1
|
Jiang WC, Hsu WY, Ao-Ieong WS, Wang CY, Wang J, Yet SF. A novel engineered vascular construct of stem cell-laden 3D-printed PGSA scaffold enhances tissue revascularization. Biofabrication 2021; 13. [PMID: 34233298 DOI: 10.1088/1758-5090/ac1259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/07/2021] [Indexed: 12/26/2022]
Abstract
Development of transplantable engineered tissue has been hampered by lacking vascular network within the engineered tissue. Three-dimensional (3D) printing has emerged as a new technology with great potential in fabrication and customization of geometric microstructure. In this study, utilizing digital light processing system, we manufactured a recently designed novel 3D architecture scaffold with poly(glycerol sebacate) acrylate (PGSA). Vascular construct was subsequently generated by seeding stem cells within this scaffold. PGSA provided inductive substrate in terms of supporting three-germ layer differentiation of embryonic stem cells (ESCs) and also promoting ESCs-derived vascular progenitor cells (VPCs) differentiation into endothelial cells (ECs). Furthermore, the differentiation efficiency of VPCs into ECs on PGSA was much higher than that on collagen IV or fibronectin. The results from seeding VPCs in the rotating hexagonal PGSA scaffold suggest that this architectural framework is highly efficient for cell engraftment in 3D structures. After long-term suspension culture of the VPCs in scaffold under directed EC differentiation condition, VPC-differentiated ECs were populated in the scaffold and expressed EC markers. Transplantation of the vascular construct in mice resulted in formation of new vascular network and integration of the microvasculature within the scaffold into the existing vasculature of host tissue. Importantly, in a mouse model of wound healing, ECs from the transplanted vascular construct directly contributed to revascularization and enhanced blood perfusion at the injured site. Collectively, this transplantable vascular construct provides an innovative alternative therapeutic strategy for vascular tissue engineering.
Collapse
Affiliation(s)
- Wei-Cheng Jiang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Wan-Yuan Hsu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Wai-Sam Ao-Ieong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Yen Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
2
|
Łabowska MB, Cierluk K, Jankowska AM, Kulbacka J, Detyna J, Michalak I. A Review on the Adaption of Alginate-Gelatin Hydrogels for 3D Cultures and Bioprinting. MATERIALS (BASEL, SWITZERLAND) 2021; 14:858. [PMID: 33579053 PMCID: PMC7916803 DOI: 10.3390/ma14040858] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/12/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Sustaining the vital functions of cells outside the organism requires strictly defined parameters. In order to ensure their optimal growth and development, it is necessary to provide a range of nutrients and regulators. Hydrogels are excellent materials for 3D in vitro cell cultures. Their ability to retain large amounts of liquid, as well as their biocompatibility, soft structures, and mechanical properties similar to these of living tissues, provide appropriate microenvironments that mimic extracellular matrix functions. The wide range of natural and synthetic polymeric materials, as well as the simplicity of their physico-chemical modification, allow the mechanical properties to be adjusted for different requirements. Sodium alginate-based hydrogel is a frequently used material for cell culture. The lack of cell-interactive properties makes this polysaccharide the most often applied in combination with other materials, including gelatin. The combination of both materials increases their biological activity and improves their material properties, making this combination a frequently used material in 3D printing technology. The use of hydrogels as inks in 3D printing allows the accurate manufacturing of scaffolds with complex shapes and geometries. The aim of this paper is to provide an overview of the materials used for 3D cell cultures, which are mainly alginate-gelatin hydrogels, including their properties and potential applications.
Collapse
Affiliation(s)
- Magdalena B. Łabowska
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-370 Wroclaw, Poland; (M.B.Ł); (A.M.J.)
| | - Karolina Cierluk
- Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Agnieszka M. Jankowska
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-370 Wroclaw, Poland; (M.B.Ł); (A.M.J.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Jerzy Detyna
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-370 Wroclaw, Poland; (M.B.Ł); (A.M.J.)
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-370 Wroclaw, Poland;
| |
Collapse
|
3
|
Priester C, MacDonald A, Dhar M, Bow A. Examining the Characteristics and Applications of Mesenchymal, Induced Pluripotent, and Embryonic Stem Cells for Tissue Engineering Approaches across the Germ Layers. Pharmaceuticals (Basel) 2020; 13:E344. [PMID: 33114710 PMCID: PMC7692540 DOI: 10.3390/ph13110344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
The field of regenerative medicine utilizes a wide array of technologies and techniques for repairing and restoring function to damaged tissues. Among these, stem cells offer one of the most potent and promising biological tools to facilitate such goals. Implementation of mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) offer varying advantages based on availability and efficacy in the target tissue. The focus of this review is to discuss characteristics of these three subset stem cell populations and examine their utility in tissue engineering. In particular, the development of therapeutics that utilize cell-based approaches, divided by germinal layer to further assess research targeting specific tissues of the mesoderm, ectoderm, and endoderm. The combinatorial application of MSCs, iPSCs, and ESCs with natural and synthetic scaffold technologies can enhance the reparative capacity and survival of implanted cells. Continued efforts to generate more standardized approaches for these cells may provide improved study-to-study variations on implementation, thereby increasing the clinical translatability of cell-based therapeutics. Coupling clinically translatable research with commercially oriented methods offers the potential to drastically advance medical treatments for multiple diseases and injuries, improving the quality of life for many individuals.
Collapse
Affiliation(s)
- Caitlin Priester
- Department of Animal Science, University of Tennessee, Knoxville, TN 37998, USA;
| | - Amber MacDonald
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; (A.M.); (M.D.)
| | - Madhu Dhar
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; (A.M.); (M.D.)
| | - Austin Bow
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA; (A.M.); (M.D.)
| |
Collapse
|
4
|
Zou Z, Zhou X, Zhang R, Zhang Q, Jiang S, Xu C, Zhang R, Xie T, Zhu H, Gong P, Zhang D, Ma H, Liao L, Dong J. Lin28a up-regulation is associated with the formation of restenosis via promoting proliferation and migration of vascular smooth muscle cells. J Cell Mol Med 2020; 24:9682-9691. [PMID: 32710472 PMCID: PMC7520293 DOI: 10.1111/jcmm.15506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/16/2020] [Accepted: 05/29/2020] [Indexed: 01/16/2023] Open
Abstract
To explore the potential role of Lin28a in the development of restenosis after percutaneous transluminal angioplasty, double‐balloon injury surgery and mono‐balloon injury surgery were used to establish restenosis and atherosclerosis models, respectively, so as to better distinguish restenosis from atherosclerotic lesions. Immunohistochemical analysis revealed that significantly higher expression of Lin28a was observed in the iliac arteries of restenosis plaques than that of atherosclerosis plaques. Immunofluorescence studies showed the colocalization of Lin28a with α‐smooth muscle actin in restenosis plaques, rather than in atherosclerosis plaques, which suggested that Lin28a might be related to the unique behaviour of vascular smooth muscle cells (VSMCs) in restenosis. To further confirm above hypothesis, Lin28a expression was up‐regulated by transfection of Lenti‐Lin28a and inhibited by Lenti‐Lin28a‐shRNA transfection in cultured VSMCs, and then the proliferation and migration capability of VSMCs were detected by EdU and Transwell assays, respectively. Results showed that the proliferation and migration of VSMCs were significantly increased in accordance with the up‐regulation of Lin28a expression, while above behaviours of VSMCs were significantly suppressed after inhibiting the expression of Lin28a. In conclusion, the up‐regulation of Lin28a exerts its modulatory effect on VSMCs’ proliferation and migration, which may play a critical role in contributing to pathological formation of restenosis.
Collapse
Affiliation(s)
- Zhiwei Zou
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Xiaojun Zhou
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Department of Endocrinology and Metabology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruzhen Zhang
- Department of Endocrinology and Metabology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian Zhang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| | - Shan Jiang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| | - Chunmei Xu
- Department of Endocrinology and Metabology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Zhang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| | - Tianyue Xie
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Department of Endocrinology and Metabology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huangao Zhu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| | - Piyun Gong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| | - Dongmei Zhang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| | - Huimei Ma
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.,Department of Endocrinology and Metabology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province medicine and health, Jinan, China
| |
Collapse
|