1
|
Xiao Q, Shi J, Wang L, Zhao G, Zhang Y. Coupling genome-wide continuous perturbation with biosensor screening reveals the potential targets in yeast isopentanol synthesis network. Synth Syst Biotechnol 2025; 10:452-462. [PMID: 39917769 PMCID: PMC11799893 DOI: 10.1016/j.synbio.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 02/09/2025] Open
Abstract
The increasing consumption of fossil fuels is contributing to global resource depletion and environmental pollution. Branched-chain higher alcohols, such as isopentanol and isobutanol, have attracted significant attention as next-generation biofuels. Biofuel production through microbial fermentation offers a green, sustainable, and renewable alternative to chemical synthesis. While enhanced production of isopentanol has been achieved in a variety of chassis, the fermentation yield has not yet reached levels suitable for industrial-scale production. In this study, we employed a continuous perturbation tool to construct a genome-scale perturbation library, combined with an isopentanol biosensor to screen for high-yielding mutants. We identified five high-yielding mutants, each exhibiting an increased glucose conversion rate and isopentanol titer. The F2 strain, in particular, achieved an isopentanol titer of 1.57 ± 0.014 g/L and a yield of 14.04 ± 0.251 mg/g glucose (10% glucose), surpassing the highest values reported to date in engineered Saccharomyces cerevisiae. Systematic transcriptome analysis of the isopentanol synthesis, glycolysis, glycerol metabolism, and ethanol synthesis pathways revealed that MPC, OAC1, BAT2, GUT2, PDC6, and ALD4 are linked to efficient isopentanol production. Further analysis of differentially expressed genes (DEGs) identified 17 and 12 co-expressed DEGs (co-DEGs) in all mutants and the two second-round mutants, respectively. In addition, we validated the knockout or overexpression of key co-DEGs. Our results confirmed the critical roles of HOM3 and DIP5 in isopentanol production, along with genes associated with the aerobic respiratory chain (SDH3, CYT1, COX7, ROX1, and ATG41) and cofactor balance (BNA2 and NDE1). Additionally, functional analysis of the co-DEGs revealed that MAL33 is associated with the synthesis of branched-chain higher alcohols, expanding the intracellular metabolic network and offering new possibilities for green, cost-effective biofuel production.
Collapse
Affiliation(s)
- Qi Xiao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jingjing Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Lixian Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Guoping Zhao
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
2
|
Nawab S, Zhang Y, Ullah MW, Lodhi AF, Shah SB, Rahman MU, Yong YC. Microbial host engineering for sustainable isobutanol production from renewable resources. Appl Microbiol Biotechnol 2024; 108:33. [PMID: 38175234 DOI: 10.1007/s00253-023-12821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Due to the limited resources and environmental problems associated with fossil fuels, there is a growing interest in utilizing renewable resources for the production of biofuels through microbial fermentation. Isobutanol is a promising biofuel that could potentially replace gasoline. However, its production efficiency is currently limited by the use of naturally isolated microorganisms. These naturally isolated microorganisms often encounter problems such as a limited range of substrates, low tolerance to solvents or inhibitors, feedback inhibition, and an imbalanced redox state. This makes it difficult to improve their production efficiency through traditional process optimization methods. Fortunately, recent advancements in genetic engineering technologies have made it possible to enhance microbial hosts for the increased production of isobutanol from renewable resources. This review provides a summary of the strategies and synthetic biology approaches that have been employed in the past few years to improve naturally isolated or non-natural microbial hosts for the enhanced production of isobutanol by utilizing different renewable resources. Furthermore, it also discusses the challenges that are faced by engineered microbial hosts and presents future perspectives to enhancing isobutanol production. KEY POINTS: • Promising potential of isobutanol to replace gasoline • Engineering of native and non-native microbial host for isobutanol production • Challenges and opportunities for enhanced isobutanol production.
Collapse
Affiliation(s)
- Said Nawab
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - YaFei Zhang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Adil Farooq Lodhi
- Department of Microbiology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Syed Bilal Shah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
3
|
Improvement of Fusel Alcohol Production by Engineering of the Yeast Branched-Chain Amino Acid Aminotransaminase. Appl Environ Microbiol 2022; 88:e0055722. [PMID: 35699439 PMCID: PMC9275217 DOI: 10.1128/aem.00557-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Branched-chain higher alcohols (BCHAs), or fusel alcohols, including isobutanol, isoamyl alcohol, and active amyl alcohol, are useful compounds in several industries. The yeast Saccharomyces cerevisiae can synthesize these compounds via the metabolic pathways of branched-chain amino acids (BCAAs). Branched-chain amino acid aminotransaminases (BCATs) are the key enzymes for BCHA production via the Ehrlich pathway of BCAAs. BCATs catalyze a bidirectional transamination reaction between branched-chain α-keto acids (BCKAs) and BCAAs. In S. cerevisiae, there are two BCAT isoforms, Bat1 and Bat2, which are encoded by the genes BAT1 and BAT2. Although many studies have shown the effects of deletion or overexpression of BAT1 and BAT2 on BCHA production, there have been no reports on the enhancement of BCHA production by functional variants of BCATs. Here, to improve BCHA productivity, we designed variants of Bat1 and Bat2 with altered enzyme activity by using in silico computational analysis: the Gly333Ser and Gly333Trp Bat1 and corresponding Gly316Ser and Gly316Trp Bat2 variants, respectively. When expressed in S. cerevisiae cells, most of these variants caused a growth defect in minimal medium. Interestingly, the Gly333Trp Bat1 and Gly316Ser Bat2 variants achieved 18.7-fold and 17.4-fold increases in isobutanol above that for the wild-type enzyme, respectively. The enzyme assay revealed that the catalytic activities of all four BCAT variants were lower than that of the wild-type enzyme. Our results indicate that the decreased BCAT activity enhanced BCHA production by reducing BCAA biosynthesis, which occurs via a pathway that directly competes with BCHA production. IMPORTANCE Recently, several studies have attempted to increase the production of branched-chain higher alcohols (BCHAs) in the yeast Saccharomyces cerevisiae. The key enzymes for BCHA biosynthesis in S. cerevisiae are the branched-chain amino acid aminotransaminases (BCATs) Bat1 and Bat2. Deletion or overexpression of the genes encoding BCATs has an impact on the production of BCHAs; however, amino acid substitution variants of Bat1 and Bat2 that could affect enzymatic properties—and ultimately BCHA productivity—have not been fully studied. By using in silico analysis, we designed variants of Bat1 and Bat2 and expressed them in yeast cells. We found that the engineered BCATs decreased catalytic activities and increased BCHA production. Our approach provides new insight into the functions of BCATs and will be useful in the future construction of enzymes optimized for high-level production of BCHAs.
Collapse
|
4
|
Toyokawa Y, Koonthongkaew J, Takagi H. An overview of branched-chain amino acid aminotransferases: functional differences between mitochondrial and cytosolic isozymes in yeast and human. Appl Microbiol Biotechnol 2021; 105:8059-8072. [PMID: 34622336 DOI: 10.1007/s00253-021-11612-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 01/07/2023]
Abstract
Branched-chain amino acid aminotransferase (BCAT) catalyzes bidirectional transamination in the cell between branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) and branched-chain α-keto acids (BCKAs; α-ketoisovalerate, α-ketoisocaproate, and α-keto-β-methylvalerate). Eukaryotic cells contain two types of paralogous BCATs: mitochondrial BCAT (BCATm) and cytosolic BCAT (BCATc). Both isozymes have identical enzymatic functions, so they have long been considered to perform similar physiological functions in the cells. However, many studies have gradually revealed the differences in physiological functions and regulatory mechanisms between them. In this article, we present overviews of BCATm and BCATc in both yeast and human. We also introduce BCAT variants found natively or constructed artificially, which could have significant implications for research into the relationship between the primary structures and protein functions of BCATs. KEY POINTS: • BCAT catalyzes bidirectional transamination in the cell between BCAAs and BCKAs. • BCATm and BCATc are different in the metabolic roles and regulatory mechanisms. • BCAT variants offer insight into a relationship between the structure and function.
Collapse
Affiliation(s)
- Yoichi Toyokawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Jirasin Koonthongkaew
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
5
|
Biorefinery: The Production of Isobutanol from Biomass Feedstocks. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Environmental issues have prompted the vigorous development of biorefineries that use agricultural waste and other biomass feedstock as raw materials. However, most current biorefinery products are cellulosic ethanol. There is an urgent need for biorefineries to expand into new bioproducts. Isobutanol is an important bulk chemical with properties that are close to gasoline, making it a very promising biofuel. The use of microorganisms to produce isobutanol has been extensively studied, but there is still a considerable gap to achieving the industrial production of isobutanol from biomass. This review summarizes current metabolic engineering strategies that have been applied to biomass isobutanol production and recent advances in the production of isobutanol from different biomass feedstocks.
Collapse
|
6
|
Wang B, Guo Y, Xu Z, Tu R, Wang Q. Genomic, transcriptomic, and metabolic characterizations of Escherichia coli adapted to branched-chain higher alcohol tolerance. Appl Microbiol Biotechnol 2020; 104:4171-4184. [PMID: 32189046 DOI: 10.1007/s00253-020-10507-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/15/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Microbial-produced branched-chain higher alcohols (BCHAs), such as isopropanol, isobutanol, and isopentanol in Escherichia coli, have emerged as promising alternative biofuels under development. Elucidating and improving the tolerance of E. coli to BCHAs are important issues for microbial production of BCHAs due to their physiological inhibitory effect. Previous works aimed at understanding the genetic basis of E. coli tolerance to BCHAs with a comparative genome, reverse engineering, or transcriptome approach have gained some important insights into the mechanism of tolerance. However, investigation on BCHA tolerance from the whole-genomic, transcriptomic, and metabolic levels via a systematic approach has not yet been completely elucidated. Here, in this study, genomic, transcriptomic, and 13C-metabolic flux analyses (13C-MFA) of an evolved E. coli strain adapted to BCHA tolerance were conducted. Genome mutation of negative regulation factor (rssB, acrB, and clpX) of RpoS level suggested upregulation of RpoS activity in BCHA tolerance of E. coli. From a more detailed perspective, enhanced energy metabolism was observed to be the main characteristic of E. coli strain tolerant to BCHAs. Enhanced energy metabolism has been achieved through several routes, which included redistribution of the central carbon metabolism, upregulation of the energy generation machinery, and facilitating the operation of electron transferring chain. Evidence of multiple solutions of genotype modification toward BCHA tolerance was also revealed through comparative analysis of previous works from different groups.
Collapse
Affiliation(s)
- Baowei Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Yufeng Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
| | - Zixiang Xu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
| | - Ran Tu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
| | - Qinhong Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China.
| |
Collapse
|
7
|
Zhang Y, Zhang X, Xiao S, Qi W, Xu J, Yuan Z, Wang Z. Engineering Corynebacterium glutamicum Mutants for 3-Methyl-1-butanol Production. Biochem Genet 2019; 57:443-454. [PMID: 30644007 DOI: 10.1007/s10528-019-09906-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/04/2019] [Indexed: 11/30/2022]
Abstract
3-Methyl-1-butanol (3MB) is a promising biofuel that can be produced from 2-ketoisocaproate via the common L-leucine biosynthesis pathway. Corynebacterium glutamicum was chosen as a host bacterium because of its strong resistance to isobutanol. In the current study, several strategies were designed to overproduce 3MB in C. glutamicum through a non-fermentation pathway. The engineered C. glutamicum mutant was obtained by silencing the pyruvate dehydrogenase gene complex (aceE) and deleting the lactic dehydrogenase gene (ldh), followed by mutagenesis with diethyl sulfate (DES) and selection with Fmoc-3-4-thiazolyl-L-alanine (FTA). The mutant could produce 659 mg/L of 3MB after 12 h of incubation. To facilitate carbon flux to 3MB biosynthesis, the engineered recombinant was also constructed without branched-chain acid aminotransferase (ilvE) activity by deleting the ilvE gene. This recombinant could produce 697 mg/L of 3MB after 12 h of incubation.
Collapse
Affiliation(s)
- Yu Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, China
| | - Xiaohuan Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiyuan Xiao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Qi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China.
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, China.
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, China.
| | - Jingliang Xu
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, 450001, China.
| | - Zhenhong Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, China
| |
Collapse
|
8
|
Torres-Salas P, Bernal V, López-Gallego F, Martínez-Crespo J, Sánchez-Murcia PA, Barrera V, Morales-Jiménez R, García-Sánchez A, Mañas-Fernández A, Seoane JM, Sagrera Polo M, Miranda JD, Calvo J, Huertas S, Torres JL, Alcalde-Bascones A, González-Barrera S, Gago F, Morreale A, González-Barroso MDM. Engineering Erg10 Thiolase from Saccharomyces cerevisiae as a Synthetic Toolkit for the Production of Branched-Chain Alcohols. Biochemistry 2018; 57:1338-1348. [PMID: 29360348 DOI: 10.1021/acs.biochem.7b01186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thiolases catalyze the condensation of acyl-CoA thioesters through the Claisen condensation reaction. The best described enzymes usually yield linear condensation products. Using a combined computational/experimental approach, and guided by structural information, we have studied the potential of thiolases to synthesize branched compounds. We have identified a bulky residue located at the active site that blocks proper accommodation of substrates longer than acetyl-CoA. Amino acid replacements at such a position exert effects on the activity and product selectivity of the enzymes that are highly dependent on a protein scaffold. Among the set of five thiolases studied, Erg10 thiolase from Saccharomyces cerevisiae showed no acetyl-CoA/butyryl-CoA branched condensation activity, but variants at position F293 resulted the most active and selective biocatalysts for this reaction. This is the first time that a thiolase has been engineered to synthesize branched compounds. These novel enzymes enrich the toolbox of combinatorial (bio)chemistry, paving the way for manufacturing a variety of α-substituted synthons. As a proof of concept, we have engineered Clostridium's 1-butanol pathway to obtain 2-ethyl-1-butanol, an alcohol that is interesting as a branched model compound.
Collapse
Affiliation(s)
- Pamela Torres-Salas
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Vicente Bernal
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Fernando López-Gallego
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain.,CIC biomaGUNE , Paseo de Miramón 182, 20014 San Sebastián, Spain.,ARAID Foundation , Zaragoza, Spain
| | - Javier Martínez-Crespo
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Pedro A Sánchez-Murcia
- Departamento de Ciencias Biomédicas and "Unidad Asociada IQM-CSIC", Universidad de Alcalá , E-28805 Alcalá de Henares, Madrid, Spain
| | - Victor Barrera
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Rocío Morales-Jiménez
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Ana García-Sánchez
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Aurora Mañas-Fernández
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - José M Seoane
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Marta Sagrera Polo
- Centro de Investigaciones Biológicas (CSIC) , Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Juande D Miranda
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Javier Calvo
- CIC biomaGUNE , Paseo de Miramón 182, 20014 San Sebastián, Spain
| | - Sonia Huertas
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - José L Torres
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Ana Alcalde-Bascones
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Sergio González-Barrera
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | - Federico Gago
- Departamento de Ciencias Biomédicas and "Unidad Asociada IQM-CSIC", Universidad de Alcalá , E-28805 Alcalá de Henares, Madrid, Spain
| | - Antonio Morreale
- Centro de Tecnología de Repsol, REPSOL S. A. Calle Agustín de Betancourt , s/n, 28935 Móstoles, Madrid, Spain
| | | |
Collapse
|
9
|
Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng 2013; 16:1-10. [DOI: 10.1016/j.ymben.2012.11.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 11/15/2012] [Accepted: 11/19/2012] [Indexed: 01/06/2023]
|
10
|
Chatsurachai S, Furusawa C, Shimizu H. An in silico platform for the design of heterologous pathways in nonnative metabolite production. BMC Bioinformatics 2012; 13:93. [PMID: 22578364 PMCID: PMC3506926 DOI: 10.1186/1471-2105-13-93] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/24/2012] [Indexed: 02/04/2023] Open
Abstract
Background Microorganisms are used as cell factories to produce valuable compounds in pharmaceuticals, biofuels, and other industrial processes. Incorporating heterologous metabolic pathways into well-characterized hosts is a major strategy for obtaining these target metabolites and improving productivity. However, selecting appropriate heterologous metabolic pathways for a host microorganism remains difficult owing to the complexity of metabolic networks. Hence, metabolic network design could benefit greatly from the availability of an in silico platform for heterologous pathway searching. Results We developed an algorithm for finding feasible heterologous pathways by which nonnative target metabolites are produced by host microorganisms, using Escherichia coli, Corynebacterium glutamicum, and Saccharomyces cerevisiae as templates. Using this algorithm, we screened heterologous pathways for the production of all possible nonnative target metabolites contained within databases. We then assessed the feasibility of the target productions using flux balance analysis, by which we could identify target metabolites associated with maximum cellular growth rate. Conclusions This in silico platform, designed for targeted searching of heterologous metabolic reactions, provides essential information for cell factory improvement.
Collapse
Affiliation(s)
- Sunisa Chatsurachai
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | |
Collapse
|