1
|
Monitoring of transfer and internalization of Escherichia coli from inoculated knives to fresh cut cucumbers (Cucumis sativus L.) using bioluminescence imaging. Sci Rep 2021; 11:11425. [PMID: 34075080 PMCID: PMC8169731 DOI: 10.1038/s41598-021-90584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/14/2021] [Indexed: 11/19/2022] Open
Abstract
Slicing may cause the risk of cross-contamination in cucumber. In this study, knife inoculated with Escherichia coli (E. coli) was used to cut cucumbers, bioluminescence imaging (BLI) was used to visualize the possible distribution and internalization of E. coli during cutting and storage. Results showed that the initial two slices resulted in greater bacterial transfer. The bacterial transfer exhibited a fluctuating decay trend, E. coli was most distributed at the initial cutting site. The contaminated area on the surface of cucumber slices decreased during the storage period, which can be attributed to the death and internalization of E. coli. The maximum internalization distance of E. coli was about 2–3 mm, and did not further spread after 30 min from inoculation. Hence, our results provide useful information for risk management in both home and industrial environment.
Collapse
|
2
|
Avci P, Karimi M, Sadasivam M, Antunes-Melo WC, Carrasco E, Hamblin MR. In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence 2017; 9:28-63. [PMID: 28960132 PMCID: PMC6067836 DOI: 10.1080/21505594.2017.1371897] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Traditional methods of localizing and quantifying the presence of pathogenic microorganisms in living experimental animal models of infections have mostly relied on sacrificing the animals, dissociating the tissue and counting the number of colony forming units. However, the discovery of several varieties of the light producing enzyme, luciferase, and the genetic engineering of bacteria, fungi, parasites and mice to make them emit light, either after administration of the luciferase substrate, or in the case of the bacterial lux operon without any exogenous substrate, has provided a new alternative. Dedicated bioluminescence imaging (BLI) cameras can record the light emitted from living animals in real time allowing non-invasive, longitudinal monitoring of the anatomical location and growth of infectious microorganisms as measured by strength of the BLI signal. BLI technology has been used to follow bacterial infections in traumatic skin wounds and burns, osteomyelitis, infections in intestines, Mycobacterial infections, otitis media, lung infections, biofilm and endodontic infections and meningitis. Fungi that have been engineered to be bioluminescent have been used to study infections caused by yeasts (Candida) and by filamentous fungi. Parasitic infections caused by malaria, Leishmania, trypanosomes and toxoplasma have all been monitored by BLI. Viruses such as vaccinia, herpes simplex, hepatitis B and C and influenza, have been studied using BLI. This rapidly growing technology is expected to continue to provide much useful information, while drastically reducing the numbers of animals needed in experimental studies.
Collapse
Affiliation(s)
- Pinar Avci
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA
| | - Mahdi Karimi
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,c Department of Medical Nanotechnology , School of Advanced Technologies in Medicine, Iran University of Medical Sciences , Tehran , Iran.,d Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran , Iran
| | - Magesh Sadasivam
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,e Amity Institute of Nanotechnology, Amity University Uttar Pradesh , Noida , India
| | - Wanessa C Antunes-Melo
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,f University of Sao Paulo , Sao Carlos-SP , Brazil
| | - Elisa Carrasco
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,g Department of Biosciences , Durham University , Durham , United Kingdom
| | - Michael R Hamblin
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA.,h Harvard-MIT Division of Health Sciences and Technology , Cambridge , MA , USA
| |
Collapse
|
3
|
Tsarkova AS, Kaskova ZM, Yampolsky IV. A Tale Of Two Luciferins: Fungal and Earthworm New Bioluminescent Systems. Acc Chem Res 2016; 49:2372-2380. [PMID: 27696815 DOI: 10.1021/acs.accounts.6b00322] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bioluminescence, the ability of a living organism to produce light through a chemical reaction, is one of Nature's most amazing phenomena widely spread among marine and terrestrial species. There are various different mechanisms underlying the emission of "cold light", but all involve a small molecule, luciferin, that provides energy for light-generation upon oxidation, and a protein, luciferase, that catalyzes the reaction. Different species often use different proteins and substrates in the process, which suggests that the ability to produce light evolved independently several times throughout evolution. Currently, it is estimated that there are more than 30 different mechanisms of bioluminescence. Even though the chemical foundation underlying the bioluminescence phenomenon is by now generally understood, only a handful of luciferins have been isolated and characterized. Today, the known bioluminescence reactions are used as indispensable analytical tools in various fields of science and technology. A pressing need for new bioluminescent analytical techniques with a wider range of practical applications stimulates the search and chemical studies of new bioluminescent systems. In the past few years two such systems were unraveled: those of the earthworms Fridericia heliota and the higher fungi. The luciferins of these two systems do not share structural similarity with the previously known ones. This Account will survey structure elucidation of the novel luciferins and identification of their mechanisms of action. Fridericia luciferin is a key component of a novel ATP-dependent bioluminescence system. Structural studies were performed on 0.005 mg of natural substance and revealed its unusual extensively modified peptidic nature. Elucidation of Fridericia oxyluciferin revealed that oxidative decarboxylation of a lysine fragment of luciferin supplies energy for light generation, while a fluorescent CompX moiety remains intact and serves as a light emitter. Along with luciferin, a number of its natural analogs were found in the extracts of worm biomass. They occurred to be highly unusual modified peptides comprising a set of amino acids, including threonine, aminobutyric acid, homoarginine, unsymmetrical N,N-dimethylarginine and extensively modified tyrosine. These natural compounds represent a unique peptide chemistry found in terrestrial animals and raise novel questions concerning their biosynthetic origin. Also in this Account we discuss identification of the luciferin of higher fungi 3-hydroxyhispidin which is biosynthesized by oxidation of the precursor hispidin, a known fungal and plant secondary metabolite. Furthermore, it was shown that 3-hydroxyhispidin leads to bioluminescence in extracts from four diverse genera of luminous fungi, thus suggesting a common biochemical mechanism for fungal bioluminescence.
Collapse
Affiliation(s)
- Aleksandra S. Tsarkova
- Institute
of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya
16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Zinaida M. Kaskova
- Institute
of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya
16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Ilia V. Yampolsky
- Institute
of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya
16/10, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| |
Collapse
|
4
|
Jiang T, Ke B, Chen H, Wang W, Du L, Yang K, Li M. Bioluminescent Probe for Detecting Mercury(II) in Living Mice. Anal Chem 2016; 88:7462-5. [PMID: 27412583 DOI: 10.1021/acs.analchem.6b02200] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel bioluminescence probe for mercury(II) was obtained on the basis of the distinct deprotection reaction of dithioacetal to decanal, so as to display suitable sensitivity and selectivity toward mercury(II) over other ions with bacterial bioluminescence signal. These experimental results indicated such a probe was a novel promising method for mercury(II) bioluminescence imaging in environmental and life sciences ex vivo and in vivo.
Collapse
Affiliation(s)
- Tianyu Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University , Jinan, Shandong 250012, China
| | - Bowen Ke
- Laboratory of Anaesthesiology and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University , Chengdu, Sichuan 610041, China
| | - Hui Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University , Jinan, Shandong 250012, China.,Laboratory of Anaesthesiology and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University , Chengdu, Sichuan 610041, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100190, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University , Jinan, Shandong 250012, China
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100190, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University , Jinan, Shandong 250012, China
| |
Collapse
|
5
|
Vrisman CM, Deblais L, Rajashekara G, Miller SA. Differential Colonization Dynamics of Cucurbit Hosts by Erwinia tracheiphila. PHYTOPATHOLOGY 2016; 106:684-692. [PMID: 26926487 DOI: 10.1094/phyto-11-15-0289-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bacterial wilt is one of the most destructive diseases of cucurbits in the Midwestern and Northeastern United States. Although the disease has been studied since 1900, host colonization dynamics remain unclear. Cucumis- and Cucurbita-derived strains exhibit host preference for the cucurbit genus from which they were isolated. We constructed a bioluminescent strain of Erwinia tracheiphila (TedCu10-BL#9) and colonization of different cucurbit hosts was monitored. At the second-true-leaf stage, Cucumis melo plants were inoculated with TedCu10-BL#9 via wounded leaves, stems, and roots. Daily monitoring of colonization showed bioluminescent bacteria in the inoculated leaf and petiole beginning 1 day postinoculation (DPI). The bacteria spread to roots via the stem by 2 DPI, reached the plant extremities 4 DPI, and the plant wilted 6 DPI. However, Cucurbita plants inoculated with TedCu10-BL#9 did not wilt, even at 35 DPI. Bioluminescent bacteria were detected 6 DPI in the main stem of squash and pumpkin plants, which harbored approximately 10(4) and 10(1) CFU/g, respectively, of TedCu10-BL#9 without symptoms. Although significantly less systemic plant colonization was observed in nonpreferred host Cucurbita plants compared with preferred hosts, the mechanism of tolerance of Cucurbita plants to E. tracheiphila strains from Cucumis remains unknown.
Collapse
Affiliation(s)
- Cláudio M Vrisman
- First, second, and fourth authors: Department of Plant Pathology, and second and third authors: Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691
| | - Loïc Deblais
- First, second, and fourth authors: Department of Plant Pathology, and second and third authors: Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691
| | - Gireesh Rajashekara
- First, second, and fourth authors: Department of Plant Pathology, and second and third authors: Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691
| | - Sally A Miller
- First, second, and fourth authors: Department of Plant Pathology, and second and third authors: Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691
| |
Collapse
|
6
|
Read HM, Mills G, Johnson S, Tsai P, Dalton J, Barquist L, Print CG, Patrick WM, Wiles S. The in vitro and in vivo effects of constitutive light expression on a bioluminescent strain of the mouse enteropathogen Citrobacter rodentium. PeerJ 2016; 4:e2130. [PMID: 27366640 PMCID: PMC4924136 DOI: 10.7717/peerj.2130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/24/2016] [Indexed: 11/30/2022] Open
Abstract
Bioluminescent reporter genes, such as those from fireflies and bacteria, let researchers use light production as a non-invasive and non-destructive surrogate measure of microbial numbers in a wide variety of environments. As bioluminescence needs microbial metabolites, tagging microorganisms with luciferases means only live metabolically active cells are detected. Despite the wide use of bioluminescent reporter genes, very little is known about the impact of continuous (also called constitutive) light expression on tagged bacteria. We have previously made a bioluminescent strain of Citrobacter rodentium, a bacterium which infects laboratory mice in a similar way to how enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) infect humans. In this study, we compared the growth of the bioluminescent C. rodentium strain ICC180 with its non-bioluminescent parent (strain ICC169) in a wide variety of environments. To understand more about the metabolic burden of expressing light, we also compared the growth profiles of the two strains under approximately 2,000 different conditions. We found that constitutive light expression in ICC180 was near-neutral in almost every non-toxic environment tested. However, we also found that the non-bioluminescent parent strain has a competitive advantage over ICC180 during infection of adult mice, although this was not enough for ICC180 to be completely outcompeted. In conclusion, our data suggest that constitutive light expression is not metabolically costly to C. rodentium and supports the view that bioluminescent versions of microbes can be used as a substitute for their non-bioluminescent parents to study bacterial behaviour in a wide variety of environments.
Collapse
Affiliation(s)
- Hannah M Read
- Bioluminescent Superbugs Lab, University of Auckland, Auckland, New Zealand; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Grant Mills
- Bioluminescent Superbugs Lab, University of Auckland, Auckland, New Zealand; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Sarah Johnson
- Bioluminescent Superbugs Lab, University of Auckland, Auckland, New Zealand; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Peter Tsai
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; Bioinformatics Institute, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - James Dalton
- Bioluminescent Superbugs Lab, University of Auckland, Auckland, New Zealand; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| | - Lars Barquist
- Institute for Molecular Infection Biology, University of Würzburg , Würzburg , Germany
| | - Cristin G Print
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; Bioinformatics Institute, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| | - Wayne M Patrick
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand; Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Siouxsie Wiles
- Bioluminescent Superbugs Lab, University of Auckland, Auckland, New Zealand; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| |
Collapse
|