1
|
Brady A, Felipe-Ruiz A, Gallego Del Sol F, Marina A, Quiles-Puchalt N, Penadés JR. Molecular Basis of Lysis-Lysogeny Decisions in Gram-Positive Phages. Annu Rev Microbiol 2021; 75:563-581. [PMID: 34343015 DOI: 10.1146/annurev-micro-033121-020757] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Temperate bacteriophages (phages) are viruses of bacteria. Upon infection of a susceptible host, a temperate phage can establish either a lytic cycle that kills the host or a lysogenic cycle as a stable prophage. The life cycle pursued by an infecting temperate phage can have a significant impact not only on the individual host bacterium at the cellular level but also on bacterial communities and evolution in the ecosystem. Thus, understanding the decision processes of temperate phages is crucial. This review delves into the molecular mechanisms behind lysis-lysogeny decision-making in Gram-positive phages. We discuss a variety of molecular mechanisms and the genetic organization of these well-understood systems. By elucidating the strategies used by phages to make lysis-lysogeny decisions, we can improve our understanding of phage-host interactions, which is crucial for a variety of studies including bacterial evolution, community and ecosystem diversification, and phage therapeutics. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Aisling Brady
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom;
| | - Alonso Felipe-Ruiz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain;
| | - Francisca Gallego Del Sol
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain;
| | - Alberto Marina
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain;
| | - Nuria Quiles-Puchalt
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom;
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom; .,MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom;
| |
Collapse
|
2
|
YMC-2011, a Temperate Phage of Streptococcus salivarius 57.I. Appl Environ Microbiol 2017; 83:AEM.03186-16. [PMID: 28062463 DOI: 10.1128/aem.03186-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/04/2017] [Indexed: 11/20/2022] Open
Abstract
Streptococcus salivarius is an abundant isolate of the oral cavity. The genome of S. salivarius 57.I consists of a 2-Mb chromosome and a 40,758-bp circular molecule, designated YMC-2011. Annotation of YMC-2011 revealed 55 open reading frames, most of them associated with phage production, although plaque formation is not observed in S. salivarius 57.I after lytic induction using mitomycin C. Results from Southern hybridization and quantitative real-time PCR confirmed that YMC-2011 exists extrachromosomally, with an estimated copy number of 3 to 4. Phage particles were isolated from the supernatant of mitomycin C-treated S. salivarius 57.I cultures, and transmission electron microscopic examination indicated that YMC-2011 belongs to the Siphoviridae family. Phylogenetic analysis suggests that phage YMC-2011 and the cos-type phages of Streptococcus thermophilus originated from a common ancestor. An extended -10 element (p L ) and a σ70-like promoter (p R ) were mapped 5' to Ssal_phage00013 (encoding a CI-like repressor) and Ssal_phage00014 (encoding a hypothetical protein), respectively, using 5' rapid amplification of cDNA ends, indicating that YMC-2011 transcribes at least two mRNAs in opposite orientations. Studies using promoter-chloramphenicol acetyltransferase reporter gene fusions revealed that p R , but not p L , was sensitive to mitomycin C induction, suggesting that the switch from lysogenic growth to lytic growth was controlled mainly by the activity of these two promoters. In conclusion, a lysogenic state is maintained in S. salivarius 57.I, presumably by the repression of genes encoding proteins for lytic growth.IMPORTANCE The movement of mobile genetic elements such as bacteriophages and the establishment of lysogens may have profound effects on the balance of microbial ecology where lysogenic bacteria reside. The discovery of phage YMC-2011 from Streptococcus salivarius 57.I suggests that YMC-2011 and Streptococcus thermophilus-infecting phages share an ancestor. Although S. salivarius and S. thermophilus are close phylogenetically, S. salivarius is a natural inhabitant of the human mouth, whereas S. thermophilus is commonly found in the mammary mucosa of bovine species. Thus, the identification of YMC-2011 suggests that horizontal gene transfer via phage infection could take place between species from different ecological niches.
Collapse
|
3
|
Koberg S, Mohamed MDA, Faulhaber K, Neve H, Heller KJ. Identification and characterization of cis- and trans-acting elements involved in prophage induction in Streptococcus thermophilus J34. Mol Microbiol 2015; 98:535-52. [PMID: 26193959 DOI: 10.1111/mmi.13140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2015] [Indexed: 11/29/2022]
Abstract
The genetic switch region of temperate Streptococcus thermophilus phage TP-J34 contains two divergently oriented promoters and several predicted operator sites. It separates lytic cycle-promoting genes from those promoting lysogeny. A polycistronic transcript comprises the genes coding for repressor Crh, metalloproteinase-motif protein Rir and superinfection exclusion lipoprotein Ltp. Weak promoters effecting monocistronic transcripts were localized for ltp and int (encoding integrase) by Northern blot and 5'-RACE-PCR. These transcripts appeared in lysogenic as well as lytic state. A polycistronic transcript comprising genes coh (encoding Cro homolog), ant (encoding putative antirepressor), orf7, orf8 and orf9 was only detected in the lytic state. Four operator sites, of which three were located in the intergenic regions between crh and coh, and one between coh and ant, were identified by competition electromobility shift assays. Cooperative binding of Crh to two operator sites immediately upstream of coh could be demonstrated. Coh was shown to bind to the operator closest to crh only. Oligomerization was proven by cross-linking Crh by glutaraldehyde. Knock-out of rir revealed a key role in prophage induction. Rir and Crh were shown to form a complex in solution and Rir prevented binding of Crh to its operator sites.
Collapse
Affiliation(s)
- Sabrina Koberg
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| | - Mazhar Desouki Ali Mohamed
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| | - Katharina Faulhaber
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| | - Knut J Heller
- Department of Microbiology and Biotechnology, Max Rubner-Institut (Federal Research Institute of Nutrition and Food), Kiel, Germany
| |
Collapse
|
4
|
Song Q, Ye T, Zhang X. Proteins responsible for lysogeny of deep-sea thermophilic bacteriophage GVE2 at high temperature. Gene 2011; 479:1-9. [PMID: 21303688 DOI: 10.1016/j.gene.2011.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
Abstract
The lytic and lysogenic life cycle switch of bacteriophages plays very important roles in virus-host interactions. However, the lysogeny of thermophilic bacteriophage infecting thermophile at high temperatures has not been addressed. In this study, two lysogeny-related genes encoding the CI protein and recombinase of GVE2, a thermophilic bacteriophage obtained from a deep-sea hydrothermal vent, were characterized. Temporal analyses showed that the two genes were expressed at early stages of GVE2 infection. Based on chromatin immunoprecipitation (ChIP) assay and electrophoretic mobility shift assay (EMSA), the GVE2 CI protein was bound with only one DNA fragment located at 24264-24036 bp in the GVE2 genome. This location might be the original transcription site and the lysis-lysogeny switch site, which was very different from mesophilic bacteriophages. The GVE2 CI and recombinase proteins could function only at high temperatures. Therefore our study improved our understanding of the lysogeny process of bacteriophages at high temperatures.
Collapse
Affiliation(s)
- Qing Song
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, People's Republic of China
| | | | | |
Collapse
|
5
|
|
6
|
New genetic element carrying the erythromycin resistance determinant erm(TR) in Streptococcus pneumoniae. Antimicrob Agents Chemother 2007; 52:619-25. [PMID: 18070957 DOI: 10.1128/aac.01081-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
erm(A) subclass erm(TR), a common macrolide resistance determinant in Streptococcus pyogenes but quite rare in Streptococcus pneumoniae, was found in a clinical S. pneumoniae isolate (AP200) from Italy. In this isolate, erm(TR) was found included in a genetic element approximately 56 kb in size that did not appear to be conjugative but could be transferred by transformation. An erm(TR)-containing DNA fragment of approximately 10 kb was sequenced and 12 open reading frames (ORFs) were identified. Upstream of erm(TR), a regulatory protein of the TetR family and the two components of an efflux pump of the ABC type were found. Downstream of erm(TR), there were ORFs homologous to a spectinomycin phosphotransferase, transposases, and a relaxase. Since the genomic sequence of S. pyogenes MGAS10750 carrying erm(TR) became available, comparison between the erm(TR)-containing genetic elements in AP200 and in MGAS10750 was performed. The region flanking erm(TR) in MGAS10750 showed identity with AP200 for 10 ORFs out of 12. PCR mapping using primers designed on the sequence of MGAS10750 confirmed that AP200 carries a genetic element similar to that of MGAS10750. In AP200 the genetic element was inserted inside an ORF homologous to spr0790 of S. pneumoniae R6, coding for a type I restriction modification system. Homologies between the insertion sites in AP200 and MGAS10750 consisted of eight conserved nucleotides, of which three were duplicated, likely representing target site duplication. The structure of the erm(TR)-carrying genetic element shows characteristics of a transposon/prophage remnant chimera. In AP200 this genetic element was designated Tn1806.
Collapse
|
7
|
Coddeville M, Auvray F, Mikkonen M, Ritzenthaler P. Single independent operator sites are involved in the genetic switch of the Lactobacillus delbrueckii bacteriophage mv4. Virology 2007; 364:256-68. [PMID: 17412387 DOI: 10.1016/j.virol.2007.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 12/31/2006] [Accepted: 02/09/2007] [Indexed: 11/21/2022]
Abstract
The lysogeny region of the Lactobacillus delbrueckii bacteriophage mv4 contains two divergently oriented ORFs coding for the Rep (221 aa) and Tec (64 aa) proteins. The transcription of these two genes was analysed by primer extension and Northern blot experiments on lysogenic strains. The location of the transcription initiation sites of rep and tec in the intergenic region allowed the identification of the divergently oriented non overlapping promoters P(rep) and P(tec). Transcriptional fusions analysis showed that Rep negatively regulates the P(tec) promoter and activates its own transcription, and that Tec is a negative regulator of the two promoters. As demonstrated by gel mobility shift assays, the repressor Rep binds to a single specific 17 bp site located between the P(tec) -10 and -35 regions whereas Tec binds to a single specific 40 bp long complex operator site located between the two promoters. The presence of a single specific operator site for each repressor in the intergenic region is an unusual feature.
Collapse
Affiliation(s)
- Michèle Coddeville
- Laboratoire de Microbiologie et de Génétique Moléculaire du CNRS, Université Paul Sabatier, Bat IBCG, 118 route de Narbonne, Toulouse Cedex, France
| | | | | | | |
Collapse
|
8
|
Abstract
Bacteriophages (phages) have the potential to interfere with any industry that produces bacteria as an end product or uses them as biocatalysts in the production of fermented products or bioactive molecules. Using microorganisms that drive food bioprocesses as an example, this review will describe a set of genetic tools that are useful in the engineering of customized phage-defence systems. Special focus will be given to the power of comparative genomics as a means of streamlining target selection, providing more widespread phage protection, and increasing the longevity of these industrially important bacteria in the bioprocessing environment.
Collapse
Affiliation(s)
- Joseph M Sturino
- Genomic Sciences Program, North Carolina State University, Raleigh, North Carolina 27695-7624, USA
| | | |
Collapse
|
9
|
Kenny JG, Leach S, de la Hoz AB, Venema G, Kok J, Fitzgerald GF, Nauta A, Alonso JC, van Sinderen D. Characterization of the lytic–lysogenic switch of the lactococcal bacteriophage Tuc2009. Virology 2006; 347:434-46. [PMID: 16410016 DOI: 10.1016/j.virol.2005.11.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 11/21/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
Tuc2009 is a temperate bacteriophage of Lactococcus lactis subsp. cremoris UC509 which encodes a CI- and Cro-type lysogenic-lytic switch region. A helix-swap of the alpha3 helices of the closely related CI-type proteins from the lactococcal phages r1t and Tuc2009 revealed the crucial elements involved in DNA recognition while also pointing to conserved functional properties of phage CI proteins infecting different hosts. CI-type proteins have been shown to bind to specific sequences located in the intergenic switch region, but to date, no detailed binding studies have been performed on lactococcal Cro analogues. Experiments shown here demonstrate alternative binding sites for these two proteins of Tuc2009. CI2009 binds to three inverted repeats, two within the intergenic region and one within the cro2009 gene. This DNA-binding pattern appears to be conserved among repressors of lactococcal and streptococcal phages. The Cro2009 protein appears to bind to three direct repeats within the intergenic region causing distortion of the bound DNA.
Collapse
Affiliation(s)
- John G Kenny
- Department of Microbiology, National University of Ireland, Cork, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lo TC, Shih TC, Lin CF, Chen HW, Lin TH. Complete genomic sequence of the temperate bacteriophage PhiAT3 isolated from Lactobacillus casei ATCC 393. Virology 2005; 339:42-55. [PMID: 15975621 DOI: 10.1016/j.virol.2005.05.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Revised: 05/06/2005] [Accepted: 05/16/2005] [Indexed: 11/20/2022]
Abstract
The complete genomic sequence of a temperate bacteriophage PhiAT3 isolated from Lactobacillus (Lb.) casei ATCC 393 is reported. The phage consists of a linear DNA genome of 39,166 bp, an isometric head of 53 nm in diameter, and a flexible, noncontractile tail of approximately 200 nm in length. The number of potential open reading frames on the phage genome is 53. There are 15 unpaired nucleotides at both 5' ends of the PhiAT3 genome, indicating that the phage uses a cos-site for DNA packaging. The PhiAT3 genome was grouped into five distinct functional clusters: DNA packaging, morphogenesis, lysis, lysogenic/lytic switch, and replication. The amino acid sequences at the NH2-termini of some major proteins were determined. An in vivo integration assay for the PhiAT3 integrase (Int) protein in several lactobacilli was conducted by constructing an integration vector including PhiAT3 int and the attP (int-attP) region. It was found that PhiAT3 integrated at the tRNAArg gene locus of Lactobacillus rhamnosus HN 001, similar to that observed in its native host, Lb. casei ATCC 393.
Collapse
Affiliation(s)
- Ta-Chun Lo
- Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, Hsinchu 30043, Taiwan, ROC
| | | | | | | | | |
Collapse
|
11
|
Lévesque C, Duplessis M, Labonté J, Labrie S, Fremaux C, Tremblay D, Moineau S. Genomic organization and molecular analysis of virulent bacteriophage 2972 infecting an exopolysaccharide-producing Streptococcus thermophilus strain. Appl Environ Microbiol 2005; 71:4057-68. [PMID: 16000821 PMCID: PMC1169050 DOI: 10.1128/aem.71.7.4057-4068.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 02/01/2005] [Indexed: 11/20/2022] Open
Abstract
The Streptococcus thermophilus virulent pac-type phage 2972 was isolated from a yogurt made in France in 1999. It is a representative of several phages that have emerged with the industrial use of the exopolysaccharide-producing S. thermophilus strain RD534. The genome of phage 2972 has 34,704 bp with an overall G+C content of 40.15%, making it the shortest S. thermophilus phage genome analyzed so far. Forty-four open reading frames (ORFs) encoding putative proteins of 40 or more amino acids were identified, and bioinformatic analyses led to the assignment of putative functions to 23 ORFs. Comparative genomic analysis of phage 2972 with the six other sequenced S. thermophilus phage genomes confirmed that the replication module is conserved and that cos- and pac-type phages have distinct structural and packaging genes. Two group I introns were identified in the genome of 2972. They interrupted the genes coding for the putative endolysin and the terminase large subunit. Phage mRNA splicing was demonstrated for both introns, and the secondary structures were predicted. Eight structural proteins were also identified by N-terminal sequencing and/or matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Detailed analysis of the putative minor tail proteins ORF19 and ORF21 as well as the putative receptor-binding protein ORF20 showed the following interesting features: (i) ORF19 is a hybrid protein, because it displays significant identity with both pac- and cos-type phages; (ii) ORF20 is unique; and (iii) a protein similar to ORF21 of 2972 was also found in the structure of the cos-type phage DT1, indicating that this structural protein is present in both S. thermophilus phage groups. The implications of these findings for phage classification are discussed.
Collapse
Affiliation(s)
- Céline Lévesque
- GREB, Faculté de Médecine Dentaire, Université Laval, Québec, Canada G1K 7P4
| | | | | | | | | | | | | |
Collapse
|
12
|
Ventura M, Brüssow H. Temporal transcription map of the virulent Streptococcus thermophilus bacteriophage Sfi19. Appl Environ Microbiol 2004; 70:5041-6. [PMID: 15294848 PMCID: PMC492375 DOI: 10.1128/aem.70.8.5041-5046.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A transcription map was developed for the virulent Streptococcus thermophilus phage Sfi19 on the basis of systematic Northern blot hybridizations. All deduced 5' ends were confirmed by primer extension experiments. Three classes of transcripts were detected based on the different times of appearance. Early transcripts were identified in three genome regions; middle transcripts covered cro-like, DNA replication, and transcriptional regulation genes; and late genes consisted of structural and lysis genes. Chloramphenicol treatment suppressed the translation of a putative transcriptional factor necessary for the production of late transcripts and shifted middle transcripts to early transcription times.
Collapse
Affiliation(s)
- Marco Ventura
- Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | | |
Collapse
|
13
|
Blatny JM, Ventura M, Rosenhaven EM, Risøen PA, Lunde M, Brüssow H, Nes IF. Transcriptional analysis of the genetic elements involved in the lysogeny/lysis switch in the temperate lactococcal bacteriophage phiLC3, and identification of the Cro-like protein ORF76. Mol Genet Genomics 2003; 269:487-98. [PMID: 12759744 DOI: 10.1007/s00438-003-0854-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Accepted: 04/25/2003] [Indexed: 11/29/2022]
Abstract
A transcriptional analysis of the lysogeny-related genes of the temperate bacteriophage Lactococcus lactis phiLC3 was performed using Northern blot hybridization during lysogeny and lytic infection by the phage. The lysogeny-related gene cluster was found to contain four promoters (P(1), P(2), Pint and P(173)), while the P(87) promoter directed transcription of orf80 and the putative gene orf87, which are located between the integrase gene and the cell lysis genes. The start sites of the transcripts were determined by primer extension. The divergently oriented lysogenic P(1) and lytic P(2) promoters located in the genetic switch region are responsible for transcription of orf286 which encodes the phage repressor, and the genes orf63 - orf76 - orf236 - orf110 - orf82 - orf57, respectively, while orf173 is transcribed from P(173). orf76 was identified as the gene encoding the Cro-like protein of phiLC3, and it was shown that ORF76 is able to bind specifically to the genetic switch region, albeit with lower affinity than does the phage repressor ORF286. ORF76 also competed with ORF286 for binding to this region. The functionality of P(1) and P(2), and their regulation by ORF286 and ORF76, was investigated using a reporter gene. In general, P(2) was a stronger promoter than P(1), but expression from both promoters, especially P(2), was regulated and modulated by flanking sequences and the presence of orf286 and orf76. ORF286 and ORF76 were both able to repress transcription from P(1) and P(2), while ORF286 was able to stimulate its own synthesis by tenfold. This work reveals the complex interplay between the regulatory elements that control the genetic switch between lysis and lysogeny in phiLC3 and other temperate phages of Lactococcus.
Collapse
Affiliation(s)
- J M Blatny
- Laboratory of Microbial Gene Technology, Department of Chemistry and Biotechnology, Agricultural University of Norway, P.O. Box 5051, 1432 As, Norway.
| | | | | | | | | | | | | |
Collapse
|
14
|
Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H. Prophage genomics. Microbiol Mol Biol Rev 2003; 67:238-76, table of contents. [PMID: 12794192 PMCID: PMC156470 DOI: 10.1128/mmbr.67.2.238-276.2003] [Citation(s) in RCA: 500] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The majority of the bacterial genome sequences deposited in the National Center for Biotechnology Information database contain prophage sequences. Analysis of the prophages suggested that after being integrated into bacterial genomes, they undergo a complex decay process consisting of inactivating point mutations, genome rearrangements, modular exchanges, invasion by further mobile DNA elements, and massive DNA deletion. We review the technical difficulties in defining such altered prophage sequences in bacterial genomes and discuss theoretical frameworks for the phage-bacterium interaction at the genomic level. The published genome sequences from three groups of eubacteria (low- and high-G+C gram-positive bacteria and gamma-proteobacteria) were screened for prophage sequences. The prophages from Streptococcus pyogenes served as test case for theoretical predictions of the role of prophages in the evolution of pathogenic bacteria. The genomes from further human, animal, and plant pathogens, as well as commensal and free-living bacteria, were included in the analysis to see whether the same principles of prophage genomics apply for bacteria living in different ecological niches and coming from distinct phylogenetical affinities. The effect of selection pressure on the host bacterium is apparently an important force shaping the prophage genomes in low-G+C gram-positive bacteria and gamma-proteobacteria.
Collapse
Affiliation(s)
- Carlos Canchaya
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | | | | | | | | |
Collapse
|