1
|
Cherchame E, Guillier L, Lailler R, Vignaud ML, Jourdan-Da Silva N, Le Hello S, Weill FX, Cadel-Six S. Salmonella enterica subsp. enterica Welikade: guideline for phylogenetic analysis of serovars rarely involved in foodborne outbreaks. BMC Genomics 2022; 23:217. [PMID: 35303794 PMCID: PMC8933937 DOI: 10.1186/s12864-022-08439-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella spp. is a major foodborne pathogen with a wide variety of serovars associated with human cases and food sources. Nevertheless, in Europe a panel of ten serovars is responsible for up to 80% of confirmed human cases. Clustering studies by single nucleotide polymorphism (SNP) core-genome phylogenetic analysis of outbreaks due to these major serovars are simplified by the availability of many complete genomes in the free access databases. This is not the case for outbreaks due to less common serovars, such as Welikade, for which no reference genomes are available. In this study, we propose a method to solve this problem. We propose to perform a core genome MLST (cgMLST) analysis based on hierarchical clustering using the free-access EnteroBase to select the most suitable genome to use as a reference for SNP phylogenetic analysis. In this study, we applied this protocol to a retrospective analysis of a Salmonella enterica serovar Welikade (S. Welikade) foodborne outbreak that occurred in France in 2016. Finally, we compared the cgMLST and SNP analyses. SNP phylogenetic reconstruction was carried out considering the effect of recombination events identified by the ClonalFrameML tool. The accessory genome was also explored by phage content and virulome analyses. RESULTS Our findings revealed high clustering concordance using cgMLST and SNP analyses. Nevertheless, SNP analysis allowed for better assessment of the genetic distance among strains. The results revealed epidemic clones of S. Welikade circulating within the poultry and dairy sectors in France, responsible for sporadic and non-sporadic human cases between 2012 and 2019. CONCLUSIONS This study increases knowledge on this poorly described serovar and enriches public genome databases with 42 genomes from human and non-human S. Welikade strains, including the isolate collected in 1956 in Sri Lanka, which gave the name to this serovar. This is the first genomic analysis of an outbreak due to S. Welikade described to date.
Collapse
Affiliation(s)
- Emeline Cherchame
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700, Maisons-Alfort, France. .,Present address: Data Analysis Core, Paris Brain Institute, ICM, Paris, France.
| | - Laurent Guillier
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700, Maisons-Alfort, France
| | - Renaud Lailler
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700, Maisons-Alfort, France
| | - Marie-Leone Vignaud
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700, Maisons-Alfort, France
| | | | - Simon Le Hello
- Centre National de Référence Des Escherichia Coli, Institut Pasteur, Unité Des Bactéries Pathogènes Entériques, Shigella et Salmonella, 75015, Paris, France.,Present address: Groupe de Recherche Sur L'Adaptation Microbienne (GRAM 2.0), Normandie Univ, UNICAEN, Caen, France
| | - François-Xavier Weill
- Centre National de Référence Des Escherichia Coli, Institut Pasteur, Unité Des Bactéries Pathogènes Entériques, Shigella et Salmonella, 75015, Paris, France
| | - Sabrina Cadel-Six
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700, Maisons-Alfort, France
| |
Collapse
|
2
|
Olonade I, van Zyl LJ, Trindade M. Genomic Characterization of a Prophage, Smhb1, That Infects Salinivibrio kushneri BNH Isolated from a Namib Desert Saline Spring. Microorganisms 2021; 9:2043. [PMID: 34683373 PMCID: PMC8537503 DOI: 10.3390/microorganisms9102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022] Open
Abstract
Recent years have seen the classification and reclassification of many viruses related to the model enterobacterial phage P2. Here, we report the identification of a prophage (Smhb1) that infects Salinivibrio kushneri BNH isolated from a Namib Desert salt pan (playa). Analysis of the genome revealed that it showed the greatest similarity to P2-like phages that infect Vibrio species and showed no relation to any of the previously described Salinivibrio-infecting phages. Despite being distantly related to these Vibrio infecting phages and sharing the same modular gene arrangement as seen in most P2-like viruses, the nucleotide identity to its closest relatives suggest that, for now, Smhb1 is the lone member of the Peduovirus genus Playavirus. Although host range testing was not extensive and no secondary host could be identified for Smhb1, genomic evidence suggests that the phage is capable of infecting other Salinivibrio species, including Salinivibrio proteolyticus DV isolated from the same playa. Taken together, the analysis presented here demonstrates how adaptable the P2 phage model can be.
Collapse
Affiliation(s)
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Bellville, Cape Town 7535, South Africa; (I.O.); (M.T.)
| | | |
Collapse
|
3
|
Christie GE, Calendar R. Bacteriophage P2. BACTERIOPHAGE 2016; 6:e1145782. [PMID: 27144088 DOI: 10.1080/21597081.2016.1145782] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
Abstract
P2 is the original member of a highly successful family of temperate phages that are frequently found in the genomes of gram-negative bacteria. This article focuses on the organization of the P2 genome and reviews current knowledge about the function of each open reading frame.
Collapse
Affiliation(s)
- Gail E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine , Richmond, VA, USA
| | - Richard Calendar
- Department of Molecular and Cell Biology, University of California , Berkeley, CA, USA
| |
Collapse
|
4
|
Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, Ackermann HW, Kropinski AM. Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 2009; 9:224. [PMID: 19857251 PMCID: PMC2771037 DOI: 10.1186/1471-2180-9-224] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 10/26/2009] [Indexed: 11/30/2022] Open
Abstract
Background We advocate unifying classical and genomic classification of bacteriophages by integration of proteomic data and physicochemical parameters. Our previous application of this approach to the entirely sequenced members of the Podoviridae fully supported the current phage classification of the International Committee on Taxonomy of Viruses (ICTV). It appears that horizontal gene transfer generally does not totally obliterate evolutionary relationships between phages. Results CoreGenes/CoreExtractor proteome comparison techniques applied to 102 Myoviridae suggest the establishment of three subfamilies (Peduovirinae, Teequatrovirinae, the Spounavirinae) and eight new independent genera (Bcep781, BcepMu, FelixO1, HAP1, Bzx1, PB1, phiCD119, and phiKZ-like viruses). The Peduovirinae subfamily, derived from the P2-related phages, is composed of two distinct genera: the "P2-like viruses", and the "HP1-like viruses". At present, the more complex Teequatrovirinae subfamily has two genera, the "T4-like" and "KVP40-like viruses". In the genus "T4-like viruses" proper, four groups sharing >70% proteins are distinguished: T4-type, 44RR-type, RB43-type, and RB49-type viruses. The Spounavirinae contain the "SPO1-"and "Twort-like viruses." Conclusion The hierarchical clustering of these groupings provide biologically significant subdivisions, which are consistent with our previous analysis of the Podoviridae.
Collapse
Affiliation(s)
- Rob Lavigne
- Biosystems Department, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, Leuven, B-3001, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Beilstein F, Dreiseikelmann B. Temperate bacteriophage ΦO18P from an Aeromonas media isolate: Characterization and complete genome sequence. Virology 2008; 373:25-9. [DOI: 10.1016/j.virol.2007.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/29/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
|
6
|
Trusina A, Sneppen K, Dodd IB, Shearwin KE, Egan JB. Functional alignment of regulatory networks: a study of temperate phages. PLoS Comput Biol 2005; 1:e74. [PMID: 16477325 PMCID: PMC1317652 DOI: 10.1371/journal.pcbi.0010074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 11/11/2005] [Indexed: 11/23/2022] Open
Abstract
The relationship between the design and functionality of molecular networks is now a key issue in biology. Comparison of regulatory networks performing similar tasks can provide insights into how network architecture is constrained by the functions it directs. Here, we discuss methods of network comparison based on network architecture and signaling logic. Introducing local and global signaling scores for the difference between two networks, we quantify similarities between evolutionarily closely and distantly related bacteriophages. Despite the large evolutionary separation between phage lambda and 186, their networks are found to be similar when difference is measured in terms of global signaling. We finally discuss how network alignment can be used to pinpoint protein similarities viewed from the network perspective.
Collapse
Affiliation(s)
- Ala Trusina
- Department of Theoretical Physics, Umeå University, Umeå, Sweden.
| | | | | | | | | |
Collapse
|
7
|
Markov D, Christie GE, Sauer B, Calendar R, Park T, Young R, Severinov K. P2 growth restriction on an rpoC mutant is suppressed by alleles of the Rz1 homolog lysC. J Bacteriol 2004; 186:4628-37. [PMID: 15231796 PMCID: PMC438596 DOI: 10.1128/jb.186.14.4628-4637.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli strain 397c carries a temperature-sensitive mutation, rpoC397, that removes the last 50 amino acids of the RNA polymerase beta' subunit and is nonpermissive for plating of bacteriophage P2. P2 gor mutants productively infect 397c and define a new gene, lysC, encoded by a reading frame that extensively overlaps the P2 lysis accessory gene, lysB. The unusual location of lysC with respect to lysB is reminiscent of the Rz/Rz1 lysis gene pair of phage lambda. Indeed, coexpression of lysB and lysC complemented the growth defect of lambda Rz/Rz1 null mutants, indicating that the LysB/C pair is similar to Rz/Rz1 in both gene arrangement and function. Cells carrying the rpoC397 mutation exhibited an early onset of P2-induced lysis, which was suppressed by the gor mutation in lysC. We propose that changes in host gene expression resulting from the rpoC397 mutation result in changes in the composition of the bacterial cell wall, making the cell more susceptible to P2-mediated lysis and preventing accumulation of progeny phage sufficient for plaque formation.
Collapse
Affiliation(s)
- Dmitry Markov
- Waksman Institute and Department of Molecular Biology and Biochemistry, State University of New Jersey, Rutgers, Piscataway 08854, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
A partial screen for genetic elements integrated into completely sequenced bacterial genomes shows more significant bias in specificity for the tmRNA gene (ssrA) than for any type of tRNA gene. Horizontal gene transfer, a major avenue of bacterial evolution, was assessed by focusing on elements using this single attachment locus. Diverse elements use ssrA; among enterobacteria alone, at least four different integrase subfamilies have independently evolved specificity for ssrA, and almost every strain analyzed presents a unique set of integrated elements. Even elements using essentially the same integrase can be very diverse, as is a group with an ssrA-specific integrase of the P4 subfamily. This same integrase appears to promote damage routinely at attachment sites, which may be adaptive. Elements in arrays can recombine; one such event mediated by invertible DNA segments within neighboring elements likely explains the monophasic nature of Salmonella enterica serovar Typhi. One of a limited set of conserved sequences occurs at the attachment site of each enterobacterial element, apparently serving as a transcriptional terminator for ssrA. Elements were usually found integrated into tRNA-like sequence at the 3' end of ssrA, at subsites corresponding to those used in tRNA genes; an exception was found at the non-tRNA-like 3' end produced by ssrA gene permutation in cyanobacteria, suggesting that, during the evolution of new site specificity by integrases, tropism toward a conserved 3' end of an RNA gene may be as strong as toward a tRNA-like sequence. The proximity of ssrA and smpB, which act in concert, was also surveyed.
Collapse
Affiliation(s)
- Kelly P Williams
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
9
|
Christie GE, Temple LM, Bartlett BA, Goodwin TS. Programmed translational frameshift in the bacteriophage P2 FETUD tail gene operon. J Bacteriol 2002; 184:6522-31. [PMID: 12426340 PMCID: PMC135442 DOI: 10.1128/jb.184.23.6522-6531.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major structural components of the P2 contractile tail are encoded in the FETUD tail gene operon. The sequences of genes F(I) and F(II), encoding the major tail sheath and tail tube proteins, have been reported previously (L. M. Temple, S. L. Forsburg, R. Calendar, and G. E. Christie, Virology 181:353-358, 1991). Sequence analysis of the remainder of this operon and the locations of amber mutations Eam30, Tam5, Tam64, Tam215, Uam25, Uam77, Uam92, and Dam6 and missense mutation Ets55 identified the coding regions for genes E, T, U, and D, completing the sequence determination of the P2 genome. Inspection of the DNA sequence revealed a new open reading frame overlapping the end of the essential tail gene E. Lack of an apparent translation initiation site and identification of a putative sequence for a programmed translational frameshift within the E gene suggested that this new reading frame (E') might be translated as an extension of gene E, following a -1 translational frameshift. Complementation analysis demonstrated that E' was essential for P2 lytic growth. Analysis of fusion polypeptides verified that this reading frame was translated as a -1 frameshift extension of gpE, with a frequency of approximately 10%. The arrangement of these two genes within the tail gene cluster of phage P2 and their coupling via a translational frameshift appears to be conserved among P2-related phages. This arrangement shows a striking parallel to the organization in the tail gene cluster of phage lambda, despite a lack of amino acid sequence similarity between the tail gene products of these phage families.
Collapse
Affiliation(s)
- Gail E Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia 23298-0678, USA.
| | | | | | | |
Collapse
|
10
|
Kapfhammer D, Blass J, Evers S, Reidl J. Vibrio cholerae phage K139: complete genome sequence and comparative genomics of related phages. J Bacteriol 2002; 184:6592-601. [PMID: 12426348 PMCID: PMC135448 DOI: 10.1128/jb.184.23.6592-6601.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2002] [Accepted: 09/07/2002] [Indexed: 01/14/2023] Open
Abstract
In this report, we characterize the complete genome sequence of the temperate phage K139, which morphologically belongs to the Myoviridae phage family (P2 and 186). The prophage genome consists of 33,106 bp, and the overall GC content is 48.9%. Forty-four open reading frames were identified. Homology analysis and motif search were used to assign possible functions for the genes, revealing a close relationship to P2-like phages. By Southern blot screening of a Vibrio cholerae strain collection, two highly K139-related phage sequences were detected in non-O1, non-O139 strains. Combinatorial PCR analysis revealed almost identical genome organizations. One region of variable gene content was identified and sequenced. Additionally, the tail fiber genes were analyzed, leading to the identification of putative host-specific sequence variations. Furthermore, a K139-encoded Dam methyltransferase was characterized.
Collapse
Affiliation(s)
- Dagmar Kapfhammer
- Zentrum für Infektionsforschung, Universität Würzburg, 97070 Würzburg, Germany
| | | | | | | |
Collapse
|
11
|
Abstract
The non-lambdoid coliphage 186 provides an alternative model to the lytic-lysogenic switch of phage lambda. Like lambda, the key switch regulator, the CI repressor, associates to octamers. Unlike lambda, the lytic promoter (pR) and the lysogenic promoter (pL) are face-to-face, 62 bp apart and are flanked by distal CI binding sites (FL and FR) located approximately 300 bp away. Using reporter and footprinting studies, we show that the outcome, but not the mechanism, of regulation by 186 CI is very similar to lambda. 186 CI stimulates pL transcription indirectly by repressing convergent interfering transcription from pR. However, in the absence of the flanking FL and FR sites, CI bound at pR interacts co-operatively with a weak CI binding site at pL and represses both promoters. FL and FR play a critical role; they assist repression of pR and simultaneously alleviate repression of pL, thus allowing high pL activity. We propose that the 186 switch is regulated by a novel mechanism in which a CI octamer bound at pR forms alternative DNA loops to pL or to a flanking site, depending on CI concentration.
Collapse
Affiliation(s)
- Ian B Dodd
- Department of Molecular Biosciences (Biochemistry), University of Adelaide, South Australia, Australia.
| | | |
Collapse
|
12
|
Morgan GJ, Hatfull GF, Casjens S, Hendrix RW. Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J Mol Biol 2002; 317:337-59. [PMID: 11922669 DOI: 10.1006/jmbi.2002.5437] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report the complete 36,717 bp genome sequence of bacteriophage Mu and provide an analysis of the sequence, both with regard to the new genes and other genetic features revealed by the sequence itself and by a comparison to eight complete or nearly complete Mu-like prophage genomes found in the genomes of a diverse group of bacteria. The comparative studies confirm that members of the Mu-related family of phage genomes are genetically mosaic with respect to each other, as seen in other groups of phages such as the phage lambda-related group of phages of enteric hosts and the phage L5-related group of mycobacteriophages. Mu also possesses segments of similarity, typically gene-sized, to genomes of otherwise non-Mu-like phages. The comparisons show that some well-known features of the Mu genome, including the invertible segment encoding tail fiber sequences, are not present in most members of the Mu genome sequence family examined here, suggesting that their presence may be relatively volatile over evolutionary time. The head and tail-encoding structural genes of Mu have only very weak similarity to the corresponding genes of other well-studied phage types. However, these weak similarities, and in some cases biochemical data, can be used to establish tentative functional assignments for 12 of the head and tail genes. These assignments are strongly supported by the fact that the order of gene functions assigned in this way conforms to the strongly conserved order of head and tail genes established in a wide variety of other phages. We show that the Mu head assembly scaffolding protein is encoded by a gene nested in-frame within the C-terminal half of another gene that encodes the putative head maturation protease. This is reminiscent of the arrangement established for phage lambda.
Collapse
Affiliation(s)
- Gregory J Morgan
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
13
|
Nilsson AS, Haggård-Ljungquist E. Detection of homologous recombination among bacteriophage P2 relatives. Mol Phylogenet Evol 2001; 21:259-69. [PMID: 11697920 DOI: 10.1006/mpev.2001.1020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sequencing of five late genes from 18 isolates of P2-like bacteriophages showed that these are at least 96% identical to the genes of phage P2. A maximum-parsimony phylogenetic analysis of these genes showed excess homoplasy of a magnitude three to six times higher than that expected. Examination of the distribution of the number of homoplasies at parsimoniously informative sites and incompatibility matrices of such sites revealed a pattern typical for extensive recombination. It has been shown that phage P2 probably incorporated some functionally complete genes or gene modules by recombination with other phages or with different hosts, but homologous recombination within genes has previously not been shown. In this paper we demonstrate that homologous recombination between P2-like bacteriophages occurs randomly at multiple breakpoints in five late genes. The rate of recombination is high but, since some phages were sampled decades apart and in different parts of the world, this has to be viewed on an evolutionary time scale. The applicability of different methods used for detection of recombination breakpoints and estimation of rates of recombination in bacteriophages is discussed.
Collapse
Affiliation(s)
- A S Nilsson
- Department of Genetics, University of Stockholm, S-106 91 Stockholm, Sweden.
| | | |
Collapse
|
14
|
Abstract
Two proteins, an endolysin and a holin, are essential for host lysis by bacteriophage. Endolysin is the term for muralytic enzymes that degrade the cell wall; endolysins accumulate in the cytosol fully folded during the vegetative cycle. Holins are small membrane proteins that accumulate in the membrane until, at a specific time that is "programmed" into the holin gene, the membrane suddenly becomes permeabilized to the fully folded endolysin. Destruction of the murein and bursting of the cell are immediate sequelae. Holins control the length of the infective cycle for lytic phages and so are subject to intense evolutionary pressure to achieve lysis at an optimal time. Holins are regulated by protein inhibitors of several different kinds. Holins constitute one of the most diverse functional groups, with >100 known or putative holin sequences, which form >30 ortholog groups.
Collapse
Affiliation(s)
- I N Wang
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas 77843-2128, USA.
| | | | | |
Collapse
|
15
|
Nakayama K, Takashima K, Ishihara H, Shinomiya T, Kageyama M, Kanaya S, Ohnishi M, Murata T, Mori H, Hayashi T. The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol 2000; 38:213-31. [PMID: 11069649 DOI: 10.1046/j.1365-2958.2000.02135.x] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa produces three types of bacteriocins: R-, F- and S-type pyocins. The S-type pyocin is a colicin-like protein, whereas the R-type pyocin resembles a contractile but non-flexible tail structure of bacteriophage, and the F-type a flexible but non-contractile one. As genetically related phages exist for each type, these pyocins have been thought to be variations of defective phage. In the present study, the nucleotide sequence of R2 pyocin genes, along with those for F2 pyocin, which are located downstream of the R2 gene cluster on the chromosome of P. aeruginosa PAO1, was analysed in order to elucidate the relationship between the pyocins and bacteriophages. The results clearly demonstrated that the R-type pyocin is derived from a common ancestral origin with P2 phage and the F-type from lambda phage. This notion was supported by identification of a lysis gene cassette similar to those for bacteriophages. The gene organization of the R2 and F2 pyocin gene cluster, however, suggested that both pyocins are not simple defective phages, but are phage tails that have been evolutionarily specialized as bacteriocins. A systematic polymerase chain reaction (PCR) analysis of P. aeruginosa strains that produce various subtypes of R and F pyocins revealed that the genes for every subtype are located between trpE and trpG in the same or very similar gene organization as for R2 and F2 pyocins, but with alterations in genes that determine the receptor specificity.
Collapse
Affiliation(s)
- K Nakayama
- Department of Bacteriology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nakayama K, Kanaya S, Ohnishi M, Terawaki Y, Hayashi T. The complete nucleotide sequence of phi CTX, a cytotoxin-converting phage of Pseudomonas aeruginosa: implications for phage evolution and horizontal gene transfer via bacteriophages. Mol Microbiol 1999; 31:399-419. [PMID: 10027959 DOI: 10.1046/j.1365-2958.1999.01158.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
phi CTX is a cytotoxin-converting phage isolated from Pseudomonas aeruginosa. In this study, we determined the complete nucleotide sequence of the phi CTX phage genome. The precise genome size was 35,538 bp with 21 base 5'-extruding cohesive ends. Forty-seven open reading frames (ORFs) were identified on the phi CTX genome, including two previously identified genes, ctx and int. Among them, 15 gene products were identified in the phage particle by protein microsequencing. The most striking feature of the phi CTX genome was an extensive homology with the coliphage P2 and P2-related phages; more than half of the ORFs (25 ORFs) had marked homology to P2 genes with 28.9-65.8% identity. The gene arrangement on the genome was also highly conserved for the two phages, although the G + C content and codon usage of most phi CTX genes were similar to those of the host P. aeruginosa chromosome. In addition, phi CTX was found to share several common features with P2, including the morphology, non-inducibility, use of lipopolysaccharide core oligosaccharide as receptor and Ca(2+)-dependent receptor binding. These findings indicate that phi CTX is a P2-like phage well adapted to P. aeruginosa, and provide clear evidence of the intergeneric spread and evolution of bacteriophages. Furthermore, comparative analysis of genome structures of phi CTX, P2 and other P2 relatives revealed the presence of several hot-spots where foreign DNAs, including the cytotoxin gene, were inserted. They appear to be deeply concerned in the acquisition of various genes that are horizontally transferred by bacteriophage infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Biological Evolution
- Capsid/biosynthesis
- Cytotoxins
- DNA, Viral
- Gene Expression Regulation, Viral
- Gene Transfer, Horizontal
- Genes, Viral
- Genome, Bacterial
- Genome, Viral
- Lysogeny
- Molecular Sequence Data
- Open Reading Frames
- Promoter Regions, Genetic
- Protein Processing, Post-Translational
- Pseudomonas Phages/genetics
- Pseudomonas aeruginosa/genetics
- Pseudomonas aeruginosa/virology
- Pyocins
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Viral Proteins/metabolism
- Virion
Collapse
Affiliation(s)
- K Nakayama
- Department of Bacteriology, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | | | |
Collapse
|