1
|
Doulabi EM, Dubois L, Löf L, Sinha TK, Harinck GM, Stålhandske P, Larsson A, Kamali-Moghaddam M. Increased levels of thymidine kinase 1 in malignant cell-derived extracellular vesicles. Biochem Biophys Rep 2024; 39:101761. [PMID: 39006942 PMCID: PMC11246012 DOI: 10.1016/j.bbrep.2024.101761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Extracellular vesicles (EVs), whose main subtypes are exosomes, microparticles, and apoptotic bodies, are secreted by all cells and harbor biomolecules such as DNA, RNA, and proteins. They function as intercellular messengers and, depending on their cargo, may have multiple roles in cancer development. Thymidine kinase 1 (TK1) is a cell cycle-dependent enzyme used as a biomarker for cell proliferation. TK1 is usually elevated in cancer patients' serum, making the enzyme a valuable tumor proliferation biomarker that strongly correlates with cancer stage and metastatic capabilities. Here, we investigated the presence of TK1 in EVs derived from three prostate cancer cell lines with various p53 mutation statuses (LNCaP, PC3, and DU145), EVs from the normal prostate epithelial cell line RWPE-1 and EVs isolated from human seminal fluid (prostasomes). We measured the TK1 activity by a real-time assay for these EVs. We demonstrated that the TK1 enzyme activity is higher in EVs derived from the malignant cell lines, with the highest activity from cells deriving from the most aggressive cancer, compared to the prostasomes and RWPE-1 EVs. The measurement of TK1 activity in EVs may be essential in future prostate cancer studies.
Collapse
Affiliation(s)
- Ehsan Manouchehri Doulabi
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, SE-751 08, Uppsala, Sweden
| | - Louise Dubois
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Liza Löf
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, SE-751 08, Uppsala, Sweden
| | - Tanay Kumar Sinha
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, SE-751 08, Uppsala, Sweden
| | - George Mickhael Harinck
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, SE-751 08, Uppsala, Sweden
| | - Per Stålhandske
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, SE-751 85, Uppsala, Sweden
- Biovica International AB, Dag Hammarskjölds väg 54B, Uppsala Science Park, SE-752 37, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, SE-751 08, Uppsala, Sweden
| |
Collapse
|
2
|
Müller GA, Müller TD. Transfer of membrane(s) matter(s)-non-genetic inheritance of (metabolic) phenotypes? Front Mol Biosci 2024; 11:1347397. [PMID: 38516184 PMCID: PMC10955475 DOI: 10.3389/fmolb.2024.1347397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/26/2024] [Indexed: 03/23/2024] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are anchored at the outer phospholipid layer of eukaryotic plasma membranes exclusively by a glycolipid. GPI-APs are not only released into extracellular compartments by lipolytic cleavage. In addition, certain GPI-APs with the glycosylphosphatidylinositol anchor including their fatty acids remaining coupled to the carboxy-terminus of their protein components are also detectable in body fluids, in response to certain stimuli, such as oxidative stress, radicals or high-fat diet. As a consequence, the fatty acid moieties of GPI-APs must be shielded from access of the aqueous environment by incorporation into membranes of extracellular vesicles or into micelle-like complexes together with (lyso)phospholipids and cholesterol. The GPI-APs released from somatic cells and tissues are transferred via those complexes or EVs to somatic as well as pluripotent stem cells with metabolic consequences, such as upregulation of glycogen and lipid synthesis. From these and additional findings, the following hypotheses are developed: i) Transfer of GPI-APs via EVs or micelle-like complexes leads to the induction of new phenotypes in the daughter cells or zygotes, which are presumably not restricted to metabolism. ii) The membrane topographies transferred by the concerted action of GPI-APs and interacting components are replicated by self-organization and self-templation and remain accessible to structural changes by environmental factors. iii) Transfer from mother cells and gametes to their daughter cells and zygotes, respectively, is not restricted to DNA and genes, but also encompasses non-genetic matter, such as GPI-APs and specific membrane constituents. iv) The intergenerational transfer of membrane matter between mammalian organisms is understood as an epigenetic mechanism for phenotypic plasticity, which does not rely on modifications of DNA and histones, but is regarded as molecular mechanism for the inheritance of acquired traits, such as complex metabolic diseases. v) The missing interest in research of non-genetic matter of inheritance, which may be interpreted in the sense of Darwin's "Gemmules" or Galton's "Stirps", should be addressed in future investigations of the philosophy of science and sociology of media.
Collapse
Affiliation(s)
- Günter A. Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Oberschleissheim, Germany
- Department of Media Studies, Media, Culture and Society, Faculty of Arts and Humanities, University Paderborn, Paderborn, Germany
| | - Timo D. Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Oberschleissheim, Germany
| |
Collapse
|
3
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins II: Intercellular Transfer of Matter (Inheritance?) That Matters. Biomolecules 2023; 13:994. [PMID: 37371574 DOI: 10.3390/biom13060994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of the plasma membrane (PM) bilayer by covalent linkage to a typical glycolipid and expressed in all eukaryotic organisms so far studied. Lipolytic release from PMs into extracellular compartments and intercellular transfer are regarded as the main (patho)physiological roles exerted by GPI-APs. The intercellular transfer of GPI-APs relies on the complete GPI anchor and is mediated by extracellular vesicles such as microvesicles and exosomes and lipid-free homo- or heteromeric aggregates, and lipoprotein-like particles such as prostasomes and surfactant-like particles, or lipid-containing micelle-like complexes. In mammalian organisms, non-vesicular transfer is controlled by the distance between donor and acceptor cells/tissues; intrinsic conditions such as age, metabolic state, and stress; extrinsic factors such as GPI-binding proteins; hormones such as insulin; and drugs such as anti-diabetic sulfonylureas. It proceeds either "directly" upon close neighborhood or contact of donor and acceptor cells or "indirectly" as a consequence of the induced lipolytic release of GPI-APs from PMs. Those displace from the serum GPI-binding proteins GPI-APs, which have retained the complete anchor, and become assembled in aggregates or micelle-like complexes. Importantly, intercellular transfer of GPI-APs has been shown to induce specific phenotypes such as stimulation of lipid and glycogen synthesis, in cultured human adipocytes, blood cells, and induced pluripotent stem cells. As a consequence, intercellular transfer of GPI-APs should be regarded as non-genetic inheritance of (acquired) features between somatic cells which is based on the biogenesis and transmission of matter such as GPI-APs and "membrane landscapes", rather than the replication and transmission of information such as DNA. Its operation in mammalian organisms remains to be clarified.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD) at the Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD) at the Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
4
|
Zijlstra C, Stoorvogel W. Prostasomes as a source of diagnostic biomarkers for prostate cancer. J Clin Invest 2016; 126:1144-51. [PMID: 27035806 DOI: 10.1172/jci81128] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
New biomarkers are needed to improve the diagnosis of prostate cancer. Similarly to healthy cells, prostate epithelial cancer cells produce extracellular vesicles (prostasomes) that can be isolated from seminal fluid, urine, and blood. Prostasomes contain ubiquitously expressed and prostate-specific membrane and cytosolic proteins, as well as RNA. Both quantitative and qualitative changes in protein, mRNA, long noncoding RNA, and microRNA composition of extracellular vesicles isolated from prostate cancer patients have been reported. In general, however, the identified extracellular vesicle-associated single-marker molecules or combinations of marker molecules require confirmation in large cohorts of patients to validate their specificity and sensitivity as prostate cancer markers. Complications include variable factors such as prostate manipulation and urine flux, as well as masking by ubiquitously expressed free molecules and extracellular vesicles from tissues other than the prostate. Herein, we propose that the most promising methods include comprehensive combinational screening for (mutant) RNA in prostasomes that are immunoisolated with antibodies targeting prostate-specific epitopes.
Collapse
|
5
|
Dubois L, Stridsberg M, Kharaziha P, Chioureas D, Meersman N, Panaretakis T, Ronquist KG. Malignant cell-derived extracellular vesicles express different chromogranin epitopes compared to prostasomes. Prostate 2015; 75:1063-73. [PMID: 25783430 DOI: 10.1002/pros.22990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/05/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Prostasomes are nanosized extracellular vesicles exocytosed by prostate epithelial cells. They have been assigned many roles propitious to sperm in favor of fertilization. Prostatic cancer cells can also produce and secrete extracellular vesicles. METHODS We assessed using ELISA, the surface expression of chromogranin proproteins on prostasomes and malignant extracellular vesicles of four different prostate cancer cell-lines, two hormone sensitive and two hormone refractory. We used a panel of chromogranin A and chromogranin B antibodies against peptides in-between hypothetical cleavage sites along the proproteins. RESULTS A diverging pattern of chromogranin peptides was apparent when comparing prostasomes and malignant extracellular vesicles indicating a phenotypical change. We also compared western blot patterns (prostasomes and malignant extracellular vesicles) for selected antibodies that displayed high absorbances in the ELISA. Western blot analyses revealed various cleavage patterns of those proproteins that were analyzed in prostasomes and extracellular vesicles. CONCLUSION Chromogranins are constituents of not only prostasomes but also of malignant prostate cell-derived extracellular vesicles with different amino acid sequences exposed at the membrane surface giving rise to a mosaic pattern. These findings may be of relevance for designing new assays for detection or even possible treatment of prostate cancers.
Collapse
Affiliation(s)
- Louise Dubois
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Mats Stridsberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Pedram Kharaziha
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Dimitris Chioureas
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - K Göran Ronquist
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Berretta R, Moscato P. Cancer biomarker discovery: the entropic hallmark. PLoS One 2010; 5:e12262. [PMID: 20805891 PMCID: PMC2923618 DOI: 10.1371/journal.pone.0012262] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 06/26/2010] [Indexed: 12/29/2022] Open
Abstract
Background It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-througput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases.
Collapse
Affiliation(s)
- Regina Berretta
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Information Based Medicine Program, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Information Based Medicine Program, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
- Australian Research Council Centre of Excellence in Bioinformatics, Callaghan, New South Wales, Australia
- * E-mail:
| |
Collapse
|
7
|
Silanikove N. Milk lipoprotein membranes and their imperative enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 606:143-61. [PMID: 18183928 DOI: 10.1007/978-0-387-74087-4_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There are two main sources of lipoprotein membranes in milk: the relatively well-defined milk fat globule membrane (MFGM) that covers the milk fat globules, and the much less attended lipoprotein source, in the form of vesicles floating in the milk serum. We challenge the common view that the milk serum lipoprotein membrane (MSLM) is secondly derived from the MFGM and present a different view suggesting that it represents Golgi-derived vesicles that are released intact to milk. The potential role of enzymes attached to the MSLM and MFGM is considered in detail for select ubiquitously expressed enzymes.
Collapse
Affiliation(s)
- Nissim Silanikove
- Agricultural Research Organization, Institute of Animal Science, Bet Dagan, 50-250, Israel.
| |
Collapse
|