checkpoint. Postmitotic cells accumulated in pseudo-G1 as demonstrated by cyclin E stabilization, CDKN1A induction, and hypophosphorylation of retinoblastoma protein. These cells also were positive for Annexin V binding indicating they were apoptotic. In summary, cisplatin plus NaAsO2 and hyperthermia induced pseudo-G1 associated apoptosis in ovarian cancer cells.
Collapse
Affiliation(s)
- Clarisse S Muenyi
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292
| | | | | | | |
Collapse
|
13
|
Liu X, Gao Y, Yao H, Zhou L, Sun D, Wang J. Neuroglobin involvement in the course of arsenic toxicity in rat cerebellar granule neurons. Biol Trace Elem Res 2013; 155:439-46. [PMID: 24057451 DOI: 10.1007/s12011-013-9810-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/29/2013] [Indexed: 12/16/2022]
Abstract
Exposure to arsenic in drinking water results in a widespread environmental problem in the world, and the brain is a major target. Neuroglobin is a vertebrate heme protein regarded as playing neuroprotective role in hypoxia or oxidative stress. In this study, we investigated the toxic effects of sodium arsenite (NaAsO2) on primary cultured rat cerebellar granule neurons (CGNs) and detected neuroglobin (Ngb) expression in rat CGNs exposed to NaAsO2. Our results show that apoptosis was obviously induced by NaAsO2 treatment in rat CGNs by annexin V-fluorescein isothiocyanate assay. Intracellular reactive oxygen species generation increased significantly in the cells exposed to NaAsO2, and the apoptotic effects could be partially reversed by antioxidant N-acetyl-L-cysteine. Ngb protein and mRNA expression were significantly downregulated in rat CGNs shortly after NaAsO2 exposure and then upregulated after a longer time of exposure. Furthermore, mRNA expression changed more than protein expression and the toxic effect of NaAsO2 on Ngb expression is dose dependent. Higher Ngb expression was also detected in rat cerebellum, but not in other parts (cerebrum, hippocampus, and midbrain) of the brain exposed to NaAsO2 for 16 weeks. Taken together, cytotoxic effects of NaAsO2 on rat CGNs is induced at least partly by oxidative stress and Ngb may influence the course of arsenic toxicity in rat CGNs and rat cerebellum.
Collapse
Affiliation(s)
- Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618104), Harbin Medical University, 157# Baojian Road, Harbin, 150081, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Rashid K, Sinha K, Sil PC. An update on oxidative stress-mediated organ pathophysiology. Food Chem Toxicol 2013; 62:584-600. [PMID: 24084033 DOI: 10.1016/j.fct.2013.09.026] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/29/2013] [Accepted: 09/19/2013] [Indexed: 12/29/2022]
Abstract
Exposure to environmental pollutants and drugs can result in pathophysiological situations in the body. Research in this area is essential as the knowledge on cellular survival and death would help in designing effective therapeutic strategies that are needed for the maintenance of the normal physiological functions of the body. In this regard, naturally occurring bio-molecules can be considered as potential therapeutic targets as they are normally available in commonly consumed foodstuffs and are thought to have minimum side effects. This review article describes the detailed mechanisms of oxidative stress-mediated organ pathophysiology and the ultimate fate of the cells either to survive or to undergo necrotic or apoptotic death. The mechanisms underlying the beneficial role of a number of naturally occurring bioactive molecules in oxidative stress-mediated organ pathophysiology have also been included in the review. The review provides useful information about the recent progress in understanding the mechanism(s) of various types of organ pathophysiology, the complex cross-talk between these pathways, as well as their modulation in stressed conditions. Additionally, it suggests possible therapeutic applications of a number of naturally occurring bioactive molecules in conditions involving oxidative stress.
Collapse
Affiliation(s)
- Kahkashan Rashid
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Calcutta 700054, West Bengal, India
| | | | | |
Collapse
|
15
|
Bhattacharjee P, Banerjee M, Giri AK. Role of genomic instability in arsenic-induced carcinogenicity. A review. ENVIRONMENT INTERNATIONAL 2013; 53:29-40. [PMID: 23314041 DOI: 10.1016/j.envint.2012.12.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/04/2012] [Accepted: 12/09/2012] [Indexed: 06/01/2023]
Abstract
Exposure to chronic arsenic toxicity is associated with cancer. Although unstable genome is a characteristic feature of cancer cells, the mechanisms leading to genomic instability in arsenic-induced carcinogenesis are poorly understood. While there are excellent reviews relating to genomic instability in general, there is no comprehensive review presenting the mechanisms involved in arsenic-induced genomic instability. This review was undertaken to present the current state of research in this area and to highlight the major mechanisms that may involved in arsenic-induced genomic instability leading to cancer. Genomic instability is broadly classified into chromosomal instability (CIN), primarily associated with mitotic errors; and microsatellite instability (MIN), associated with DNA level instability. Arsenic-induced genomic instability is essentially multi-factorial in nature and involves molecular cross-talk across several cellular pathways, and is modulated by a number of endogenous and exogenous factors. Arsenic and its metabolites generate oxidative stress, which in turn induces genomic instability through DNA damage, irreversible DNA repair, telomere dysfunction, mitotic arrest and apoptosis. In addition to genetic alteration; epigenetic regulation through promoter methylation and miRNA expression alters gene expression profiling leading to genome more vulnerable and unstable towards cancer risk. Moreover, mutations or silencing of pro-apoptotic genes can lead to genomic instability by allowing survival of damaged cells that would otherwise die. Although a large body of information is now generated regarding arsenic-induced carcinogenesis; further studies exploring genome-wide association, role of environment and diet are needed for a better understanding of the arsenic-induced genomic instability.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
| | | | | |
Collapse
|
16
|
Bhattacharjee P, Chatterjee D, Singh KK, Giri AK. Systems biology approaches to evaluate arsenic toxicity and carcinogenicity: an overview. Int J Hyg Environ Health 2013; 216:574-86. [PMID: 23340121 DOI: 10.1016/j.ijheh.2012.12.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 01/08/2023]
Abstract
Long term exposure to arsenic, either through groundwater, food stuff or occupational sources, results in a plethora of dermatological and non-dermatological health effects including multi-organ cancer and early mortality. Several epidemiological studies, across the globe have reported arsenic-induced health effects and cancerous outcomes; but the prevalence of such diseases varies depending on environmental factors (geographical location, exposure level), and genetic makeup (and variants thereof); which is further modulated by several other factors like ethnicity, age-sex, smoking status, diet, etc. It is also interesting to note that, chronic arsenic exposure to a similar extent, even among the same family members, result in wide inter-individual variations. To understand the adverse effect of this toxic metabolite on biological system (cellular targets), and to unravel the underlying molecular basis (at the level of transcript, proteome, or metabolite), a holistic, systems biology approach was taken. Due to the paradoxical nature and unavailability of any suitable animal model system; the literature review is primarily based on cell line and population based studies. Thus, here we present a comprehensive review on the systems biology approaches to explore the underlying mechanism of arsenic-induced carcinogenicity, along with our own observations and an overview of mitigation strategies and their effectiveness till date.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Molecular and Human Genetics Division, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | |
Collapse
|
17
|
Das J, Roy A, Sil PC. Mechanism of the protective action of taurine in toxin and drug induced organ pathophysiology and diabetic complications: a review. Food Funct 2012; 3:1251-1264. [PMID: 22930035 DOI: 10.1039/c2fo30117b] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Taurine (2-aminoethanesulfonic acid), a conditionally essential amino acid, is found in large concentrations in all mammalian tissues and is particularly abundant in aquatic foods. Taurine exhibits membrane stabilizing, osmoregulatory and cytoprotective effects, antioxidative properties, regulates intracellular Ca(2+) concentration, modulates ion movement and neurotransmitters, reduce the levels of pro-inflammatory cytokines in various organs and controls blood pressure. Recently, emerging evidence from the literature shows the effectiveness of taurine as a protective agent against several environmental toxins and drug-induced multiple organ injuries as the outcome of hepatotoxicity, nephrotoxicity, neurotoxicity, testicular toxicity and cardiotoxicity in several animal models. Besides, taurine is also effective in combating diabetes and its associated complications, including cardiomyopathy, nephropathy, neuropathy, retinopathy and atherosclerosis. These beneficial effects appear to be due to the multiple actions of taurine on cellular functions. This review summarizes the mechanism of the prophylactic role of taurine against several environmental toxins and drug-induced organ pathophysiology and diabetes.
Collapse
Affiliation(s)
- Joydeep Das
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | | | | |
Collapse
|
18
|
Yajima I, Uemura N, Nizam S, Khalequzzaman M, Thang ND, Kumasaka MY, Akhand AA, Shekhar HU, Nakajima T, Kato M. Barium inhibits arsenic-mediated apoptotic cell death in human squamous cell carcinoma cells. Arch Toxicol 2012; 86:961-973. [PMID: 22526373 DOI: 10.1007/s00204-012-0848-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/28/2012] [Indexed: 01/09/2023]
Abstract
Our fieldwork showed more than 1 μM (145.1 μg/L) barium in about 3 μM (210.7 μg/L) arsenic-polluted drinking well water (n = 72) in cancer-prone areas in Bangladesh, while the mean concentrations of nine other elements in the water were less than 3 μg/L. The types of cancer include squamous cell carcinomas (SCC). We hypothesized that barium modulates arsenic-mediated biological effects, and we examined the effect of barium (1 μM) on arsenic (3 μM)-mediated apoptotic cell death of human HSC-5 and A431 SCC cells in vitro. Arsenic promoted SCC apoptosis with increased reactive oxygen species (ROS) production and JNK1/2 and caspase-3 activation (apoptotic pathway). In contrast, arsenic also inhibited SCC apoptosis with increased NF-κB activity and X-linked inhibitor of apoptosis protein (XIAP) expression level and decreased JNK activity (antiapoptotic pathway). These results suggest that arsenic bidirectionally promotes apoptotic and antiapoptotic pathways in SCC cells. Interestingly, barium in the presence of arsenic increased NF-κB activity and XIAP expression and decreased JNK activity without affecting ROS production, resulting in the inhibition of the arsenic-mediated apoptotic pathway. Since the anticancer effect of arsenic is mainly dependent on cancer apoptosis, barium-mediated inhibition of arsenic-induced apoptosis may promote progression of SCC in patients in Bangladesh who keep drinking barium and arsenic-polluted water after the development of cancer. Thus, we newly showed that barium in the presence of arsenic might inhibit arsenic-mediated cancer apoptosis with the modulation of the balance between arsenic-mediated promotive and suppressive apoptotic pathways.
Collapse
Affiliation(s)
- Ichiro Yajima
- Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences (Building No. 50, 11F), Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yih LH, Wu YC, Hsu NC, Kuo HH. Arsenic trioxide induces abnormal mitotic spindles through a PIP4KIIγ/Rho pathway. Toxicol Sci 2012; 128:115-25. [PMID: 22496355 DOI: 10.1093/toxsci/kfs129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Arsenite-induced spindle abnormalities result in mitotic cell apoptosis in several cancer cell lines, but how arsenite induces these effects is not known. Evidence to date has revealed that arsenite activates Rho guanosine triphosphatases (GTPases). Because Rho GTPases regulate spindle orientation, chromosome congression, and cytokinesis, we therefore examined the involvement of Rho GTPases and their modulators in arsenite-induced mitotic abnormalities. We demonstrated that arsenic trioxide (ATO) disrupted the positioning of bipolar mitotic spindles and induced centrosome and spindle abnormalities. ATO increased the level of the active guanosine triphosphate-bound form of Rho. Inhibition of Rho-associated protein kinases (ROCKs) by Y-27632 ameliorated ATO-induced spindle defects, mitotic arrest, and cell death. These results indicate that ATO may induce spindle abnormalities and mitotic cell death through a Rho/ROCK pathway. In addition, screening of a human kinase and phosphatase shRNA library to select genes that mediate ATO induction of spindle abnormalities resulted in the identification of phosphatidylinositol-5-phosphate 4-kinase type-2 gamma (PIP4KIIγ), a phosphatidylinositol 4,5-biphosphate (PIP2) synthesis enzyme that belongs to the phosphatidylinositol phosphate kinase (PIPK) family. Sequestration of PIP2 by ectopic overexpression of the pleckstrin homology domain of phospholipase C-δ1 protected cells from ATO-induced cell death. Furthermore, depletion of PIP4KIIγ, but not other isoforms of the PIPK family, not only reduced Rho GTPase activation in ATO-treated cells but also alleviated ATO-induced spindle defects, mitotic arrest, and mitotic cell apoptosis. Thus, our results imply that ATO induces abnormalities in mitotic spindles through a PIP4KIIγ/Rho pathway, leading to apoptosis of mitotic cells.
Collapse
Affiliation(s)
- Ling-Huei Yih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
20
|
Das J, Ghosh J, Manna P, Sil PC. Protective role of taurine against arsenic-induced mitochondria-dependent hepatic apoptosis via the inhibition of PKCdelta-JNK pathway. PLoS One 2010; 5:e12602. [PMID: 20830294 PMCID: PMC2935368 DOI: 10.1371/journal.pone.0012602] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 08/06/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Oxidative stress-mediated hepatotoxic effect of arsenic (As) is mainly due to the depletion of glutathione (GSH) in liver. Taurine, on the other hand, enhances intracellular production of GSH. Little is known about the mechanism of the beneficial role of taurine in As-induced hepatic pathophysiology. Therefore, in the present study we investigated its beneficial role in As-induced hepatic cell death via mitochondria-mediated pathway. METHODOLOGY/PRINCIPAL FINDINGS Rats were exposed to NaAsO(2) (2 mg/kg body weight for 6 months) and the hepatic tissue was used for oxidative stress measurements. In addition, the pathophysiologic effect of NaAsO(2) (10 microM) on hepatocytes was evaluated by determining cell viability, mitochondrial membrane potential and ROS generation. As caused mitochondrial injury by increased oxidative stress and reciprocal regulation of Bcl-2, Bcl-xL/Bad, Bax, Bim in association with increased level of Apaf-1, activation of caspase 9/3, cleavage of PARP protein and ultimately led to apoptotic cell death. In addition, As markedly increased JNK and p38 phosphorylation with minimal disturbance of ERK. Pre-exposure of hepatocytes to a JNK inhibitor SP600125 prevented As-induced caspase-3 activation, ROS production and loss in cell viability. Pre-exposure of hepatocytes to a p38 inhibitor SB2035, on the other hand, had practically no effect on these events. Besides, As activated PKCdelta and pre-treatment of hepatocytes with its inhibitor, rottlerin, suppressed the activation of JNK indicating that PKCdelta is involved in As-induced JNK activation and mitochondrial dependent apoptosis. Oral administration of taurine (50 mg/kg body weight for 2 weeks) both pre and post to NaAsO(2) exposure or incubation of the hepatocytes with taurine (25 mM) were found to be effective in counteracting As-induced oxidative stress and apoptosis. CONCLUSIONS/SIGNIFICANCE Results indicate that taurine treatment improved As-induced hepatic damages by inhibiting PKCdelta-JNK signalling pathways. Therefore taurine supplementation could provide a new approach for the reduction of hepatic complication due to arsenic poisoning.
Collapse
Affiliation(s)
- Joydeep Das
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Jyotirmoy Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Prasenjit Manna
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
21
|
Salazar AM, Miller HL, McNeely SC, Sordo M, Ostrosky-Wegman P, States JC. Suppression of p53 and p21CIP1/WAF1 reduces arsenite-induced aneuploidy. Chem Res Toxicol 2010; 23:357-64. [PMID: 20000476 DOI: 10.1021/tx900353v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Aneuploidy and extensive chromosomal rearrangements are common in human tumors. The role of DNA damage response proteins p53 and p21(CIP1/WAF1) in aneugenesis and clastogenesis was investigated in telomerase immortalized diploid human fibroblasts using siRNA suppression of p53 and p21(CIP1/WAF1). Cells were exposed to the environmental carcinogen sodium arsenite (15 and 20 microM), and the induction of micronuclei (MN) was evaluated in binucleated cells using the cytokinesis-block assay. To determine whether MN resulted from missegregation of chromosomes or from chromosomal fragments, we used a fluorescent in situ hybridization with a centromeric DNA probe. Micronuclei were predominantly of clastogenic origin in control cells regardless of p53 or p21(CIP1/WAF1) expression. MN with centromere signals in cells transfected with NSC siRNA or Mock increased 30% after arsenite exposure, indicating that arsenite induced aneuploidy in the tGM24 cells. Although suppression of p53 increased the fraction of arsenite-treated cells with MN, it caused a decrease in the fraction with centromeric DNA. Suppression of p21(CIP1/WAF1) like p53 suppression decreased the fraction of MN with centromeric DNA. Our results suggest that cells lacking normal p53 function cannot become aneuploid because they die by mitotic arrest-associated apoptosis, whereas cells with normal p53 function that are able to exit from mitotic arrest can become aneuploid. Furthermore, our current results support this role for p21(CIP1/WAF1) since suppression of p21(CIP1/WAF1) caused a decrease in aneuploidy induced by arsenite, suggesting that p21(CIP1/WAF1) plays a role in mitotic exit.
Collapse
Affiliation(s)
- Ana María Salazar
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Mexico, D.F., Mexico
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Apoptosis, the best known form of programmed cell death, is tightly regulated by a number of sensors, signal transducers and effectors. Apoptosis is mainly active during embryonic development, when deletion of redundant cellular material is required for the correct morphogenesis of tissues and organs; moreover, it is essential for the maintenance of tissue homeostasis during cell life. Cells also activate apoptosis when they suffer from various insults, such as damage to DNA or to other cellular components, or impairment of basic processes, such as DNA replication and DNA repair. Removal of damaged cells is fundamental in maintaining the health of organisms. In addition, apoptosis induction following DNA damage is exploited to kill cancer cells. In this chapter we will review the main features of developmental and induced apoptosis.
Collapse
|
23
|
Yedjou CG, Tchounwou PB. Modulation of p53, c-fos, RARE, cyclin A, and cyclin D1 expression in human leukemia (HL-60) cells exposed to arsenic trioxide. Mol Cell Biochem 2009; 331:207-14. [PMID: 19444595 PMCID: PMC2855208 DOI: 10.1007/s11010-009-0160-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 04/29/2009] [Indexed: 11/25/2022]
Abstract
Arsenic trioxide (As(2)O(3)) has recently been successfully used to treat all trans retinoic acid (ATRA) resistant relapsing acute promyelocytic leukemia. However, its molecular mechanisms of action are poorly understood. In the present study, we used the human leukemia (HL-60) cell line as a test model to study the cellular and molecular mechanisms of anti-cancer properties of As(2)O(3). We hypothesized that As(2)O(3)-induced expression of stress genes and related proteins may play a role in the cellular and molecular events leading to cell cycle modulation in leukemic cells. To test this hypothesis, we performed Western blot analysis to assess the expression of specific cellular response proteins including p53, c-fos, RARE, Cyclin A, and Cyclin D1. Densitometric analysis was performed to determine the relative abundance of these proteins. Western Blot and densitometric analyses demonstrated a strong dose-response relationship with regard to p53 and RARE expression within the dose-range of 0-8 microg/ml. Expression of c-fos was slightly up-regulated at 2 microg/ml, and down-regulated within the dose-range of 4-8 microg/ml. A statistically significant down-regulation of this protein was detected at the 6 and 8 microg/ml dose levels. No statistically significant differences (p > 0.05) in Cyclin D1 expression was found between As(2)O(3)-treated cells and the control. Cyclin A expression in As(2)O(3)-treated HL-60 cells was up-regulated at 6 microg/ml, suggesting that it is required for S phase and passage through G(2) phase in cell cycle progression. Taken together, these results indicate that As(2)O(3) has the potential to induce cell cycle arrest through activation of the 53-kDa tumor suppressor protein and repression of the c-fos transcription factor. Up-regulation of RARE by As(2)O(3) indicates that its cytotoxicity may be mediated through interaction/binding with the retinoic acid receptor, and subsequent inhibition of growth and differentiation.
Collapse
Affiliation(s)
- Clement G. Yedjou
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18540, Jackson, Mississippi, USA
| | - Paul B. Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18540, Jackson, Mississippi, USA
| |
Collapse
|
24
|
Helm CW, States JC. Enhancing the efficacy of cisplatin in ovarian cancer treatment - could arsenic have a role. J Ovarian Res 2009; 2:2. [PMID: 19144189 PMCID: PMC2636805 DOI: 10.1186/1757-2215-2-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 01/14/2009] [Indexed: 12/03/2022] Open
Abstract
Ovarian cancer affects more than 200,000 women each year around the world. Most women are not diagnosed until the disease has already metastasized from the ovaries with a resultant poor prognosis. Ovarian cancer is associated with an overall 5 year survival of little more than 50%. The mainstay of front-line therapy is cytoreductive surgery followed by chemotherapy. Traditionally, this has been by the intravenous route only but there is more interest in the delivery of intraperitoneal chemotherapy utilizing the pharmaco-therapeutic advantage of the peritoneal barrier. Despite three large, randomized clinical trials comparing intravenous with intraperitoneal chemotherapy showing improved outcomes for those receiving at least part of their chemotherapy by the intraperitoneal route. Cisplatin has been the most active drug for the treatment of ovarian cancer for the last 4 decades and the prognosis for women with ovarian cancer can be defined by the tumor response to cisplatin. Those whose tumors are innately platinum-resistant at the time of initial treatment have a very poor prognosis. Although the majority of patients with ovarian cancer respond to front-line platinum combination chemotherapy the majority will develop disease that becomes resistant to cisplatin and will ultimately succumb to the disease. Improving the efficacy of cisplatin could have a major impact in the fight against this disease. Arsenite is an exciting agent that not only has inherent single-agent tumoricidal activity against ovarian cancer cell lines but also multiple biochemical interactions that may enhance the cytotoxicity of cisplatin including inhibition of deoxyribose nucleic acid (DNA) repair. In vitro studies suggest that arsenite may enhance the activity of cisplatin in other cell types. Arsenic trioxide is already used clinically to treat acute promyelocytic leukemia demonstrating its safety profile. Further research in ovarian cancer is warranted to define its possible role in this disease.
Collapse
Affiliation(s)
- C William Helm
- Department of Obstetrics, Gynecology & Women's Health, University of Louisville School of Medicine, Louisville KY 40292, USA.
| | | |
Collapse
|
25
|
Ray A, Roy S, Agarwal S, Bhattacharya S. As2O3 toxicity in rat hepatocytes: manifestation of caspase-mediated apoptosis. Toxicol Ind Health 2008; 24:643-53. [DOI: 10.1177/0748233708100370] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In India, arsenic contamination in ground water is of immediate environmental concern affecting a large number of inhabitants in Kolkata. Arsenic is known to be one of the most toxic metalloids naturally occurring in the environment giving rise to severe toxic manifestations including cancer. Because arsenic is also used in chemotherapy of leukemia, it was considered worthwhile to concentrate on the mechanism of toxic action in normal hepatocytes which has not been addressed earlier. Rat hepatocytes were isolated and incubated in As2O3 at concentrations of 10, 20, and 40 μM in a time-dependent manner (0, 15, 30 min and 1, 2, and 4 h). The expression of the common stress proteins HSP 70 and 90 throughout the experimental duration confirmed the magnitude of toxic effect imposed by arsenic. Microscopic observations showed clear apoptotic changes in hepatocytes, which were further characterized by DNA ladder formation in time- and concentration-dependent manners. Apoptosis was triggered by caspase activation and over expression of bax at 10 μM As2O3 and at 20 and 40 μM concentrations of As2O3, MAP kinases were found to mediate the apoptotic pathway. Co-treatment of cells with arsenic and caspase inhibitor (Ac-DEVD-Cho) led to over expression of bcl-2, suppression of bax, and cytosolic sequestration of Bid and Bad. It is therefore concluded that caspase activation has a direct role in arsenic-induced apoptosis mediated by mitochondrial factors at 10 μM As2O3, and JUN N-terminal kinase (JNK) and P38 activation are the major mediators of apoptosis at the higher test concentrations (20 and 40 μM) of As2O3.
Collapse
Affiliation(s)
- A Ray
- Environmental Toxicology Laboratory, Department of Zoology, School of Life Science, Visva Bharati University, Santiniketan, India
| | - S Roy
- Ocean Research Institute, University of Tokyo, Japan
| | - S Agarwal
- Environmental Toxicology Laboratory, Department of Zoology, School of Life Science, Visva Bharati University, Santiniketan, India
| | - S Bhattacharya
- Environmental Toxicology Laboratory, Department of Zoology, School of Life Science, Visva Bharati University, Santiniketan, India
| |
Collapse
|
26
|
Wu YC, Yen WY, Yih LH. Requirement of a functional spindle checkpoint for arsenite-induced apoptosis. J Cell Biochem 2008; 105:678-87. [DOI: 10.1002/jcb.21861] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Cohen SM, Arnold LL, Eldan M, Lewis AS, Beck BD. Methylated Arsenicals: The Implications of Metabolism and Carcinogenicity Studies in Rodents to Human Risk Assessment. Crit Rev Toxicol 2008; 36:99-133. [PMID: 16736939 DOI: 10.1080/10408440500534230] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Monomethylarsonic acid (MMA(V)) and dimethylarsinic acid (DMA(V)) are active ingredients in pesticidal products used mainly for weed control. MMA(V) and DMA(V) are also metabolites of inorganic arsenic, formed intracellularly, primarily in liver cells in a metabolic process of repeated reductions and oxidative methylations. Inorganic arsenic is a known human carcinogen, inducing tumors of the skin, urinary bladder, and lung. However, a good animal model has not yet been found. Although the metabolic process of inorganic arsenic appears to enhance the excretion of arsenic from the body, it also involves formation of methylated compounds of trivalent arsenic as intermediates. Trivalent arsenicals (whether inorganic or organic) are highly reactive compounds that can cause cytotoxicity and indirect genotoxicity in vitro. DMA(V) was found to be a bladder carcinogen only in rats and only when administered in the diet or drinking water at high doses. It was negative in a two-year bioassay in mice. MMA(V) was negative in 2-year bioassays in rats and mice. The mode of action for DMA(V)-induced bladder cancer in rats appears to not involve DNA reactivity, but rather involves cytotoxicity with consequent regenerative proliferation, ultimately leading to the formation of carcinoma. This critical review responds to the question of whether DMA(V)-induced bladder cancer in rats can be extrapolated to humans, based on detailed comparisons between inorganic and organic arsenicals, including their metabolism and disposition in various animal species. The further metabolism and disposition of MMA(V) and DMA(V) formed endogenously during the metabolism of inorganic arsenic is different from the metabolism and disposition of MMA(V) and DMA(V) from exogenous exposure. The trivalent arsenicals that are cytotoxic and indirectly genotoxic in vitro are hardly formed in an organism exposed to MMA(V) or DMA(V) because of poor cellular uptake and limited metabolism of the ingested compounds. Furthermore, the evidence strongly supports a nonlinear dose-response relationship for the biologic processes involved in the carcinogenicity of arsenicals. Based on an overall review of the evidence, using a margin-of-exposure approach for MMA(V) and DMA(V) risk assessment is appropriate. At anticipated environmental exposures to MMA(V) and DMA(V), there is not likely to be a carcinogenic risk to humans.
Collapse
Affiliation(s)
- Samuel M Cohen
- Department of Pathology and Microbiology and Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135, USA.
| | | | | | | | | |
Collapse
|
28
|
McNeely SC, Taylor BF, States JC. Mitotic arrest-associated apoptosis induced by sodium arsenite in A375 melanoma cells is BUBR1-dependent. Toxicol Appl Pharmacol 2008; 231:61-7. [PMID: 18501396 DOI: 10.1016/j.taap.2008.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/26/2008] [Accepted: 03/30/2008] [Indexed: 10/22/2022]
Abstract
A375 human malignant melanoma cells undergo mitotic arrest-associated apoptosis when treated with pharmacological concentrations of sodium arsenite, a chemotherapeutic for acute promyelocytic leukemia. Our previous studies indicated that decreased arsenite sensitivity correlated with reduced mitotic spindle checkpoint function and reduced expression of the checkpoint protein BUBR1. In the current study, arsenite induced securin and cyclin B stabilization, BUBR1 phosphorylation, and spindle checkpoint activation. Arsenite also increased activating cyclin dependent kinase 1 (CDK1) Thr(161) phosphorylation but decreased inhibitory Tyr15 phosphorylation. Mitotic arrest resulted in apoptosis as indicated by colocalization of mitotic phospho-Histone H3 with active caspase 3. Apoptosis was associated with BCL-2 Ser70 phosphorylation. Inhibition of CDK1 with roscovitine in arsenite-treated mitotic cells inhibited spindle checkpoint maintenance as inferred from reduced BUBR1 phosphorylation, reduced cyclin B expression, and diminution of mitotic index. Roscovitine also reduced BCL-2 Ser70 phosphorylation and protected against apoptosis, suggesting mitotic arrest caused by hyperactivation of CDK1 directly or indirectly leads to BCL-2 phosphorylation and apoptosis. In addition, suppression of BUBR1 with siRNA prevented arsenite-induced mitotic arrest and apoptosis. These findings provide insight into the mechanism of arsenic's chemotherapeutic action and indicate a functional spindle checkpoint may be required for arsenic-sensitivity.
Collapse
Affiliation(s)
- Samuel C McNeely
- Department of Pharmacology and Toxicology, Center for Environmental Genomics and Integrative Biology, Center for Genetics and Molecular Medicine and Brown Cancer Center, University of Louisville, 570 S. Preston St. Suite 221, Louisville, KY 40202, USA
| | | | | |
Collapse
|
29
|
Taylor BF, McNeely SC, Miller HL, States JC. Arsenite-induced mitotic death involves stress response and is independent of tubulin polymerization. Toxicol Appl Pharmacol 2008; 230:235-46. [PMID: 18485433 DOI: 10.1016/j.taap.2008.02.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/21/2008] [Accepted: 02/25/2008] [Indexed: 10/22/2022]
Abstract
Arsenite, a known mitotic disruptor, causes cell cycle arrest and cell death at anaphase. The mechanism causing mitotic arrest is highly disputed. We compared arsenite to the spindle poisons nocodazole and paclitaxel. Immunofluorescence analysis of alpha-tubulin in interphase cells demonstrated that, while nocodazole and paclitaxel disrupt microtubule polymerization through destabilization and hyperpolymerization, respectively, microtubules in arsenite-treated cells remain comparable to untreated cells even at supra-therapeutic concentrations. Immunofluorescence analysis of alpha-tubulin in mitotic cells showed spindle formation in arsenite- and paclitaxel-treated cells but not in nocodazole-treated cells. Spindle formation in arsenite-treated cells appeared irregular and multi-polar. gamma-tubulin staining showed that cells treated with nocodazole and therapeutic concentrations of paclitaxel contained two centrosomes. In contrast, most arsenite-treated mitotic cells contained more than two centrosomes, similar to centrosome abnormalities induced by heat shock. Of the three drugs tested, only arsenite treatment increased expression of the inducible isoform of heat shock protein 70 (HSP70i). HSP70 and HSP90 proteins are intimately involved in centrosome regulation and mitotic spindle formation. HSP90 inhibitor 17-DMAG sensitized cells to arsenite treatment and increased arsenite-induced centrosome abnormalities. Combined treatment of 17-DMAG and arsenite resulted in a supra-additive effect on viability, mitotic arrest, and centrosome abnormalities. Thus, arsenite-induced abnormal centrosome amplification and subsequent mitotic arrest is independent of effects on tubulin polymerization and may be due to specific stresses that are protected against by HSP90 and HSP70.
Collapse
Affiliation(s)
- B Frazier Taylor
- Department of Pharmacology and Toxicology, Center for Environmental Genomics and Integrative Biology, Center for Genetics and Molecular Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
30
|
McNeely SC, Belshoff AC, Taylor BF, Fan TWM, McCabe MJ, Pinhas AR, States JC. Sensitivity to sodium arsenite in human melanoma cells depends upon susceptibility to arsenite-induced mitotic arrest. Toxicol Appl Pharmacol 2008; 229:252-61. [PMID: 18328521 DOI: 10.1016/j.taap.2008.01.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/17/2008] [Accepted: 01/19/2008] [Indexed: 01/27/2023]
Abstract
Arsenic induces clinical remission in patients with acute promyelocytic leukemia and has potential for treatment of other cancers. The current study examines factors influencing sensitivity to arsenic using human malignant melanoma cell lines. A375 and SK-Mel-2 cells were sensitive to clinically achievable concentrations of arsenite, whereas SK-Mel-3 and SK-Mel-28 cells required supratherapeutic levels for toxicity. Inhibition of glutathione synthesis, glutathione S-transferase (GST) activity, and multidrug resistance protein (MRP) transporter function attenuated arsenite resistance, consistent with studies suggesting that arsenite is extruded from the cell as a glutathione conjugate by MRP-1. However, MRP-1 was not overexpressed in resistant lines and GST-pi was only slightly elevated. ICP-MS analysis indicated that arsenite-resistant SK-Mel-28 cells did not accumulate less arsenic than arsenite-sensitive A375 cells, suggesting that resistance was not attributable to reduced arsenic accumulation but rather to intrinsic properties of resistant cell lines. The mode of arsenite-induced cell death was apoptosis. Arsenite-induced apoptosis is associated with cell cycle alterations. Cell cycle analysis revealed arsenite-sensitive cells arrested in mitosis whereas arsenite-resistant cells did not, suggesting that induction of mitotic arrest occurs at lower intracellular arsenic concentrations. Higher intracellular arsenic levels induced cell cycle arrest in the S-phase and G(2)-phase in SK-Mel-3 and SK-Mel-28 cells, respectively. The lack of arsenite-induced mitotic arrest in resistant cell lines was associated with a weakened spindle checkpoint resulting from reduced expression of spindle checkpoint protein BUBR1. These data suggest that arsenite has potential for treatment of solid tumors but a functional spindle checkpoint is a prerequisite for a positive response to its clinical application.
Collapse
Affiliation(s)
- Samuel C McNeely
- Department of Pharmacology and Toxicology, University of Louisville, 570 S. Preston Street, Suite 221, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Prudova A, Albin M, Bauman Z, Lin A, Vitvitsky V, Banerjee R. Testosterone regulation of homocysteine metabolism modulates redox status in human prostate cancer cells. Antioxid Redox Signal 2007; 9:1875-81. [PMID: 17854288 DOI: 10.1089/ars.2007.1712] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Clearance of homocysteine via the transsulfuration pathway provides an endogenous route for cysteine synthesis and represents a quantitatively significant source of this amino acid needed for glutathione synthesis. Men have higher plasma levels of total homocysteine than do women, but the mechanism of this sex-dependent difference is not known. In this study, we investigated regulation by testosterone of cystathionine beta-synthase (CBS), which catalyzes the committing step in the transsulfuration pathway. We report that testosterone downregulates CBS expression via a posttranscriptional mechanism in the androgen-responsive prostate cancer cell line, LNCaP. This diminution in CBS levels is accompanied by a decrease in flux through the transsulfuration pathway and by a lower intracellular glutathione concentration. The lower antioxidant capacity in testosterone-treated prostate cancer cells increases their susceptibility to oxidative stress conditions. These results demonstrate regulation of the homocysteine-clearing enzyme, CBS, by testosterone and suggest the potential utility of targeting this enzyme as a chemotherapeutic strategy.
Collapse
Affiliation(s)
- Anna Prudova
- Redox Biology Center and the Biochemistry Department, University of Nebraska, Lincoln, Nebraska, USA
| | | | | | | | | | | |
Collapse
|
32
|
Wang S, Zhao Y, Wu L, Tang M, Su C, Hei TK, Yu Z. Induction of germline cell cycle arrest and apoptosis by sodium arsenite in Caenorhabditis elegans. Chem Res Toxicol 2007; 20:181-6. [PMID: 17305403 DOI: 10.1021/tx0601962] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nematode Caenorhabditis elegans has been shown to be a model organism in studying aquatic toxicity. Although epidemiological studies have shown that arsenic is teratogenic and carcinogenic to humans, the lethality assay indicated that C. elegans is less sensitive to inorganic arsenic than any other organisms that have been tested thus far. In the present study, we used the more malleable germline of C. elegans as an in vivo system to investigate the genotoxic effects of arsenite. After animals were exposed to sodium arsenite at concentrations ranging from 1 microM to 0.5 mM, mitotic germ cells and germline apoptosis were scored after DAPI staining and acridine orange vital staining, respectively. DMSO rescue experiments were performed by exposing C. elegans to 0.01 mM arsenite in the presence of DMSO (0.1%) for 24 h, and reactive oxygen species (ROS) were semiquantified by CM-H(2)DCFDA vital staining. The results indicated that arsenic exposure reduced the brood size of C. elegans and caused mitotic cell cycle arrest and germline apoptosis, which, to some extent, exhibited a concentration- and time-dependent manner. The addition of 0.1% DMSO completely rescued arsenic-induced cell cycle arrest and partially suppressed germline apoptosis. Furthermore, treatment of animals with arsenite at a dose of 0.01 mM significantly increased ROS production in the intestine, which could be reduced by DMSO treatment. The present study also indicated that C. elegans might be used as an in vivo model system to study the mechanisms of arsenic-induced genotoxic effects.
Collapse
Affiliation(s)
- Shunchang Wang
- Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
33
|
McNeely SC, Xu X, Taylor BF, Zacharias W, McCabe MJ, States JC. Exit from arsenite-induced mitotic arrest is p53 dependent. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1401-6. [PMID: 16966095 PMCID: PMC1570045 DOI: 10.1289/ehp.8969] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Arsenic is both a human carcinogen and a chemotherapeutic agent, but the mechanism of neither arsenic-induced carcinogenesis nor tumor selective cytotoxicity is clear. Using a model cell line in which p53 expression is regulated exogenously in a tetracycline-off system (TR9-7 cells) , our laboratory has shown that arsenite disrupts mitosis and that p53-deficient cells [p53(-)], in contrast to p53-expressing cells [p53(+)], display greater sensitivity to arsenite-induced mitotic arrest and apoptosis. OBJECTIVE Our goal was to examine the role p53 plays in protecting cells from arsenite-induced mitotic arrest. METHODS p53(+) and p53(-) cells were synchronized in G2 phase using Hoechst 33342 and released from synchrony in the presence or absence of 5 microM sodium arsenite. RESULTS Mitotic index analysis demonstrated that arsenite treatment delayed exit from G2 in p53(+) and p53(-) cells. Arsenite-treated p53(+) cells exited mitosis normally, whereas p53(-) cells exited mitosis with delayed kinetics. Microarray analysis performed on mRNAs of cells exposed to arsenite for 0 and 3 hr after release from G2 phase synchrony showed that arsenite induced inhibitor of DNA binding-1 (ID1) differentially in p53(+) and p53(-) cells. Immunoblotting confirmed that ID1 induction was more extensive and sustained in p53(+) cells. CONCLUSIONS p53 promotes mitotic exit and leads to more extensive ID1 induction by arsenite. ID1 is a dominant negative inhibitor of transcription that represses cell cycle regulatory genes and is elevated in many tumors. ID1 may play a role in the survival of arsenite-treated p53(+) cells and contribute to arsenic carcinogenicity.
Collapse
Affiliation(s)
| | | | | | - Wolfgang Zacharias
- Department of Pharmacology and Toxicology
- Department of Medicine
- James Graham Brown Cancer Center and
- Center for Genetics and Molecular Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Michael J. McCabe
- Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| | - J. Christopher States
- Department of Pharmacology and Toxicology
- James Graham Brown Cancer Center and
- Center for Genetics and Molecular Medicine, University of Louisville, Louisville, Kentucky, USA
- Address correspondence to J.C. States, Dept. of Pharmacology and Toxicology, University of Louisville, 570 S. Preston St., Suite 221, Louisville, KY 40202 USA. Telephone: (502) 852-5347. Fax: (502) 853-2492. E-mail:
| |
Collapse
|
34
|
Taylor BF, McNeely SC, Miller HL, Lehmann GM, McCabe MJ, States JC. p53 suppression of arsenite-induced mitotic catastrophe is mediated by p21CIP1/WAF1. J Pharmacol Exp Ther 2006; 318:142-51. [PMID: 16614167 DOI: 10.1124/jpet.106.103077] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arsenic trioxide, an acute promyelocytic leukemia chemotherapeutic, may be an efficacious treatment for other cancers. Understanding the mechanism as well as genetic and molecular characteristics associated with sensitivity to arsenite-induced cell death is key to providing effective chemotherapeutic usage of arsenite. Arsenite sensitivity correlates with deficient p53 pathways in multiple cell lines. The role of p53 in preventing arsenite-induced mitotic arrest-associated apoptosis (MAAA), a form of mitotic catastrophe, was examined in TR9-7 cells, a model cell line with p53 exogenously regulated in a tetracycline-off expression system. Arsenite activated G1 and G2 cell cycle checkpoints independently of p53, but mitotic catastrophe occurred preferentially in p53- cells. Cyclin B/CDC2(CDK1) stabilization and caspase-3 activation persisted in arsenite-treated p53- cells consistent with MAAA/mitotic catastrophe. N-Benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, a pan-caspase inhibitor, completely abolished arsenite-induced MAAA/mitotic catastrophe and greatly increased the mitotic index. WEE1 and p21CIP1/WAF1 inhibit cyclin B/CDC2 by CDC2 tyrosine-15 phosphorylation and direct binding, respectively. CDC2-Y15-P was transiently elevated in arsenite-treated p53+ cells but persisted in p53- cells. Arsenite induced p53-S15-P and p21CIP1/WAF1 only in p53+ cells. P21CIP1/WAF1-siRNA-treated p53+ cells were similar to p53- cells in mitotic index and cell cycle protein levels. p53-inducible proteins GADD45alpha and 14-3-3sigma are capable of inhibiting cyclin B/CDC2 but did not play a p53-dependent role in mitotic escape in TR9-7 cells. The data indicate that p53 mediates cyclin B/CDC2 inactivation and mitotic release directly via p21CIP1/WAF1 induction.
Collapse
Affiliation(s)
- B Frazier Taylor
- Department of Pharmacology and Toxicology, University of Louisville, 570 South Preston Street, Suite 221, Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
35
|
Corbit R, Ebbs S, King ML, Murphy LL. The influence of lead and arsenite on the inhibition of human breast cancer MCF-7 cell proliferation by American ginseng root (Panax quinquefolius L.). Life Sci 2005; 78:1336-40. [PMID: 16288926 DOI: 10.1016/j.lfs.2005.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 07/07/2005] [Indexed: 11/24/2022]
Abstract
American ginseng root (Panax quinquefolius) has a number of purported therapeutic effects, including inhibition of cancer cell proliferation. The ability of environmentally relevant heavy metals to alter ginseng effects on cancer cell growth was the subject of this study. A water extract of American ginseng root was applied alone or in combination with physiologically relevant doses of either lead (Pb) or arsenite to MCF-7 breast cancer cells in vitro and effects on cell proliferation were determined. Ginseng alone produced a significant dose-dependent inhibition of MCF-7 cell proliferation starting at 0.5 mg ml(-1). Treatment of MCF-7 cells with 2.5 microM arsenite significantly decreased MCF-7 cell proliferation (p < 0.01). When cells were treated with arsenite (1.25 or 2.5 microM) in combination with ginseng extract (0.5 mg ml(-1)), there was an apparent synergistic inhibition of cell proliferation. Treatment of MCF-7 breast cancer cells with 50 microM Pb significantly decreased cell proliferation relative to control (p < 0.01), and concomitant ginseng and Pb treatment did not lead to a further decrease. These results suggest that contaminant heavy metals, some of which have been detected in ginseng root extracts or commercial ginseng preparations, may alter the biological activity of ginseng.
Collapse
Affiliation(s)
- Rebecca Corbit
- Department of Plant Biology, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | | | | | | |
Collapse
|
36
|
Kann S, Estes C, Reichard JF, Huang MY, Sartor MA, Schwemberger S, Chen Y, Dalton TP, Shertzer HG, Xia Y, Puga A. Butylhydroquinone protects cells genetically deficient in glutathione biosynthesis from arsenite-induced apoptosis without significantly changing their prooxidant status. Toxicol Sci 2005; 87:365-84. [PMID: 16014739 DOI: 10.1093/toxsci/kfi253] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arsenic, first among the top environmentally hazardous substances, is associated with skin, lung, liver, kidney, prostate, and bladder cancer. Arsenic is also a cardiovascular and a central nervous system toxicant, and it has genotoxic and immunotoxic effects. Paradoxically, arsenic trioxide is used successfully in the treatment of acute promyelocytic leukemia and multiple myeloma. Arsenic induces oxidative stress, and its toxicity is decreased by free thiols and increased by glutathione depletion. To further characterize the role of glutathione and oxidative stress in the toxicity of arsenic, we have used fetal fibroblasts from Gclm(-/-) mice, which lack the modifier subunit of glutamate-cysteine ligase, the rate-limiting enzyme in glutathione biosynthesis. Gclm(-/-) mouse embryo fibroblasts (MEFs) are eight times more sensitive to arsenite-induced apoptotic death. Because of a dramatic decrease in glutathione levels, Gclm(-/-) MEFs have a high prooxidant status that is not significantly relieved by treatment with the phenolic antioxidant tBHQ; however, tBHQ blocks arsenite-induced apoptosis in both Gclm(+/+) and Gclm(-/-) cells, although it raises a significant antioxidant response only in Gclm(+/+) cells. Global gene expression profiles indicate that tBHQ is significantly effective in reversing arsenite-induced gene deregulation in Gclm(+/+) but not in Gclm(-/-) MEFs. This effect of tBHQ is evident in the expression of metalloproteases and chaperones, and in the expression of genes involved in DNA damage and repair, protein biosynthesis, cell growth and maintenance, apoptosis, and cell cycle regulation. These results suggest that regulation of glutathione levels by GCLM determines the sensitivity to arsenic-induced apoptosis by setting the overall ability of the cells to mount an effective antioxidant response.
Collapse
Affiliation(s)
- Simone Kann
- Center for Environmental Genetics and Department of Environmental Health, University of Cincinnati Medical Center, Ohio 45267-0056, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
McCollum G, Keng PC, States JC, McCabe MJ. Arsenite delays progression through each cell cycle phase and induces apoptosis following G2/M arrest in U937 myeloid leukemia cells. J Pharmacol Exp Ther 2005; 313:877-87. [PMID: 15722406 DOI: 10.1124/jpet.104.080713] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arsenic is a well known toxicant and carcinogen that is also effective as a chemotherapeutic in the treatment of acute promyelocytic leukemia. Although its effects on humans are well documented, arsenic's mechanism of action is not well understood. Its ability to act as a carcinogen and as a chemotherapeutic seems paradoxical. However, cancer cell transformation and cancer cell destruction can both occur through perturbations of the cell cycle machinery, making cell cycle function a likely target of arsenic action. Arsenic has previously been shown to inhibit cancer cell cycle progression, but the targeted cell cycle phase has been debated. This study was designed to identify the cell cycle phase at which U937 cells are most sensitive to arsenite-induced growth inhibition. Centrifugal elutriation was used to divide asynchronous cell cultures into specific cell cycle phase-enriched fractions. These fractions were monitored for cell cycle phase progression in the presence and absence of sodium arsenite. We found an overall reduction in cell cycle progression rather than induction of arrest at one specific checkpoint. G(2)/M is the phase most sensitive to arsenite-induced apoptosis. However, arsenite profoundly affects U937 cell growth by increasing the length of time it takes cells to transit each phase of the cell cycle. Future study of cell cycle inhibition by arsenic should consider that the effect may not be mediated by the major cell cycle checkpoints. Arsenic's ability to inhibit growth in any cell cycle phase may increase its value as a chemotherapeutic used together with other, more phase-selective agents, such as camptothecin.
Collapse
Affiliation(s)
- Geniece McCollum
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | | | |
Collapse
|
38
|
B'Hymer C, Caruso JA. Arsenic and its speciation analysis using high-performance liquid chromatography and inductively coupled plasma mass spectrometry. J Chromatogr A 2005; 1045:1-13. [PMID: 15378873 DOI: 10.1016/j.chroma.2004.06.016] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is known that arsenic has different toxicological properties dependent upon both its oxidation state for inorganic compounds, as well as the different toxicity levels exhibited for organic arsenic compounds. The field of arsenic speciation analysis has grown rapidly in recent years, especially with the utilization of high-performance liquid chromatography (HPLC) coupled to inductively coupled plasma mass spectrometry (ICP-MS), a highly sensitive and robust detector system. Complete characterization of arsenic compounds is necessary to understand intake, accumulation, transport, storage, detoxification and activation of this element in the natural environment and living systems. This review describes the essential background and toxicity of arsenic in the environment, and more importantly, some currently used chromatographic applications and sample handling procedures necessary to accurately detect and quantify arsenic in its various chemical forms. Applications and work using only HPLC-ICP-MS for arsenic speciation of environmental and biological samples are presented in this review.
Collapse
Affiliation(s)
- C B'Hymer
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA
| | | |
Collapse
|
39
|
Komissarova EV, Saha SK, Rossman TG. Dead or dying: the importance of time in cytotoxicity assays using arsenite as an example. Toxicol Appl Pharmacol 2005; 202:99-107. [PMID: 15589980 DOI: 10.1016/j.taap.2004.06.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 06/14/2004] [Indexed: 12/20/2022]
Abstract
Arsenite is a toxicant and environmental pollutant associated with multisite neoplasias and other health effects. The wide range of doses used and the claims that some high doses are "not toxic" in some assays have confounded studies on its mechanism of action. The purpose of this study is to determine whether the treatment time and particularly the duration between treatment and assay are important factors in assessing arsenite toxicity. We compared three commonly used assays: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), neutral red (NR), and clonal survival, using human osteogenic sarcoma (HOS) cell line U-2OS. Results from the assays were well correlated only when the factor of time was taken into account. In both the MTT and NR assays, exposure to arsenite for 24 h induced much less toxicity than exposure for 48 or 72 h, which gave similar results. In contrast, results in clonal survival assays showed only a small difference between 24-h exposure and longer exposure times. Arsenite demonstrated delayed cytotoxicity, killing the cells even after its removal from the medium in NR assay. Apoptosis was assessed by TUNEL staining and caspase-3 activation. After treatment for 24 h with 0.1 and 1 microM arsenite, no apoptosis was seen. However, after an additional 24 h in arsenite-free medium, a small amount of apoptosis could be detected, and much more apoptosis was seen after 48 h. In contrast, 10 microM arsenite triggered rapid necrosis and failed to activate caspase 3 or cause TUNEL staining. We also confirmed previous reports that exposure to low concentrations of arsenite caused transient stimulation of cell growth. Our finding of delayed toxicity by arsenite suggests that to avoid underestimation of toxicity, the duration between treatment and assay should be taken into account in choosing appropriate doses for arsenite as well as for other toxicants that may show similar delayed toxicity. The NR and MTT assays should be performed only after an interval of at least 48 h after a 24-h exposure to arsenite.
Collapse
Affiliation(s)
- Elena V Komissarova
- New York University School of Medicine, Nelson Institute of Environmental Medicine, Tuxedo, NY 10987, USA
| | | | | |
Collapse
|
40
|
Tsou TC, Tsai FY, Wu MC, Chang LW. The protective role of NF-kappaB and AP-1 in arsenite-induced apoptosis in aortic endothelial cells. Toxicol Appl Pharmacol 2003; 191:177-87. [PMID: 12946653 DOI: 10.1016/s0041-008x(03)00239-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Arsenite (NaAsO(2)) has been shown to produce vascular dysfunction in many studies. Arsenite-induced damage to vascular endothelial cells represents one of the possible mechanisms causing leakage of the vascular endothelial barrier. To explore arsenite-induced vascular endothelial damage, we used primary porcine aortic endothelial cells (PAECs) as an in vitro system to test the effects of arsenite on signal transduction pathways and apoptosis. Here we demonstrated that arsenite exposure induced apoptosis accompanied by the occurrence of apoptotic signals including degradation of poly(ADP-ribose) polymerase (PARP) and CPP32 (cleavage/activation) and DNA ladder formation. By using the luciferase reporter assay, we demonstrated that arsenite exposure differentially activated two redox-sensitive transcription factors, NF-kappaB and AP-1. Lower levels of arsenite exposure (25 microM NaAsO(2), 24 h) induced co-activation of NF-kappaB and AP-1, accompanied by 9% total apoptosis. In contrast, higher levels of arsenite exposure (40 microM NaAsO(2), 24 h) induced higher levels of AP-1 activation, accompanied by 45% total apoptosis. Blockade of NF-kappaB or JNK activity further enhanced arsenite-induced apoptosis. Upregulation of JNK activity showed no effect on arsenite-induced apoptosis. Based on these data, we propose that activation of redox-sensitive transcription factors, NF-kappaB and AP-1, plays a very important role in the protection of PAECs from arsenite-induced apoptosis.
Collapse
Affiliation(s)
- Tsui-Chun Tsou
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Medical Research Building/Room 108, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan, Republic of China.
| | | | | | | |
Collapse
|