1
|
Cancer Treatment Goes Viral: Using Viral Proteins to Induce Tumour-Specific Cell Death. Cancers (Basel) 2019; 11:cancers11121975. [PMID: 31817939 PMCID: PMC6966515 DOI: 10.3390/cancers11121975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/24/2022] Open
Abstract
Cell death is a tightly regulated process which can be exploited in cancer treatment to drive the killing of the tumour. Several conventional cancer therapies including chemotherapeutic agents target pathways involved in cell death, yet they often fail due to the lack of selectivity they have for tumour cells over healthy cells. Over the past decade, research has demonstrated the existence of numerous proteins which have an intrinsic tumour-specific toxicity, several of which originate from viruses. These tumour-selective viral proteins, although from distinct backgrounds, have several similar and interesting properties. Though the mechanism(s) of action of these proteins are not fully understood, it is possible that they can manipulate several cell death modes in cancer exemplifying the intricate interplay between these pathways. This review will discuss our current knowledge on the topic and outstanding questions, as well as deliberate the potential for viral proteins to progress into the clinic as successful cancer therapeutics.
Collapse
|
2
|
Zemke NR, Gou D, Berk AJ. Dedifferentiation by adenovirus E1A due to inactivation of Hippo pathway effectors YAP and TAZ. Genes Dev 2019; 33:828-843. [PMID: 31171701 PMCID: PMC6601516 DOI: 10.1101/gad.324814.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/26/2019] [Indexed: 01/09/2023]
Abstract
In this study, Zemke et al. show that E1A inactivates the Hippo pathway-regulated TEAD coactivators YAP and TAZ by causing their sequestration in the cytoplasm. Their findings suggest that YAP/TAZ function in a developmental checkpoint controlled by signaling from the actin cytoskeleton that prevents differentiation of a progenitor cell until it is in the correct cellular and tissue environment. Adenovirus transformed cells have a dedifferentiated phenotype. Eliminating E1A in transformed human embryonic kidney cells derepressed ∼2600 genes, generating a gene expression profile closely resembling mesenchymal stem cells (MSCs). This was associated with a dramatic change in cell morphology from one with scant cytoplasm and a globular nucleus to one with increased cytoplasm, extensive actin stress fibers, and actomyosin-dependent flattening against the substratum. E1A-induced hypoacetylation at histone H3 Lys27 and Lys18 (H3K27/18) was reversed. Most of the increase in H3K27/18ac was in enhancers near TEAD transcription factors bound by Hippo signaling-regulated coactivators YAP and TAZ. E1A causes YAP/TAZ cytoplasmic sequestration. After eliminating E1A, YAP/TAZ were transported into nuclei, where they associated with poised enhancers with DNA-bound TEAD4 and H3K4me1. This activation of YAP/TAZ required RHO family GTPase signaling and caused histone acetylation by p300/CBP, chromatin remodeling, and cohesin loading to establish MSC-associated enhancers and then superenhancers. Consistent results were also observed in primary rat embryo kidney cells, human fibroblasts, and human respiratory tract epithelial cells. These results together with earlier studies suggest that YAP/TAZ function in a developmental checkpoint controlled by signaling from the actin cytoskeleton that prevents differentiation of a progenitor cell until it is in the correct cellular and tissue environment.
Collapse
Affiliation(s)
- Nathan R Zemke
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Dawei Gou
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Arnold J Berk
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
3
|
The Influence of E1A C-Terminus on Adenovirus Replicative Cycle. Viruses 2017; 9:v9120387. [PMID: 29257057 PMCID: PMC5744161 DOI: 10.3390/v9120387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 01/30/2023] Open
Abstract
Adenovirus Early 1A proteins (E1A) are crucial for initiation of the viral life cycle after infection. The E1A gene is encoded at the left end of the viral genome and consists of two exons, the first encoding 185 amino acids in the 289 residues adenovirus 5 E1A, while the second exon encodes 104 residues. The second exon-encoded region of E1A is conserved across all E1A isoforms except for the 55 residues protein, which has a unique C-terminus due to a frame shift following splicing into the second exon. This region of E1A contributes to a variety of processes including the regulation of viral and cellular gene expression, immortalization and transformation. Here we evaluated the contributions that different regions of the second exon of E1A make to the viral life cycle using deletion mutants. The region of E1A encoded by the second exon was found to be important for overall virus growth, induction of viral and cellular gene expression, viral genome replication and deregulation of the cell cycle. Efficient viral replication was found to require exon 2 and the nuclear localization signal, as loss of either resulted in severe growth deficiency. Induction of cellular DNA synthesis was also deficient with any deletion of E1A within the C-terminus even if these deletions were outside of conserved region 4. Overall, our study provides the first comprehensive insight into the contributions of the C-terminus of E1A to the replicative fitness of human adenovirus 5 in arrested lung fibroblasts.
Collapse
|
4
|
Yousef AF, Fonseca GJ, Cohen MJ, Mymryk JS. The C-terminal region of E1A: a molecular tool for cellular cartography. Biochem Cell Biol 2012; 90:153-63. [DOI: 10.1139/o11-080] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The adenovirus E1A proteins function via protein–protein interactions. By making many connections with the cellular protein network, individual modules of this virally encoded hub reprogram numerous aspects of cell function and behavior. Although many of these interactions have been thoroughly studied, those mediated by the C-terminal region of E1A are less well understood. This review focuses on how this region of E1A affects cell cycle progression, apoptosis, senescence, transformation, and conversion of cells to an epithelial state through interactions with CTBP1/2, DYRK1A/B, FOXK1/2, and importin-α. Furthermore, novel potential pathways that the C-terminus of E1A influences through these connections with the cellular interaction network are discussed.
Collapse
Affiliation(s)
- Ahmed F. Yousef
- Departments of Microbiology and Immunology and Oncology, The University of Western Ontario, London Regional Cancer Program, London, ON N6A 4L6, Canada
| | - Gregory J. Fonseca
- Departments of Microbiology and Immunology and Oncology, The University of Western Ontario, London Regional Cancer Program, London, ON N6A 4L6, Canada
| | - Michael J. Cohen
- Departments of Microbiology and Immunology and Oncology, The University of Western Ontario, London Regional Cancer Program, London, ON N6A 4L6, Canada
| | - Joe S. Mymryk
- Departments of Microbiology and Immunology and Oncology, The University of Western Ontario, London Regional Cancer Program, London, ON N6A 4L6, Canada
| |
Collapse
|
5
|
Abstract
Viral infection converts the normal functions of a cell to optimize viral replication and virion production. One striking observation of this conversion is the reconfiguration and reorganization of cellular actin, affecting every stage of the viral life cycle, from entry through assembly to egress. The extent and degree of cytoskeletal reorganization varies among different viral infections, suggesting the evolution of myriad viral strategies. In this Review, we describe how the interaction of viral proteins with the cell modulates the structure and function of the actin cytoskeleton to initiate, sustain and spread infections. The molecular biology of such interactions continues to engage virologists in their quest to understand viral replication and informs cell biologists about the role of the cytoskeleton in the uninfected cell.
Collapse
Affiliation(s)
- Matthew P Taylor
- Department of Molecular Biology, Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
6
|
In vivo potential effects of adenovirus type 5 E1A and E1B on lung carcinogenesis and lymphoproliferative inflammation. J Virol 2008; 82:8105-11. [PMID: 18524829 DOI: 10.1128/jvi.00536-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Triggering uncontrolled cellular proliferation, chronic inflammation, and/or disruption of p53 activity is critical for tumorigenesis initiated by latent viral oncogenes. The adenovirus type 5 (Ad5) early genes E1A and E1B can maintain lifelong latency in the lungs of patients with chronic pulmonary diseases. To determine the in vivo effects of the latent Ad5 E1A and E1B oncogenes, we have examined the influence of Ad5 E1A and E1B gene products on mouse lung carcinogenesis and inflammation by generation and characterization of lung-specific transgenic mouse models. Here, we show that either the Ad5 E1A 243-amino-acid (aa) protein or the E1B 58-kDa protein was dominantly expressed in the transgenic lung. Preferential expression of Ad5 E1A 243-aa protein alone was not sufficient to induce lung carcinogenesis but resulted in low-grade cellular proliferation and high-grade lymphoproliferative inflammation in the lung. The presence of Ad5 E1B dramatically enhanced the expression of the E1A 243-aa protein, in addition to impairing p53 and apoptosis response, resulting in uncontrolled cellular proliferation, lymphoproliferative inflammation, and metastatic carcinomas in the lung after a period of latency. Our studies may provide clues to understanding the potential in vivo biological effects of Ad5 E1A and E1B latent in the lung and a new scope for assessing in vivo functions of viral genes latent in the infection target tissue.
Collapse
|
7
|
Johansson C, Zhao H, Bajak E, Granberg F, Pettersson U, Svensson C. Impact of the interaction between adenovirus E1A and CtBP on host cell gene expression. Virus Res 2005; 113:51-63. [PMID: 15899534 DOI: 10.1016/j.virusres.2005.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 04/12/2005] [Accepted: 04/14/2005] [Indexed: 11/20/2022]
Abstract
In cell lines harbouring inducible adenovirus E1A genes, the cytotoxicity of wild type E1A was manifested by poor and subsiding expression of the E1A protein during prolonged induction. In contrast, cells expressing E1A deleted in the C-terminal binding protein (CtBP)-interaction domain (E1ADeltaCID) demonstrated high levels of expression for extended time. Microarray analyses of host cell gene expression demonstrated that approximately 70% of the regulated genes were increased upon E1A induction and that the majority of E1A-regulated genes were similarly regulated by wild type E1A and E1ADeltaCID. However, for 29 genes, regulation by wild type E1A and E1ADeltaCID were different. Consistent with the altered transforming capacity of E1A unable to bind CtBP, genes involved in tumour cell progression and growth suppression were found among the differently regulated genes. Moreover, promoter sequences of genes up regulated by wild type E1A and/or repressed by E1ADeltaCID demonstrated a higher prevalence of potential binding sites for the CtBP-targeted transcription factors Ets, Ikaros and/or partial differentialEF1/ZEB, suggesting that the failure to block CtBP-repression contributed to the "hyper-transforming" phenotype of E1ADeltaCID. Since E1ADeltaCID also specifically activated host cell gene expression, we find it likely that additional, possibly CtBP-independent, mechanisms contribute to the altered phenotype of E1ADeltaCID-expressing cells.
Collapse
Affiliation(s)
- Cecilia Johansson
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Box 582, S-751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
8
|
Quinlan MP. Vinculin, VASP, and profilin are coordinately regulated during actin remodeling in epithelial cells, which requires de novo protein synthesis and protein kinase signal transduction pathways. J Cell Physiol 2004; 200:277-90. [PMID: 15174098 DOI: 10.1002/jcp.20009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transformation progression of epithelial cells involves alterations in their morphology, polarity, and adhesive characteristics, all of which are associated with the loss and/or reorganization of actin structures. To identify the underlying mechanism of formation of the adhesion-dependent, circumferential actin network, the expression and localization of the actin binding and regulating proteins (ABPs), vinculin, VASP, and profilin were evaluated. Experimental depolarization of epithelial cells results in the loss of normal F-actin structures and the transient upregulation of vinculin, VASP, and profilin. This response is due to the loss of cell-cell, and not cell-substrate interactions, since cells that no longer express focal adhesions or stress fibers are still sensitive to changes in adhesion and manifest this in the altered profile of expression of these ABPs. Transient upregulation is dependent upon de novo protein synthesis, and protein kinase-, but not phosphatase-sensitive signal transduction pathway(s). Inhibition of the synthesis of these proteins is accompanied by dephosphorylation of the ribosomal S6 protein, but does not involve inhibition of the PI3-kinase-Akt-mTOR pathway. Constitutive expression of VASP results in altered cell morphology and adhesion and F-actin and vinculin structures. V12rac1 expressing epithelial cells are constitutively nonadhesive, malignantly transformed, and constitutively express high levels of these ABPs, with altered subcellular localizations. Transformation suppression is accompanied by the restoration of normal levels of the three ABPs, actin structures, adhesion, and epithelial morphology. Thus, vinculin, VASP, and profilin are coordinately regulated by signal transduction pathways that effect a translational response. Additionally, their expression profile maybe indicative of the adhesion and transformation status of epithelial cells.
Collapse
Affiliation(s)
- Margaret P Quinlan
- Laboratory of Molecular Cell Biology, Guthrie Research Institute, 1 Guthrie Square, Sayre, Pennsylvania 18840, USA.
| |
Collapse
|
9
|
Takeuchi K, Sakurada K, Endou H, Obinata M, Quinlan MP. Differential effects of DNA tumor virus genes on the expression profiles, differentiation, and morphogenetic reprogramming potential of epithelial cells. Virology 2002; 300:8-19. [PMID: 12202201 DOI: 10.1006/viro.2002.1512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The availability of cell lines that retain their differentiation programs is important for the study of differentiated cell types and the development of cell therapies. DNA tumor virus genes are often used to establish cell lines from primary culture for the analysis of cell-specific functions. To ascertain whether viral immortalizing or transforming genes differed in their effects on cellular differentiation programs, the E1A 12S (WT12S) gene of adenovirus and the large T antigen (LT) gene of SV40 were used to derive stable cell lines from primary kidney. The resultant cell types exhibited very different morphologies, growth and behavior patterns, differentiation states, and plasticities. Renal cells immortalized by LT exhibited branching tubulogenesis in response to Matrigel. This was in contrast to their behavior under normal culture conditions, wherein they were less differentiated, very nonadhesive, very rapidly growing, and transformed. These cells coexpressed adult epithelial (keratin) and embryonic mesenchymal (vimentin, osteopontin, FSP1, PAX-2, and WT1) genes. WT12S-immortalized cells grown on or in Matrigel formed cysts or tubules, consistent with their expression profiles, which consisted of both epithelial and adult kidney markers (E-cadherin, alpha-catenin, circumferential actin filaments (CAF), alkaline phosphatase, aminopeptidase M, BMP7, or podocalyxin), but not embryonic/mesenchymal markers (PAX-2 or WT1). The WT12S-expressing cells were well differentiated, adhesive, slow growing, and nontransformed. Thus, cells expressing WT12S maintained their original differentiation status and were less sensitive to reprogramming, while cells expressing LT were dedifferentiated, but had the potential for reprogramming by exogenous factors.
Collapse
Affiliation(s)
- Kyoko Takeuchi
- Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd. Asahi-machi 3-6-6, Machida-shi, Tokyo, 194-8533, Japan
| | | | | | | | | |
Collapse
|
10
|
Kiemer AK, Takeuchi K, Quinlan MP. Identification of genes involved in epithelial-mesenchymal transition and tumor progression. Oncogene 2001; 20:6679-88. [PMID: 11709702 DOI: 10.1038/sj.onc.1204872] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2001] [Revised: 07/31/2001] [Accepted: 08/01/2001] [Indexed: 11/09/2022]
Abstract
The adenovirus E1A12S gene product (WT12S) immortalizes epithelial cells and they retain their differentiated characteristics, but certain mutants cannot do the latter. Characterization of mutant immortalized epithelial cells indicated that they had undergone epithelial mesenchymal transition (EMT). Coexpression of V12ras with WT12S leads to benign tumors, but to malignant tumors with 12S mutants. Since EMT is critical for tumor progression, identification of the molecular mechanisms involved should elucidate novel therapeutic targets. To this end, representational difference analysis (RDA) was used to identify cDNAs upregulated in the mutant cell line. Thirty-five differentially expressed mRNAs were identified and classified into several functional categories, including nine novel cDNAs. Among the 26 known cDNAs, extracellular matrix and related proteins made up the largest group of differentially expressed genes, followed by growth factors and receptors and transcription factors. There was also an ion transporter, a cytoskeletal protein, glycosylation and amidinotransferase enzymes and proteins with unknown functions. Some of the known genes have previously been associated with EMT and/or tumor progression and thus served to validate the system to obtain the desired target genes, while other cDNAs are newly linked with dedifferentiation/malignancy. Array analyses indicated that the cDNAs were specifically upregulated in invasive or metastatic tumors, especially of breast, uterus and lung, suggesting their involvement in the progression of these tumors.
Collapse
Affiliation(s)
- A K Kiemer
- Department of Pharmacy, Center of Drug Research, University of Munich, Butenandtstr. 5-13, 81377 Munich, Germany
| | | | | |
Collapse
|
11
|
Sundqvist A, Bajak E, Kurup SD, Sollerbrant K, Svensson C. Functional knockout of the corepressor CtBP by the second exon of adenovirus E1a relieves repression of transcription. Exp Cell Res 2001; 268:284-93. [PMID: 11478854 DOI: 10.1006/excr.2001.5280] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The C-terminal binding protein (CtBP) acts as a transcriptional corepressor upon recruitment to transcriptional regulators. In contrast, interaction between CtBP and the adenovirus E1A protein is required for efficient activation of E1A-responsive genes, suggesting that E1A might block CtBP-mediated repression. Recruitment of CtBP to a promoter, either as a Gal4CtBP fusion or through an interaction with a Gal4 fusion protein expressing the CtBP interacting domain (CID) of E1A, resulted in transcriptional repression. The second exon of E1A, containing the CID, alleviated repression by Gal4E1ACID-recruited CtBP, but not Gal4CtBP-mediated repression, suggesting that E1A prevented repression by blocking promoter recruitment of CtBP. E1ACID was also sufficient to derepress transcription from several cotransfected promoter constructs. Furthermore, inducible expression of E1ACID in established cell lines resulted in significant changes of endogenous gene expression, possibly by sequestration of CtBP. Together, these data indicated that CtBP might act as a wide-range regulator of transcription. Although CtBP was shown to interact with histone deacetylases (HDACs), transcriptional repression by a Gal4CtBP fusion protein was not sensitive to inhibition of HDACs by trichostatin A (TSA). In contrast, TSA eliminated E1ACID derepression of E1A second exon-responsive promoters. Although the reason for this difference remains to be experimentally verified, it is possible that the requirement for HDACs might differ depending on the mechanism by which CtBP becomes promoter recruited.
Collapse
Affiliation(s)
- A Sundqvist
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
12
|
Sharma SV, Oneyama C, Yamashita Y, Nakano H, Sugawara K, Hamada M, Kosaka N, Tamaoki T. UCS15A, a non-kinase inhibitor of Src signal transduction. Oncogene 2001; 20:2068-79. [PMID: 11360191 DOI: 10.1038/sj.onc.1204296] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2000] [Revised: 01/24/2001] [Accepted: 01/25/2001] [Indexed: 11/09/2022]
Abstract
Src tyrosine kinase plays key roles in signal transduction following growth factor stimulation and integrin-mediated cell-substrate adhesion. Since src-signal transduction defects are implicated in a multitude of human diseases, we have sought to develop new ways to identify small molecule inhibitors using a yeast-based, activated-src over-expression system. In the present study, we describe the identification of a unique src-signal transduction inhibitor, UCS15A. UCS15A was found to inhibit the src specific tyrosine phosphorylation of numerous proteins in v-src-transformed cells. Two of these phosphoproteins were identified as bona-fide src substrates, cortactin and Sam68. UCS15A differed from conventional src-inhibitors in that it did not inhibit the tyrosine kinase activity of src. In addition, UCS15A appeared to differ from src-destabilizing agents such as herbimycin and radicicol that destabilize src by interfering with Hsp90. Our studies suggest that UCS15A exerted its src-inhibitory effects by a novel mechanism that involved disruption of protein-protein interactions mediated by src. One of the biological consequences of src-inhibition by UCS15A was its ability to inhibit the bone resorption activity of osteoclasts in vitro. These data suggest that UCS15A may inhibit the bone resorption activity of osteoclasts, not by inhibiting src tyrosine kinase activity, but by disrupting the interaction of proteins associated with src, thereby modulating downstream events in the src signal transduction pathway.
Collapse
Affiliation(s)
- S V Sharma
- Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd. 3-6-6 Asahi-cho, Machida-shi, Tokyo 194, Japan
| | | | | | | | | | | | | | | |
Collapse
|