1
|
Glass JB, Ranjan P, Kretz CB, Nunn BL, Johnson AM, Xu M, McManus J, Stewart FJ. Microbial metabolism and adaptations in Atribacteria-dominated methane hydrate sediments. Environ Microbiol 2021; 23:4646-4660. [PMID: 34190392 DOI: 10.1111/1462-2920.15656] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
Gas hydrates harbour gigatons of natural gas, yet their microbiomes remain understudied. We bioprospected 16S rRNA amplicons, metagenomes, and metaproteomes from methane hydrate-bearing sediments under Hydrate Ridge (offshore Oregon, USA, ODP Site 1244, 2-69 mbsf) for novel microbial metabolic and biosynthetic potential. Atribacteria sequences generally increased in relative sequence abundance with increasing sediment depth. Most Atribacteria ASVs belonged to JS-1-Genus 1 and clustered with other sequences from gas hydrate-bearing sediments. We recovered 21 metagenome-assembled genomic bins spanning three geochemical zones in the sediment core: the sulfate-methane transition zone, the metal (iron/manganese) reduction zone, and the gas hydrate stability zone. We found evidence for bacterial fermentation as a source of acetate for aceticlastic methanogenesis and as a driver of iron reduction in the metal reduction zone. In multiple zones, we identified a Ni-Fe hydrogenase-Na+ /H+ antiporter supercomplex (Hun) in Atribacteria and Firmicutes bins and in other deep subsurface bacteria and cultured hyperthermophiles from the Thermotogae phylum. Atribacteria expressed tripartite ATP-independent transporters downstream from a novel regulator (AtiR). Atribacteria also possessed adaptations to survive extreme conditions (e.g. high salt brines, high pressure and cold temperatures) including the ability to synthesize the osmolyte di-myo-inositol-phosphate as well as expression of K+ -stimulated pyrophosphatase and capsule proteins.
Collapse
Affiliation(s)
- Jennifer B Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Piyush Ranjan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Brook L Nunn
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Abigail M Johnson
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Manlin Xu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - James McManus
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|