1
|
Ye Z, Xu X, Wu Y, Liu Y, Li J, Du G, Liu L, Lv X. Efficient 7-Dehydrocholesterol Production by Multiple Metabolic Engineering of Diploid Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25186-25196. [PMID: 39480248 DOI: 10.1021/acs.jafc.4c07609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
7-Dehydrocholesterol (7-DHC), a direct precursor of vitamin D3, has attracted increasing attention in microbial fermentation recently. In this study, 7-DHC biosynthesis in diploid Saccharomyces cerevisiae with robust ergosterol production was achieved by heterologous 24-dehydrocholesterol reductase expression, generating 44.1 mg/L 7-DHC, whereas the titer of ergosterol decreased by 40.5%. The ergosterol biosynthetic pathway was completely blocked by knocking out ERG6 and ERG5, affording a 4.2-fold increase in the 7-DHC titer. Subsequently, the facilitation of the mevalonate and the postsqualene pathways accompanied by elimination of transcriptional repressors enhanced 7-DHC synthesis, and the 7-DHC titer reached 738.5 mg/L in a shake flask. Further validation in a 50 L fermenter demonstrated that the 7-DHC titer reached 3.80 g/L within just 24 h, with productivity reaching 158.3 mg/L/h, setting a new benchmark as the highest reported to date. This study paves the way toward a large-scale and cost-effective manufacture of 7-DHC.
Collapse
Affiliation(s)
- Ziqi Ye
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Gasset A, Van Wijngaarden J, Mirabent F, Sales-Vallverdú A, Garcia-Ortega X, Montesinos-Seguí JL, Manzano T, Valero F. Continuous Process Verification 4.0 application in upstream: adaptiveness implementation managed by AI in the hypoxic bioprocess of the Pichia pastoris cell factory. Front Bioeng Biotechnol 2024; 12:1439638. [PMID: 39416276 PMCID: PMC11480048 DOI: 10.3389/fbioe.2024.1439638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The experimental approach developed in this research demonstrated how the cloud, the Internet of Things (IoT), edge computing, and Artificial Intelligence (AI), considered key technologies in Industry 4.0, provide the expected horizon for adaptive vision in Continued Process Verification (CPV), the final stage of Process Validation (PV). Pichia pastoris producing Candida rugosa lipase 1 under the regulation of the constitutive GAP promoter was selected as an experimental bioprocess. The bioprocess worked under hypoxic conditions in carbon-limited fed-batch cultures through a physiological control based on the respiratory quotient (RQ). In this novel bioprocess, a digital twin (DT) was built and successfully tested. The implementation of online sensors worked as a bridge between the microorganism and AI models, to provide predictions from the edge and the cloud. AI models emulated the metabolism of Pichia based on critical process parameters and actionable factors to achieve the expected quality attributes. This innovative AI-aided Adaptive-Proportional Control strategy (AI-APC) improved the reproducibility comparing to a Manual-Heuristic Control strategy (MHC), showing better performance than the Boolean-Logic-Controller (BLC) tested. The accuracy, indicated by the Mean Relative Error (MRE), was for the AI-APC lower than 4%, better than the obtained for MHC (10%) and BLC (5%). Moreover, in terms of precision, the same trend was observed when comparing the Root Mean Square Deviation (RMSD) values, becoming lower as the complexity of the controller increases. The successful automatic real time control of the bioprocess orchestrated by AI models proved the 4.0 capabilities brought by the adaptive concept and its validity in biopharmaceutical upstream operations.
Collapse
Affiliation(s)
- Arnau Gasset
- Department of Chemical, Biological, and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | - Albert Sales-Vallverdú
- Department of Chemical, Biological, and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Xavier Garcia-Ortega
- Department of Chemical, Biological, and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - José Luis Montesinos-Seguí
- Department of Chemical, Biological, and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - Francisco Valero
- Department of Chemical, Biological, and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
3
|
Linke JA, Rayat A, Ward JM. Production of indigo by recombinant bacteria. BIORESOUR BIOPROCESS 2023; 10:20. [PMID: 36936720 PMCID: PMC10011309 DOI: 10.1186/s40643-023-00626-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/06/2023] [Indexed: 03/15/2023] Open
Abstract
Indigo is an economically important dye, especially for the textile industry and the dyeing of denim fabrics for jeans and garments. Around 80,000 tonnes of indigo are chemically produced each year with the use of non-renewable petrochemicals and the use and generation of toxic compounds. As many microorganisms and their enzymes are able to synthesise indigo after the expression of specific oxygenases and hydroxylases, microbial fermentation could offer a more sustainable and environmentally friendly manufacturing platform. Although multiple small-scale studies have been performed, several existing research gaps still hinder the effective translation of these biochemical approaches. No article has evaluated the feasibility and relevance of the current understanding and development of indigo biocatalysis for real-life industrial applications. There is no record of either established or practically tested large-scale bioprocess for the biosynthesis of indigo. To address this, upstream and downstream processing considerations were carried out for indigo biosynthesis. 5 classes of potential biocatalysts were identified, and 2 possible bioprocess flowsheets were designed that facilitate generating either a pre-reduced dye solution or a dry powder product. Furthermore, considering the publicly available data on the development of relevant technology and common bioprocess facilities, possible platform and process values were estimated, including titre, DSP yield, potential plant capacities, fermenter size and batch schedule. This allowed us to project the realistic annual output of a potential indigo biosynthesis platform as 540 tonnes. This was interpreted as an industrially relevant quantity, sufficient to provide an annual dye supply to a single industrial-size denim dyeing plant. The conducted sensitivity analysis showed that this anticipated output is most sensitive to changes in the reaction titer, which can bring a 27.8% increase or a 94.4% drop. Thus, although such a biological platform would require careful consideration, fine-tuning and optimization before real-life implementation, the recombinant indigo biosynthesis was found as already attractive for business exploitation for both, luxury segment customers and mass-producers of denim garments. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1186/s40643-023-00626-7.
Collapse
Affiliation(s)
- Julia A. Linke
- grid.83440.3b0000000121901201Chemical Engineering Department, University College London (UCL), Torrington Place, London, WC1E 7JE UK
- grid.83440.3b0000000121901201Division of Medicine, University College London (UCL), 5 University Street, London, WC1E 6JF UK
| | - Andrea Rayat
- grid.83440.3b0000000121901201Biochemical Engineering Department, University College London (UCL), Gower St., London, WC1E 6BT UK
| | - John M. Ward
- grid.83440.3b0000000121901201Biochemical Engineering Department, University College London (UCL), Gower St., London, WC1E 6BT UK
| |
Collapse
|
4
|
Chaverra-Muñoz L, Hüttel S. Optimization of the production process for the anticancer lead compound illudin M: process development in stirred tank bioreactors. Microb Cell Fact 2022; 21:145. [PMID: 35843931 PMCID: PMC9290264 DOI: 10.1186/s12934-022-01870-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/06/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The fungal natural products illudin S and M have been investigated as precursors for the development of semisynthetic anticancer agents such as Irofulven (illudin S derivative) which is currently in phase II clinical trials. Recently, illudin M derivatives have shown improved in vitro selectivity towards cancer cells encouraging further investigation. This requires a stable supply of the precursor which is produced by Basidiomycota of the genus Omphalotus. We have recently reported a robust shake flask process for the production of gram quantities of illudin M from Omphalotus nidiformis aiming to transfer that process into stirred tank bioreactors, which can be used in a commercial production set-up. However, process transfer across different systems is not straightforward and particularly challenging when the producer is morphologically complex. There are only a few reports that address the development of bioprocesses for the production of compounds from Basidiomycota as these organisms have not been extensively studied because of their complex life cycles and often are difficult to cultivate under laboratory conditions. RESULTS The recently developed shake flask process delivering stable titers of ~ 940 mg L-1 of illudin M was investigated using off-gas analysis to identify critical parameters which facilitated the transfer from shaken into stirred tank bioreactors. Comparable titers to the shake flask process were achieved in 2 L stirred tank bioreactors (1.5 L working volume) by controlling growth of biomass with a carefully timed pH-shift combined with an improved precursor-feeding strategy. A scale-up experiment in a 15 L bioreactor (10 L working volume), resembling the process at 1.5 L resulted in 523 mg L-1 and is the starting point for optimization of the identified parameters at that scale. CONCLUSION By identifying and controlling key process parameters, the production process for illudin M was transferred from shake flasks into 2 L stirred tank bioreactors reaching a comparable titer (> 900 mg L-1), which is significantly higher than any previously reported. The insights obtained from 10 L scale pave the way towards further scale-up studies that will enable a sustainable supply of illudin M to support preclinical and clinical development programs.
Collapse
Affiliation(s)
- Lillibeth Chaverra-Muñoz
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Brunswick, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Brunswick, Germany
| | - Stephan Hüttel
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Brunswick, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Brunswick, Germany
| |
Collapse
|
5
|
Kaya U, Gopireddy S, Urbanetz N, Nopens I, Verwaeren J. Predicting the Hydrodynamic Properties of a Bioreactor: Conditional Density Estimation as a Surrogate Model for CFD Simulations. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.03.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Mitra S, Murthy GS. Bioreactor control systems in the biopharmaceutical industry: a critical perspective. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2021; 2:91-112. [PMID: 38624976 PMCID: PMC8340809 DOI: 10.1007/s43393-021-00048-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/05/2022]
Abstract
Industrial-scale bioprocessing underpins much of the production of pharmaceuticals, nutraceuticals, food, and beverage processing industries of the modern world. The profitability of these processes increasingly leverages the economies of scale and scope that are critically dependent on the product yields, titers, and productivity. Most of the processes are controlled using classical control approaches and represent over 90% of the industrial controls used in bioprocessing industries. However, with the advances in the production processes, especially in the biopharmaceutical and nutraceutical industries, monitoring and control of bioprocesses such as fermentations with GMO organisms, and downstream processing has become increasingly complex and the inadequacies of the classical and some of the modern control systems techniques is becoming apparent. Therefore, with increasing research complexity, nonlinearity, and digitization in process, there has been a critical need for advanced process control that is more effective, and easier process intensification and product yield (both by quality and quantity) can be achieved. In this review, industrial aspects of a process and automation along with various commercial control strategies have been extensively discussed to give an insight into the future prospects of industrial development and possible new strategies for process control and automation with a special focus on the biopharmaceutical industry. Supplementary Information The online version contains supplementary material available at 10.1007/s43393-021-00048-6.
Collapse
Affiliation(s)
- Sagnik Mitra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, 453552 India
| | - Ganti S. Murthy
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, 453552 India
| |
Collapse
|
7
|
Sierra-Lopera LM, Zapata-Montoya JE. Optimization of enzymatic hydrolysis of red tilapia scales ( Oreochromis sp.) to obtain bioactive peptides. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 30:e00611. [PMID: 33912403 PMCID: PMC8063752 DOI: 10.1016/j.btre.2021.e00611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/06/2021] [Accepted: 03/19/2021] [Indexed: 01/09/2023]
Abstract
The objective of this study was to optimize the conditions of enzymatic hydrolysis (type of enzyme, pH, temperature (T), substrate (S) and enzyme concentration (E)) to increase content of soluble peptides (P), antioxidant activities and degree of hydrolysis DH (%), in hydrolysates. Also, the effect of scaling up from a 0.5 L to a 7.5 L reactor, was evaluated. Hydrolysis was carried out for 3 h in a 500 mL reactor, with Alcalase® 2.4 L and Flavourzyme® 500 L enzymes. A second experimental design was then developed with S and E as factors, where DH, P and antioxidant activity, were response variables. The Alcalase® 2.4 L was the most productive enzyme, with optimal S and E of 45 g/L and 4.4 g/L, respectively. Its hydrolysates showed antioxidant activities with IC50 of 0.76 g/L, 12 g/L and 8 g/L for ABTS, FRAP and ICA, respectively. The scale up didn't showed negative effect on the hydrolysis.
Collapse
Affiliation(s)
- Leidy Maritza Sierra-Lopera
- University of Antioquia, Nutrition and Food Technology Group, 70th Street No. 52 - 21, 050010, Medellin, Antioquia, Colombia
| | - Jose Edgar Zapata-Montoya
- University of Antioquia, Nutrition and Food Technology Group, 70th Street No. 52 - 21, 050010, Medellin, Antioquia, Colombia
| |
Collapse
|
8
|
Liu P, Wang S, Li C, Zhuang Y, Xia J, Noorman H. Dynamic response of Aspergillus niger to periodical glucose pulse stimuli in chemostat cultures. Biotechnol Bioeng 2021; 118:2265-2282. [PMID: 33666237 DOI: 10.1002/bit.27739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/05/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
In industrial large-scale bioreactors, microorganisms encounter heterogeneous substrate concentration conditions, which can impact growth or product formation. Here we carried out an extended (12 h) experiment of repeated glucose pulsing with a 10-min period to simulate fluctuating glucose concentrations with Aspergillus niger producing glucoamylase, and investigated its dynamic response by rapid sampling and quantitative metabolomics. The 10-min period represents worst-case conditions, as in industrial bioreactors the average cycling duration is usually in the order of 1 min. We found that cell growth and the glucoamylase productivity were not significantly affected, despite striking metabolomic dynamics. Periodical dynamic responses were found across all central carbon metabolism pathways, with different time scales, and the frequently reported ATP paradox was confirmed for this A. niger strain under the dynamic conditions. A thermodynamics analysis revealed that several reactions of the central carbon metabolism remained in equilibrium even under periodical dynamic conditions. The dynamic response profiles of the intracellular metabolites did not change during the pulse exposure, showing no significant adaptation of the strain to the more than 60 perturbation cycles applied. The apparent high tolerance of the glucoamylase producing A. niger strain for extreme variations in the glucose availability presents valuable information for the design of robust industrial microbial hosts.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shuai Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Chao Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jianye Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Henk Noorman
- DSM Biotechnology Center, Delft, The Netherlands
| |
Collapse
|
9
|
Yeoh JW, Jayaraman SS, Tan SGD, Jayaraman P, Holowko MB, Zhang J, Kang CW, Leo HL, Poh CL. A model-driven approach towards rational microbial bioprocess optimization. Biotechnol Bioeng 2020; 118:305-318. [PMID: 32946111 DOI: 10.1002/bit.27571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/06/2020] [Accepted: 09/16/2020] [Indexed: 12/31/2022]
Abstract
Due to sustainability concerns, bio-based production capitalizing on microbes as cell factories is in demand to synthesize valuable products. Nevertheless, the nonhomogenous variations of the extracellular environment in bioprocesses often challenge the biomass growth and the bioproduction yield. To enable a more rational bioprocess optimization, we have established a model-driven approach that systematically integrates experiments with modeling, executed from flask to bioreactor scale, and using ferulic acid to vanillin bioconversion as a case study. The impacts of mass transfer and aeration on the biomass growth and bioproduction performances were examined using minimal small-scale experiments. An integrated model coupling the cell factory kinetics with the three-dimensional computational hydrodynamics of bioreactor was developed to better capture the spatiotemporal distributions of bioproduction. Full-factorial predictions were then performed to identify the desired operating conditions. A bioconversion yield of 94% was achieved, which is one of the highest for recombinant Escherichia coli using ferulic acid as the precursor.
Collapse
Affiliation(s)
- Jing Wui Yeoh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore.,Life Sciences Institute, NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore
| | - Sudhaghar S/O Jayaraman
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore.,Life Sciences Institute, NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore
| | - Sean Guo-Dong Tan
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Premkumar Jayaraman
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore.,Life Sciences Institute, NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore
| | - Maciej B Holowko
- Life Sciences Institute, NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore
| | - Jingyun Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore.,Life Sciences Institute, NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore
| | - Chang-Wei Kang
- Department of Fluid Dynamic, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Hwa Liang Leo
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore.,Life Sciences Institute, NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
10
|
Sarmah N, Revathi D, Sheelu G, Yamuna Rani K, Sridhar S, Mehtab V, Sumana C. Recent advances on sources and industrial applications of lipases. Biotechnol Prog 2017; 34:5-28. [DOI: 10.1002/btpr.2581] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/18/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Nipon Sarmah
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); Chennai 600 113 India
| | - D. Revathi
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - G. Sheelu
- Medicinal Chemistry and Pharmacology Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - K. Yamuna Rani
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - S. Sridhar
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - V. Mehtab
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - C. Sumana
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); Chennai 600 113 India
| |
Collapse
|
11
|
Chubukov V, Mukhopadhyay A, Petzold CJ, Keasling JD, Martín HG. Synthetic and systems biology for microbial production of commodity chemicals. NPJ Syst Biol Appl 2016; 2:16009. [PMID: 28725470 PMCID: PMC5516863 DOI: 10.1038/npjsba.2016.9] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 01/08/2023] Open
Abstract
The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges start at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.
Collapse
Affiliation(s)
- Victor Chubukov
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Héctor García Martín
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|