1
|
Agrawal N, Afzal M, Almalki WH, Ballal S, Sharma GC, Krithiga T, Panigrahi R, Saini S, Ali H, Goyal K, Rana M, Abida Khan. Longevity mechanisms in cardiac aging: exploring calcium dysregulation and senescence. Biogerontology 2025; 26:94. [PMID: 40259024 DOI: 10.1007/s10522-025-10229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 03/20/2025] [Indexed: 04/23/2025]
Abstract
Cardiac aging is a multistep process that results in a loss of various structural and functional heart abilities, increasing the risk of heart disease. Since its remarkable discovery in the early 1800s, when limestone is heated, calcium's importance has been defined in numerous ways. It can help stiffen shells and bones, function as a reducing agent in chemical reactions, and play a central role in cellular signalling. The movement of calcium ions in and out of cells and between those is referred to as calcium signalling. It influences the binding of the ligand, enzyme activity, electrochemical gradients, and other cellular processes. Calcium signalling is critical for both contraction and relaxation under the sliding filament model of heart muscle. However, with age, the heart undergoes changes that lead to increases in cardiac dysfunction, such as myocardial fibrosis, decreased cardiomyocyte function, and noxious disturbances in calcium homeostasis. Additionally, when cardiac tissues age, cellular senescence, a state of irreversible cell cycle arrest, accumulates and begins to exacerbate tissue inflammation and fibrosis. This review explores the most recent discoveries regarding the role of senescent cell accumulation and calcium signalling perturbances in cardiac aging. Additionally, new treatment strategies are used to reduce aged-related heart dysfunction by targeting senescent cells and modulating calcium homeostasis.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rajashree Panigrahi
- Department of Microbiology IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Suman Saini
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Abida Khan
- Center For Health Research, Northern Border University, Arar 73213, Saudi Arabia
| |
Collapse
|
2
|
GAO C, DING S, Shadi AM, LU F, LIU C, TENG Z, XU P, LIU S. Cardioprotective mechanism of Qixuan Yijianing formula in Graves' disease mice using miRNA sequencing approach. J TRADIT CHIN MED 2024; 44:1127-1136. [PMID: 39617698 PMCID: PMC11589547 DOI: 10.19852/j.cnki.jtcm.20240927.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2024]
Abstract
OBJECTIVE To investigate the mechanism of Qixuan Yijianing (,QYN) in minimizing cardiac injury in Graves' disease (GD) mice using microRNA (miRNA) sequencing analysis. METHODS Female BALB/c mice were randomly divided into the modeling and control groups (CG). The modeling group was established with Ad-TSHR289. Following 10 weeks of successful modeling, the mice were randomly assigned to four groups: model (MG), methimazole (MMI), QYN low-dose (LD), and high-dose (HD). After four weeks of treatment, the heart rate, heart volume, and heart index were measured, and the levels of aspartate aminotransferase (AST), lactate dehydrogenase (LDH), α-hydroxybutyrate dehydrogenase (α-HBD), creatine kinase (CK), and creatine kinase MB isoenzyme (CK-MB) in the serum were detected using a biochemical analyzer. Hematoxylin-eosin and Masson staining were used to determine histological changes in cardiac tissue. The heart tissues in the CG, MG, and HD groups were selected, and miRNA sequencing was used to identify differentially expressed miRNAs. A bioinformatics database was used to predict the target genes of differential miRNAs, and Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted on the predicted target genes. RESULTS As compared to the CG group, the MG group's heart rate, heart volume, heart index, AST, CK, CK-MB, LDH, α-HBD, myocardial fiber thickness, and collagen fiber significantly increased, all P < 0.01, while following QYN, these indicators improved in the HD group, all P < 0.01 or P < 0.05. Compared to the CG group, the MG group identified 151 differentially expressed miRNAs, with 42 miRNAs downregulated and 109 miRNAs upregulated; compared to the MG group, the HD group identified 70 differentially expressed miRNAs, 40 were downregulated, and 30 were upregulated. The GO functions of differential miRNA target genes are mostly enriched in cardiac development regulation, cardiac contraction control, heart rate regulation, and so on. The most enriched KEGG pathways include the mitogen-activated protein kinase, ErbB, Hippo, forkhead box protein O, and Wnt signaling pathways. CONCLUSION QYN may protect the cardiac structure and function and minimize cardiac damage caused by GD by regulating relevant target genes and signaling pathways through miRNAs which include miR-206-3p, miR-122-5p, and miR-200a-3p.
Collapse
Affiliation(s)
- Changjiu GAO
- 1 School of Pharmacy, Mudanjiang Medical University, Mudanjiang 157011, China
- 3 Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Song DING
- 3 Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - A.D. Mohammed Shadi
- 3 Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
- 4 School of Pharmacy, Lebanese International University, Sana’a 18644, Yemen
| | - Fang LU
- 2 Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Changfeng LIU
- 2 Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zhan TENG
- 3 Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Peng XU
- 3 Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Shumin LIU
- 2 Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
3
|
Lumish HS, Harano N, Liang LW, Hasegawa K, Maurer MS, Tower-Rader A, Fifer MA, Reilly MP, Shimada YJ. Prediction of new-onset atrial fibrillation in patients with hypertrophic cardiomyopathy using plasma proteomics profiling. Europace 2024; 26:euae267. [PMID: 39441047 PMCID: PMC11542585 DOI: 10.1093/europace/euae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 10/25/2024] Open
Abstract
AIMS Atrial fibrillation (AF) is the most common sustained arrhythmia among patients with hypertrophic cardiomyopathy (HCM), increasing symptom burden and stroke risk. We aimed to construct a plasma proteomics-based model to predict new-onset AF in patients with HCM and determine dysregulated signalling pathways. METHODS AND RESULTS In this prospective, multi-centre cohort study, we conducted plasma proteomics profiling of 4986 proteins at enrolment. We developed a proteomics-based machine learning model to predict new-onset AF using samples from one institution (training set) and tested its predictive ability using independent samples from another institution (test set). We performed a survival analysis to compare the risk of new-onset AF among high- and low-risk groups in the test set. We performed pathway analysis of proteins significantly (univariable P < 0.05) associated with new-onset AF using a false discovery rate (FDR) threshold of 0.001. The study included 284 patients with HCM (training set: 193, test set: 91). Thirty-seven (13%) patients developed AF during median follow-up of 3.2 years [25-75 percentile: 1.8-5.2]. Using the proteomics-based prediction model developed in the training set, the area under the receiver operating characteristic curve was 0.89 (95% confidence interval 0.78-0.99) in the test set. In the test set, patients categorized as high risk had a higher rate of developing new-onset AF (log-rank P = 0.002). The Ras-MAPK pathway was dysregulated in patients who developed incident AF during follow-up (FDR < 1.0 × 10-6). CONCLUSION This is the first study to demonstrate the ability of plasma proteomics to predict new-onset AF in HCM and identify dysregulated signalling pathways.
Collapse
Affiliation(s)
- Heidi S Lumish
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, 622 West 168th Street, PH3-342, New York, NY 10032, USA
| | - Nina Harano
- Department of Biology, Columbia University, New York, NY, USA
| | - Lusha W Liang
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, 622 West 168th Street, PH3-342, New York, NY 10032, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mathew S Maurer
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, 622 West 168th Street, PH3-342, New York, NY 10032, USA
| | - Albree Tower-Rader
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A Fifer
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, 622 West 168th Street, PH3-342, New York, NY 10032, USA
- Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Yuichi J Shimada
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, 622 West 168th Street, PH3-342, New York, NY 10032, USA
| |
Collapse
|
4
|
Ji M, Ran X, Zuo H, Zhang Q. Novel Insights into the Kallikrein-Kinin System in Fulminant Myocarditis: Physiological Basis and Potential Therapeutic Advances. J Inflamm Res 2024; 17:7347-7360. [PMID: 39429854 PMCID: PMC11490248 DOI: 10.2147/jir.s488237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Fulminant myocarditis (FM) is characterized by rapid cardiac deterioration often instigated by an inflammatory cytokine storm. The kallikrein-kinin system (KKS) is a metabolic cascade known for releasing vasoactive kinins, such as bradykinin-related peptides, possessing diverse pharmacological activities that include inflammation, regulation of vascular permeability, endothelial barrier dysfunction, and blood pressure modulation. The type 1 and type 2 bradykinin receptors (B1R and B2R), integral components of the KKS system, mediate the primary biological effects of kinin peptides. This review aims to offer a comprehensive overview of the primary mechanisms of the KKS in FM, including an examination of the structural components, regulatory activation, and downstream signaling pathways of the KKS. Furthermore, it explores the involvement of the tissue kallikrein/B1R/inducible nitric oxide synthase (TK/B1R/iNOS) pathway in myocyte dysfunction, modulation of the immune response, and preservation of endothelial barrier integrity. The potential therapeutic advances targeting the inhibition of the KKS in managing FM will be discussed, providing valuable insights for the development of clinical treatment strategies.
Collapse
Affiliation(s)
- Mengmeng Ji
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xiao Ran
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Houjuan Zuo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Qin Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
5
|
Mohammed KAK, Madeddu P, Avolio E. MEK inhibitors: a promising targeted therapy for cardiovascular disease. Front Cardiovasc Med 2024; 11:1404253. [PMID: 39011492 PMCID: PMC11247000 DOI: 10.3389/fcvm.2024.1404253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Cardiovascular disease (CVD) represents the leading cause of mortality and disability all over the world. Identifying new targeted therapeutic approaches has become a priority of biomedical research to improve patient outcomes and quality of life. The RAS-RAF-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase) pathway is gaining growing interest as a potential signaling cascade implicated in the pathogenesis of CVD. This pathway is pivotal in regulating cellular processes like proliferation, growth, migration, differentiation, and survival, which are vital in maintaining cardiovascular homeostasis. In addition, ERK signaling is involved in controlling angiogenesis, vascular tone, myocardial contractility, and oxidative stress. Dysregulation of this signaling cascade has been linked to cell dysfunction and vascular and cardiac pathological remodeling, which contribute to the onset and progression of CVD. Recent and ongoing research has provided insights into potential therapeutic interventions targeting the RAS-RAF-MEK-ERK pathway to improve cardiovascular pathologies. Preclinical studies have demonstrated the efficacy of targeted therapy with MEK inhibitors (MEKI) in attenuating ERK activation and mitigating CVD progression in animal models. In this article, we first describe how ERK signaling contributes to preserving cardiovascular health. We then summarize current knowledge of the roles played by ERK in the development and progression of cardiac and vascular disorders, including atherosclerosis, myocardial infarction, cardiac hypertrophy, heart failure, and aortic aneurysm. We finally report novel therapeutic strategies for these CVDs encompassing MEKI and discuss advantages, challenges, and future developments for MEKI therapeutics.
Collapse
Affiliation(s)
- Khaled A K Mohammed
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paolo Madeddu
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Elisa Avolio
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
6
|
Song L, Mi S, Zhao Y, Liu Z, Wang J, Wang H, Li W, Wang J, Zu W, Du H. Integrated virtual screening and in vitro studies for exploring the mechanism of triterpenoids in Chebulae Fructus alleviating mesaconitine-induced cardiotoxicity via TRPV1 channel. Front Pharmacol 2024; 15:1367682. [PMID: 38500766 PMCID: PMC10945000 DOI: 10.3389/fphar.2024.1367682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Background: In traditional Mongolian or Tibetan medicine in China, Chebulae Fructus (CF) is widely used to process or combine with aconitums to decrease the severe toxicity of aconitums. Researches in this area have predominantly focused on tannins, with few research on other major CF components for cardiotoxicity mitigation. The present study aimed to clarify whether triterpenoids can attenuate the cardiotoxicity caused by mesaconitine (MA) and investigate the mechanism of cardiotoxicity attenuation. Methods: Firstly, the pharmacophore model, molecular docking, and 3D-QSAR model were used to explore the mechanism of CF components in reducing the toxicity of MA mediated by the TRPV1 channel. Then three triterpenoids were selected to verify whether the triterpenoids had the effect of lowering the cardiotoxicity of MA using H9c2 cells combined with MTT, Hoechst 33258, and JC-1. Finally, Western blot, Fluo-3AM, and MTT assays combined with capsazepine were used to verify whether the triterpenoids reduced H9c2 cardiomyocyte toxicity induced by MA was related to the TRPV1 channel. Results: Seven triterpenoids in CF have the potential to activate the TRPV1 channel. And they exhibited greater affinity for TRPV1 compared to other compounds and MA. However, their activity was relatively lower than that of MA. Cell experiments revealed that MA significantly reduced H9c2 cell viability, resulting in diminished mitochondrial membrane potential and nuclear pyknosis and damage. In contrast, the triterpenoids could improve the survival rate significantly and counteract the damage of MA to the cells. We found that MA, arjungenin (AR), and maslinic acid (MSA) except corosolic acid (CRA) upregulated the expression of TRPV1 protein. MA induced a significant influx of calcium, whereas all three triterpenoids alleviated this trend. Blocking the TRPV1 channel with capsazepine only increased the cell viability that had been simultaneously treated with MA, and AR, or MSA. However, there was no significant difference in the CRA groups treated with or without capsazepine. Conclusion: The triterpenoids in CF can reduce the cardiotoxicity caused by MA. The MSA and AR function as TRPV1 agonists with comparatively reduced activity but a greater capacity to bind to TRPV1 receptors, thus antagonizing the excessive activation of TRPV1 by MA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hong Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Cardiomyocyte-specific loss of plasma membrane calcium ATPase 1 impacts cardiac rhythm and is associated with ventricular repolarisation dysfunction. J Mol Cell Cardiol 2022; 172:41-51. [PMID: 35926724 DOI: 10.1016/j.yjmcc.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 07/09/2022] [Accepted: 07/27/2022] [Indexed: 12/14/2022]
Abstract
Plasma membrane calcium ATPase 1 (PMCA1, Atp2b1) is emerging as a key contributor to cardiac physiology, involved in calcium handling and myocardial signalling. In addition, genome wide association studies have associated PMCA1 in several areas of cardiovascular disease including hypertension and myocardial infarction. Here, we investigated the role of PMCA1 in basal cardiac function and heart rhythm stability. Cardiac structure, heart rhythm and arrhythmia susceptibility were assessed in a cardiomyocyte-specific PMCA1 deletion (PMCA1CKO) mouse model. PMCA1CKO mice developed abnormal heart rhythms related to ventricular repolarisation dysfunction and displayed an increased susceptibility to ventricular arrhythmias. We further assessed the levels of cardiac ion channels using qPCR and found a downregulation of the voltage-dependent potassium channels, Kv4.2, with a corresponding reduction in the transient outward potassium current which underlies ventricular repolarisation in the murine heart. The changes in heart rhythm were found to occur in the absence of any structural cardiomyopathy. To further assess the molecular changes occurring in PMCA1CKO hearts, we performed proteomic analysis. Functional characterisation of differentially expressed proteins suggested changes in pathways related to metabolism, protein-binding, and pathways associated cardiac function including β-adrenergic signalling. Together, these data suggest an important role for PMCA1 in basal cardiac function in relation to heart rhythm control, with reduced cardiac PMCA1 expression resulting in an increased risk of arrhythmia development.
Collapse
|
8
|
Erdogan O, Gürkan V, Sönmez C, Erden T, Atasoy S, Yildiz F, İnan B, Adilli A. Can the arterial clamp method be used safely where a tourniquet cannot be used? Cardiovasc J Afr 2021; 32:254-260. [PMID: 34292289 PMCID: PMC8756025 DOI: 10.5830/cvja-2021-023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/12/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Clamp application is safe and widely used in the visceral organs. This raises the question: why not use clamping in orthopaedic, oncological, fracture and revision surgeries of areas where tourniquets are not suitable. This experimental animal study aimed to compare tourniquet and arterial clamp applications with regard to their histological effects and inflammatory responses on a molecular level, on the artery, vein, nerve and muscle tissue. METHODS Twenty-one rabbits were divided into three groups (group I: proximal femoral artery clamp; group II: proximal thigh tourniquet; and group III: control group). In the clamp group, the common femoral artery was clamped with a microvascular clamp for two hours. In the tourniquet group, a 12-inch cuff was applied to the proximal thigh for two hours at 200 mmHg. The common femoral artery, vein, nerve, rectus femoris and tibialis anterior muscles were excised and analysed in all groups. RESULTS Artery and vein endothelial injuries were found in the clamp and tourniquet groups (relative to the control group, p ≤ 0.001 and p = 0.007, respectively). However, no difference was found between the clamp and tourniquet groups regarding vessel wall injury. CONCLUSIONS We found there were no differences in incidence of vessel, muscle and nerve injury when comparing the tourniquet and clamp applications. For surgical procedures that are unsuited to a tourniquet, arterial clamping can be selected, resulting in close-to-tourniquet vessel injury rates but without tourniquet-related complications.
Collapse
Affiliation(s)
- Ozgur Erdogan
- Department of Orthopaedics, Health Sciences University, Haydarpasa Numune Education and Research Hospital, Istanbul, Turkey.
| | - Volkan Gürkan
- Department of Orthopaedics, Faculty of Medicine, Bezmialem University, Istanbul, Turkey
| | - Cavide Sönmez
- Department of Pathology, Faculty of Medicine, Bezmialem University, Istanbul, Turkey
| | - Tunay Erden
- Department of Orthopaedics, Fulya Hospital, Acibadem University, Istanbul, Turkey
| | - Sezen Atasoy
- Division of Genetics, Department of Medical Biology, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Fatih Yildiz
- Department of Orthopaedics, Faculty of Medicine, Bezmialem University, Istanbul, Turkey
| | - Bekir İnan
- Department of Cardiovascular Surgery, Faculty of Medicine, Bezmialem University, Istanbul, Turkey
| | - Adile Adilli
- Department of Pathology, Faculty of Medicine, Bezmialem University, Istanbul, Turkey
| |
Collapse
|
9
|
Huang Q, Fu Y, Zhang S, Zhang Y, Chen S, Zhang Z. Ethyl pyruvate inhibits glioblastoma cells migration and invasion through modulation of NF-κB and ERK-mediated EMT. PeerJ 2020; 8:e9559. [PMID: 32742812 PMCID: PMC7380274 DOI: 10.7717/peerj.9559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Background Glioblastoma is a grade IV glioma with the highest degree of malignancy and extremely high incidence. Because of the poor therapeutic effect of surgery and radiochemotherapy, glioblastoma has a high recurrence rate and lethality, and is one of the most challenging tumors in the field of oncology. Ethyl pyruvate (EP), a stable lipophilic pyruvic acid derivative, has anti-inflammatory, antioxidant, immunomodulatory and other cellular protective effects. It has been reported that EP has potent anti-tumor effects on many types of tumors, including pancreatic cancer, prostate cancer, liver cancer, gastric cancer. However, whether EP has anti-tumor effect on glioblastoma or not is still unclear. Methods Glioblastoma U87 and U251 cells were treated with different concentrations of EP for 24 h or 48 h. CCK8 assay and Colony-Formation assay were performed to test the viability and proliferation. Wound-healing assay and Transwell assay were carried out to measure cell invasion and migration. Western blot was not only used to detect the protein expression of epithelial-mesenchymal transition (EMT)-related molecules, but also to detect the expression and activation levels of NF-κB (p65) and Extracellular Signal Regulated Kinase (ERK). Results In glioblastoma U87 and U251 cells treated with EP, the viability, proliferation, migration, invasion abilities were inhibited in a dose-dependent manner. EP inhibited EMT and the activation of NF-κB (p65) and ERK. With NF-κB (p65) and ERK activated, EMT, migration and invasion of U87 and U251 cells were promoted. However the activation of NF-κB (p65) and ERK were decreased, EMT, migration and invasion abilities were inhibited in U87 and U251 cells treated with EP. Conclusion EP inhibits glioblastoma cells migration and invasion by blocking NF-κB and ERK-mediated EMT.
Collapse
Affiliation(s)
- Qing Huang
- Department of Pathogen Biology, School of Basic Medicine, Central South University, Changsha, China
| | - Yongming Fu
- Department of Infectious Diseases and Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Shan Zhang
- Department of Pathogen Biology, School of Basic Medicine, Central South University, Changsha, China
| | - Youxiang Zhang
- Department of Pathogen Biology, School of Basic Medicine, Central South University, Changsha, China
| | - Simin Chen
- Department of Pathogen Biology, School of Basic Medicine, Central South University, Changsha, China
| | - Zuping Zhang
- Department of Pathogen Biology, School of Basic Medicine, Central South University, Changsha, China
| |
Collapse
|
10
|
Gao X, Wu X, Yan J, Zhang J, Zhao W, DeMarco D, Zhang Y, Bakhos M, Mignery G, Sun J, Li Z, Fill M, Ai X. Transcriptional regulation of stress kinase JNK2 in pro-arrhythmic CaMKIIδ expression in the aged atrium. Cardiovasc Res 2019; 114:737-746. [PMID: 29360953 DOI: 10.1093/cvr/cvy011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/18/2018] [Indexed: 01/02/2023] Open
Abstract
Aims c-jun N-terminal kinase (JNK) is a critical stress response kinase that activates in a wide range of physiological and pathological cellular processes. We recently discovered a pivotal role of JNK in the development of atrial arrhythmias in the aged heart, while cardiac CaMKIIδ, another pro-arrhythmic molecule, was also known to enhance atrial arrhythmogenicity. Here, we aimed to reveal a regulatory role of the stress kinase JNK2 isoform on CaMKIIδ expression. Methods and results Activated JNK2 leads to increased CaMKIIδ protein expression in aged human and mouse atria, evidenced from the reversal of CaMKIIδ up-regulation in JNK2 inhibitor treated wild-type aged mice. This JNK2 action in CaMKIIδ expression was further confirmed in HL-1 myocytes co-infected with AdMKK7D-JNK2, but not when co-infected with AdMKK7D-JNK1. JNK2-specific inhibition (either by a JNK2 inhibitor or overexpression of inactivated dominant-negative JNK2 (JNK2dn) completely attenuated JNK activator anisomycin-induced CaMKIIδ up-regulation in HL-1 myocytes, whereas overexpression of JNK1dn did not. Moreover, up-regulated CaMKIIδ mRNA along with substantially increased phosphorylation of JNK downstream transcription factor c-jun [but not activating transcription factor2 (ATF2)] were exhibited in both aged atria (humans and mice) and transiently JNK activated HL-1 myocytes. Cross-linked chromatin-immunoprecipitation assays (XChIP) revealed that both c-jun and ATF2 were bound to the CaMKIIδ promoter, but significantly increased binding of c-jun only occurred in the presence of anisomycin and JNK inhibition alleviated this anisomycin-elevated c-jun binding. Mutated CaMKII consensus c-jun binding sites impaired its promoter activity. Enhanced transcriptional activity of CaMKIIδ by anisomycin was also completely reversed to the baseline by either JNK2 siRNA or c-jun siRNA knockdown. Conclusion JNK2 activation up-regulates CaMKIIδ expression in the aged atrium. This JNK2 regulation in CaMKIIδ expression occurs at the transcription level through the JNK downstream transcription factor c-jun. The discovery of this novel molecular mechanism of JNK2-regulated CaMKII expression sheds new light on possible anti-arrhythmia drug development.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - Xiaomin Wu
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - Jiajie Yan
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA.,Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - Jingqun Zhang
- Department of Cardiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, PR China
| | - Weiwei Zhao
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA.,Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - Dominic DeMarco
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA.,Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - Yongguo Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mamdouh Bakhos
- Department of Thoracic & Cardiovascular Surgery, Loyola University Chicago, Maywood, IL, USA
| | - Gregory Mignery
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - Jun Sun
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Zhenyu Li
- Division of Cardiovascular Medicine, University of Kentucky, KY, USA
| | - Michael Fill
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - Xun Ai
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA.,Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
11
|
|
12
|
Yan J, Zhao W, Thomson JK, Gao X, DeMarco DM, Carrillo E, Chen B, Wu X, Ginsburg KS, Bakhos M, Bers DM, Anderson ME, Song LS, Fill M, Ai X. Stress Signaling JNK2 Crosstalk With CaMKII Underlies Enhanced Atrial Arrhythmogenesis. Circ Res 2018; 122:821-835. [PMID: 29352041 DOI: 10.1161/circresaha.117.312536] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
RATIONALE Atrial fibrillation (AF) is the most common arrhythmia, and advanced age is an inevitable and predominant AF risk factor. However, the mechanisms that couple aging and AF propensity remain unclear, making targeted therapeutic interventions unattainable. OBJECTIVE To explore the functional role of an important stress response JNK (c-Jun N-terminal kinase) in sarcoplasmic reticulum Ca2+ handling and consequently Ca2+-mediated atrial arrhythmias. METHODS AND RESULTS We used a series of cutting-edge electrophysiological and molecular techniques, exploited the power of transgenic mouse models to detail the molecular mechanism, and verified its clinical applicability in parallel studies on donor human hearts. We discovered that significantly increased activity of the stress response kinase JNK2 (JNK isoform 2) in the aged atria is involved in arrhythmic remodeling. The JNK-driven atrial proarrhythmic mechanism is supported by a pathway linking JNK, CaMKII (Ca2+/calmodulin-dependent kinase II), and sarcoplasmic reticulum Ca2+ release RyR2 (ryanodine receptor) channels. JNK2 activates CaMKII, a critical proarrhythmic molecule in cardiac muscle. In turn, activated CaMKII upregulates diastolic sarcoplasmic reticulum Ca2+ leak mediated by RyR2 channels. This leads to aberrant intracellular Ca2+ waves and enhanced AF propensity. In contrast, this mechanism is absent in young atria. In JNK challenged animal models, this is eliminated by JNK2 ablation or CaMKII inhibition. CONCLUSIONS We have identified JNK2-driven CaMKII activation as a novel mode of kinase crosstalk and a causal factor in atrial arrhythmic remodeling, making JNK2 a compelling new therapeutic target for AF prevention and treatment.
Collapse
Affiliation(s)
- Jiajie Yan
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Weiwei Zhao
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Justin K Thomson
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Xianlong Gao
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Dominic M DeMarco
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Elena Carrillo
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Biyi Chen
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Xiaomin Wu
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Kenneth S Ginsburg
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Mamdouh Bakhos
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Donald M Bers
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Mark E Anderson
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Long-Sheng Song
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Michael Fill
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.)
| | - Xun Ai
- From the Department of Physiology and Biophysics, Rush University, Chicago, IL (J.Y., W.Z., D.M.D., E.C., M.F., X.A.); Department of Cell and Molecular Physiology (J.Y., W.Z., J.K.T., X.G., D.M.D., E.C., X.W., X.A.) and Department of Thoracic and Cardiovascular Surgery (M.B.), Loyola University Chicago, Maywood, IL; Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City (B.C., L.-S.S.); Department of Pharmacology, University of California at Davis (K.S.G., D.M.B.); and Department of Internal Medicine, Johns Hopkins University, Baltimore, MD (M.E.A.).
| |
Collapse
|
13
|
Estrogen deficiency compromised the β 2AR-Gs/Gi coupling: implications for arrhythmia and cardiac injury. Pflugers Arch 2018; 470:559-570. [PMID: 29297096 DOI: 10.1007/s00424-017-2098-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/24/2017] [Accepted: 12/17/2017] [Indexed: 01/03/2023]
Abstract
Estrogen and β2-adrenergic receptors (β2AR) play important roles in the processes that protect the heart. Here, we investigated how ovariectomy influenced the β2AR downstream pathways in the context of catecholaminergic stress. In vivo and in vitro stress models were developed in female Sprague-Dawley (SD) rats by epinephrine (Epi) treatments. The cardiac function was evaluated at in vivo and in vitro levels in terms of contraction, rhythm, and injury. We found that myocardial contractility was not significantly different between Sham and ovariectomized (OVX) group rats in the normal state. However, Epi pretreatment decreased the contractility and increased abnormal rhythms especially in OVX group, which were attributed to lack of estrogen. Inhibition of the β2AR-Gi-PI3K/p38MAPK pathway with ICI118,551, PTX or LY294002 increased contractility and aggravated Epi-induced injury on cardiomyocytes, decreased p38MAPK phosphorylation, and only increased arrhythmia in Sham group. These results indicated that OVX exacerbated cardiac injury and abnormal rhythms through β2AR-Gi-PI3K and β2AR-Gi-p38MAPK pathways, respectively. In normal state, the levels of activated Gi were similar in both groups, but those of cAMP and activated Gs were higher in OVX group. Epi treatment increased activated Gi (especially in Sham group) and activated Gs and cAMP in Sham group but decreased it in OVX group. These results suggested that estrogen increased the Gi activity in normal and stress states and Gs activity in stress state. These results indicated that lack of estrogen impaired the β2AR-Gs/Gi coupling during stress which compromised cardiac contractility and increased abnormal rhythms.
Collapse
|
14
|
Zhou P, Lu S, Luo Y, Wang S, Yang K, Zhai Y, Sun G, Sun X. Attenuation of TNF-α-Induced Inflammatory Injury in Endothelial Cells by Ginsenoside Rb1 via Inhibiting NF-κB, JNK and p38 Signaling Pathways. Front Pharmacol 2017; 8:464. [PMID: 28824425 PMCID: PMC5540891 DOI: 10.3389/fphar.2017.00464] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/30/2017] [Indexed: 12/18/2022] Open
Abstract
It is currently believed that inflammation plays a central role in the pathophysiology of atherosclerosis. Oxidative stress and redox-sensitive transcription factors are implicated in the process. Ginsenoside Rb1, a major active ingredient in processed Radix notoginseng, has attracted widespread attention because of its potential to improve cardiovascular function. However, the effects of ginsenoside Rb1 on tumor necrosis factor-α (TNF-α)-induced vascular endothelial cell injury and the underlying molecular mechanisms have never been studied. This study showed that TNF-α-induced oxidative stress, inflammation and apoptosis in human umbilical vein endothelial cells (HUVECs) could be attenuated by ginsenoside Rb1 pretreatment. Using JC-1, Annexin V/PI and TUNEL staining, and a caspase-3 activity assay, we found that Rb1 provided significant protection against TNF-α-induced cell death. Furthermore, Rb1 pretreatment could inhibit TNF-α-induced ROS and MDA production; increase the activities of SOD, CAT, and GSH-Px; and decrease the levels of IL-1β, IL-6, VCAM-1, ICAM-1, VEGF, MMP-2 and MMP-9. Importantly, the cytoprotective effects of Rb1 were correlated with NF-κB signaling pathway inhibition. Additionally, we found that Rb1 may suppress the NF-κB pathway through p-38 and JNK pathway activation, findings supported by the results of our experiments involving anisomycin (AM), a JNK and p38 activator. In conclusion, this study showed that ginsenoside Rb1 protects HUVECs from TNF-α-induced oxidative stress and inflammation by inhibiting JNK and p38. This inhibition suppressed NF-κB signaling and down-regulated the expression of inflammatory factors and apoptosis-related proteins.
Collapse
Affiliation(s)
- Ping Zhou
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineBeijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of EducationBeijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese MedicineBeijing, China
| | - Shan Lu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineBeijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of EducationBeijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese MedicineBeijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineBeijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of EducationBeijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese MedicineBeijing, China
| | - Shan Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineBeijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of EducationBeijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese MedicineBeijing, China
| | - Ke Yang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineBeijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of EducationBeijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese MedicineBeijing, China
| | - Yadong Zhai
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineBeijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of EducationBeijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese MedicineBeijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineBeijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of EducationBeijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese MedicineBeijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineBeijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of EducationBeijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese MedicineBeijing, China
| |
Collapse
|