1
|
Xue P, Huang D, Pu J, Zhou Y. DFT/MM Simulations for Cycloreversion Reaction of Cyclobutane Pyrimidine Dimer with Deprotonated and Protonated E283. J Phys Chem B 2024; 128:6670-6683. [PMID: 38982772 DOI: 10.1021/acs.jpcb.4c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
DNA photolyase targets the primary ultraviolet (UV)-induced DNA lesion─cyclobutane pyrimidine dimer (CPD), attaches to it, and catalyzes its dissociation. The catalytic mechanism of DNA photolyase and the role of the conserved residue E283 remain subjects of debate. This study employs two-dimensional potential energy surface maps and minimum free energy paths calculated at the ωB97XD/6-31G/MM level to elucidate these mechanisms. Results suggest that the catalytic process follows a sequential, stepwise reaction in which the C5-C5 and C6-C6 bonds are cleaved in order, facilitated by a protonated E283. Activation free energies for these cleavages are calculated at 4.4 and 4.2 kcal·mol-1, respectively. Protonation of E283 reduces electrostatic repulsion with CPD and forms dual hydrogen bonds with it and provides better solvation, stabilizing the CPD radical anion, particularly during intermediate state. This stabilization renders the initial splitting step exergonic, slows reverse reactions of the C5-C5 bond cleavage and electron transfer, and ensures a high quantum yield. Furthermore, the protonation state of E283 significantly affects the type of bond cleavage. Other residues in the active site were also investigated for their roles in the mechanism.
Collapse
Affiliation(s)
- Pei Xue
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, 188 Daxue East Road, Nanning, Guangxi 530006, China
| | - Donglian Huang
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, 188 Daxue East Road, Nanning, Guangxi 530006, China
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford St., Indianapolis, Indiana 46202, United States
| | - Yan Zhou
- Guangxi Key Laboratory for Polysaccharide Materials and Modification, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, 188 Daxue East Road, Nanning, Guangxi 530006, China
| |
Collapse
|
2
|
Vauclare P, Wulffelé J, Lacroix F, Servant P, Confalonieri F, Kleman JP, Bourgeois D, Timmins J. Stress-induced nucleoid remodeling in Deinococcus radiodurans is associated with major changes in Heat Unstable (HU) protein dynamics. Nucleic Acids Res 2024; 52:6406-6423. [PMID: 38742631 PMCID: PMC11194088 DOI: 10.1093/nar/gkae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Bacteria have developed a wide range of strategies to respond to stress, one of which is the rapid large-scale reorganization of their nucleoid. Nucleoid associated proteins (NAPs) are believed to be major actors in nucleoid remodeling, but the details of this process remain poorly understood. Here, using the radiation resistant bacterium D. radiodurans as a model, and advanced fluorescence microscopy, we examined the changes in nucleoid morphology and volume induced by either entry into stationary phase or exposure to UV-C light, and characterized the associated changes in mobility of the major NAP in D. radiodurans, the heat-unstable (HU) protein. While both types of stress induced nucleoid compaction, HU diffusion was reduced in stationary phase cells, but was instead increased following exposure to UV-C, suggesting distinct underlying mechanisms. Furthermore, we show that UV-C-induced nucleoid remodeling involves a rapid nucleoid condensation step associated with increased HU diffusion, followed by a slower decompaction phase to restore normal nucleoid morphology and HU dynamics, before cell division can resume. These findings shed light on the diversity of nucleoid remodeling processes in bacteria and underline the key role of HU in regulating this process through changes in its mode of assembly on DNA.
Collapse
Affiliation(s)
- Pierre Vauclare
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Jip Wulffelé
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Fabrice Confalonieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | | | - Joanna Timmins
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| |
Collapse
|
3
|
Li X, Wang Y, Wang X, Shen Y, Yuan Y, He Q, Mao S, Wu C, Zhou M. Downregulation of SMAD4 protects HaCaT cells against UVB-induced damage and oxidative stress through the activation of EMT. Photochem Photobiol Sci 2024; 23:1051-1065. [PMID: 38684635 DOI: 10.1007/s43630-024-00574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
As a member of the SMAD family, SMAD4 plays a crucial role in several cellular biological processes. However, its function in UVB radiation-induced keratinocyte damage is not yet clarified. Our study aims to provide mechanistic insight for the development of future UVB protective therapies and therapeutics involving SMAD4. HaCaT cells were treated with UVB, and the dose dependence and time dependence of UVB were measured. The cell function of UVB-treated HaCaT cells and the activity of epithelial-mesenchymal transition (EMT) after overexpression or silencing of SMAD4 was observed by flow cytometry, quantitative reverse transcription PCR (qRT-PCR) and Western Blots (WB). We found that a significant decrease in SMAD4 was observed in HaCaT cells induced by UVB. Our data confirm SMAD4 as a direct downstream target of miR-664. The down-regulation of SMAD4 preserved the viability of the UVB-treated HaCaT cells by inhibiting autophagy or apoptosis. Furthermore, the silencing of SMAD4 activated the EMT process in UVB-treated HaCaT cells. Down-regulation of SMAD4 plays a protective role in UVB-treated HaCaT cells via the activation of EMT.
Collapse
Affiliation(s)
- Xiangzhi Li
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545000, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Branch of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou, 317502, China
| | - Yimeng Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
- Yancheng Center for Disease Control and Prevention, Yancheng, 224000, China
| | - Xian Wang
- Department of Public Health and Management, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Yi Shen
- Department of Public Health and Management, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Yawen Yuan
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qingquan He
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Branch of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou, 317502, China
| | - Shuyi Mao
- Nuclear Medicine Department, The Second Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Cailian Wu
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545000, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Hegde AR, Kunder MU, Narayanaswamy M, Murugesan S, Furtado SC, Veerabhadraiah BB, Srinivasan B. Advancements in sunscreen formulations: integrating polyphenolic nanocarriers and nanotechnology for enhanced UV protection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38061-38082. [PMID: 38806984 DOI: 10.1007/s11356-024-33712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Sunscreens are essential in protecting the skin from harmful effects of ultraviolet radiation (UVR). These formulations, designed to absorb, block, or scatter UVR, offer vital protection against skin aging, sunburns, and the development of skin cancers like melanomas. However, some sunscreens, especially those containing organic/chemical compounds, can cause allergic reactions. To address this, researchers are extensively investigating formulations that incorporate plant extracts rich in polyphenols, such as flavonoids and carotenoids, which can be considered safer alternatives. Products derived from plants are commonly used in cosmetics to counteract skin aging due to their antioxidant activity that combat harmful free radicals. This review focuses on evaluating the advancements in chemical and natural sunscreens, exploring the integration of polyphenolic nanocarriers within sunscreen formulas, their interaction with UVR, and utilizing nanotechnology to enhance their effectiveness. An attempt has been made to highlight the concerns related to toxicity associated with their use and notable advancements in the regulatory aspects governing their utilization.
Collapse
Affiliation(s)
- Aswathi Raju Hegde
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India.
| | - Manisha Uday Kunder
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Megha Narayanaswamy
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Shruthi Murugesan
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Sharon Caroline Furtado
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Basavaraj Basappa Veerabhadraiah
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| | - Bharath Srinivasan
- Department of Pharmaceutics, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Gnanagangothri Campus, New B.E.L. Road, M.S.R. Nagar, M.S.R.I.T Post, Bengaluru, 560054, Karnataka, India
| |
Collapse
|
5
|
Korhonen E. Inflammasome activation in response to aberrations of cellular homeostasis in epithelial cells from human cornea and retina. Acta Ophthalmol 2024; 102 Suppl 281:3-68. [PMID: 38386419 DOI: 10.1111/aos.16646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
|
6
|
Xue Y, Xiong Y, Cheng X, Li K. Applications of laser technology in the manipulation of human spermatozoa. Reprod Biol Endocrinol 2023; 21:93. [PMID: 37865766 PMCID: PMC10589983 DOI: 10.1186/s12958-023-01148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023] Open
Abstract
The application of laser technology in the field of assisted reproductive technology (ART) has experienced rapid growth over the past decades owing to revolutionary techniques such as intracytoplasmic sperm injection (ICSI), preimplantation genetic testing (PGT), and in vitro manipulation of gametes and embryos. For male gametes, in vitro manipulation techniques include spermatozoa selection, sorting, immobilization, and quality assessment. A number of studies have been conducted to investigate the application of different laser technologies in the manipulation of human spermatozoa. However, there is a lack of a unified understanding of laser application in the in vitro manipulation of sperm and safety considerations in ART and, subsequently, the inability to make clear and accurate decisions on the clinical value of these laser technologies. This review summarizes the advancements and improvements of laser technologies in the manipulation of human spermatozoa, such as photobiomodulation therapy, laser trap systems for sperm analysis and sorting, laser-assisted selection of immotile sperm and laser-assisted immobilization of sperm prior to ICSI. The safety of those technologies used in ART is also discussed. This review will provide helpful and comprehensive insight into the applications of laser technology in the manipulation of human spermatozoa.
Collapse
Affiliation(s)
- Yamei Xue
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuping Xiong
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Xiaohong Cheng
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Kun Li
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
7
|
Molina-Menor E, Carlotto N, Vidal-Verdú À, Pérez-Ferriols A, Pérez-Pastor G, Porcar M. Ecology and resistance to UV light and antibiotics of microbial communities on UV cabins in the dermatology service of a Spanish hospital. Sci Rep 2023; 13:14547. [PMID: 37666842 PMCID: PMC10477284 DOI: 10.1038/s41598-023-40996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/20/2023] [Indexed: 09/06/2023] Open
Abstract
Microorganisms colonize all possible ecological habitats, including those subjected to harsh stressors such as UV radiation. Hospitals, in particular the UV cabins used in phototherapy units, constitute an environment in which microbes are intermittently subjected to UV irradiation. This selective pressure, in addition to the frequent use of antibiotics by patients, may represent a threat in the context of the increasing problem of antimicrobial resistance. In this work, a collection of microorganisms has been established in order to study the microbiota associated to the inner and outer surfaces of UV cabins and to assess their resistance to UV light and the antibiotics frequently used in the Dermatology Service of a Spanish hospital. Our results show that UV cabins harbor a relatively diverse biocenosis dominated by typically UV-resistant microorganisms commonly found in sun-irradiated environments, such as Kocuria, Micrococcus or Deinococcus spp., but also clinically relevant taxa, such as Staphylococcus or Pseudomonas spp. The UV-radiation assays revealed that, although some isolates displayed some resistance, UV is not a major factor shaping the biocenosis living on the cabins, since a similar pool of resistant microorganisms was identified on the external surface of the cabins. Interestingly, some Staphylococcus spp. displayed resistance to one or more antibiotics, although the hospital reported no cases of antibiotic-resistance infections of the patients using the cabins. Finally, no association between UV and antibiotic resistances was found.
Collapse
Affiliation(s)
- Esther Molina-Menor
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Valencia, Spain
| | - Nicolás Carlotto
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Valencia, Spain
| | - Àngela Vidal-Verdú
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Valencia, Spain
| | | | - Gemma Pérez-Pastor
- Servicio de Dermatología, Consorcio Hospital General de Valencia, Valencia, Spain
| | - Manuel Porcar
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia-CSIC), Valencia, Spain.
- Darwin Bioprospecting Excellence SL (Parc Científic Universitat de València, C/ Catedràtic Agustín Escardino Benlloch 9, Paterna, Spain.
| |
Collapse
|
8
|
Bosso A, Tortora F, Culurciello R, Di Nardo I, Pistorio V, Carraturo F, Colecchia A, Di Girolamo R, Cafaro V, Notomista E, Ingenito R, Pizzo E. Simultaneous Irradiation with UV-A, -B, and -C Lights Promotes Effective Decontamination of Planktonic and Sessile Bacteria: A Pilot Study. Int J Mol Sci 2023; 24:12951. [PMID: 37629131 PMCID: PMC10454392 DOI: 10.3390/ijms241612951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Surfaces in highly anthropized environments are frequently contaminated by both harmless and pathogenic bacteria. Accidental contact between these contaminated surfaces and people could contribute to uncontrolled or even dangerous microbial diffusion. Among all possible solutions useful to achieve effective disinfection, ultraviolet irradiations (UV) emerge as one of the most "Green" technologies since they can inactivate microorganisms via the formation of DNA/RNA dimers, avoiding the environmental pollution associated with the use of chemical sanitizers. To date, mainly UV-C irradiation has been used for decontamination purposes, but in this study, we investigated the cytotoxic potential on contaminated surfaces of combined UV radiations spanning the UV-A, UV-B, and UV-C spectrums, obtained with an innovative UV lamp never conceived so far by analyzing its effect on a large panel of collection and environmental strains, further examining any possible adverse effects on eukaryotic cells. We found that this novel device shows a significant efficacy on different planktonic and sessile bacteria, and, in addition, it is compatible with eukaryotic skin cells for short exposure times. The collected data strongly suggest this new lamp as a useful device for fast and routine decontamination of different environments to ensure appropriate sterilization procedures.
Collapse
Affiliation(s)
- Andrea Bosso
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.T.); (R.C.); (I.D.N.); (F.C.); (V.C.); (E.N.)
| | - Francesca Tortora
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.T.); (R.C.); (I.D.N.); (F.C.); (V.C.); (E.N.)
| | - Rosanna Culurciello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.T.); (R.C.); (I.D.N.); (F.C.); (V.C.); (E.N.)
| | - Ilaria Di Nardo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.T.); (R.C.); (I.D.N.); (F.C.); (V.C.); (E.N.)
| | - Valeria Pistorio
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, Inserm, 75012 Paris, France;
| | - Federica Carraturo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.T.); (R.C.); (I.D.N.); (F.C.); (V.C.); (E.N.)
- Hygiene Laboratory, Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), University of Naples Federico II, 80146 Naples, Italy
| | - Andrea Colecchia
- Physics Department “Ettore Pancini”, University of Naples Federico II, 80126 Naples, Italy;
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
| | - Valeria Cafaro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.T.); (R.C.); (I.D.N.); (F.C.); (V.C.); (E.N.)
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.T.); (R.C.); (I.D.N.); (F.C.); (V.C.); (E.N.)
| | | | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.T.); (R.C.); (I.D.N.); (F.C.); (V.C.); (E.N.)
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
9
|
Genetic and physical interactions between Polη and Rev1 in response to UV-induced DNA damage in mammalian cells. Sci Rep 2021; 11:21364. [PMID: 34725419 PMCID: PMC8560953 DOI: 10.1038/s41598-021-00878-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
In response to UV irradiation, translesion DNA synthesis (TLS) utilizes specialized DNA polymerases to bypass replication-blocking lesions. In a well-established polymerase switch model, Polη is thought to be a preferred TLS polymerase to insert correct nucleotides across from the thymine dimer, and Rev1 plays a scaffold role through physical interaction with Polη and the Rev7 subunit of Polζ for continual DNA synthesis. Defective Polη causes a variant form of xeroderma pigmentosum (XPV), a disease with predisposition to sunlight-induced skin cancer. Previous studies revealed that expression of Rev1 alone is sufficient to confer enhanced UV damage tolerance in mammalian cells, which depends on its physical interaction with Polζ but is independent of Polη, a conclusion that appears to contradict current literature on the critical roles of Polη in TLS. To test a hypothesis that the Rev1 catalytic activity is required to backup Polη in TLS, we found that the Rev1 polymerase-dead mutation is synergistic with either Polη mutation or the Polη-interaction mutation in response to UV-induced DNA damage. On the other hand, functional complementation of polH cells by Polη relies on its physical interaction with Rev1. Hence, our studies reveal critical interactions between Rev1 and Polη in response to UV damage.
Collapse
|
10
|
Martijn J, Schön ME, Lind AE, Vosseberg J, Williams TA, Spang A, Ettema TJG. Hikarchaeia demonstrate an intermediate stage in the methanogen-to-halophile transition. Nat Commun 2020; 11:5490. [PMID: 33127909 PMCID: PMC7599335 DOI: 10.1038/s41467-020-19200-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/01/2020] [Indexed: 01/09/2023] Open
Abstract
Halobacteria (henceforth: Haloarchaea) are predominantly aerobic halophiles that are thought to have evolved from anaerobic methanogens. This remarkable transformation most likely involved an extensive influx of bacterial genes. Whether it entailed a single massive transfer event or a gradual stream of transfers remains a matter of debate. To address this, genomes that descend from methanogen-to-halophile intermediates are necessary. Here, we present five such near-complete genomes of Marine Group IV archaea (Hikarchaeia), the closest known relatives of Haloarchaea. Their inclusion in gene tree-aware ancestral reconstructions reveals an intermediate stage that had already lost a large number of genes, including nearly all of those involved in methanogenesis and the Wood-Ljungdahl pathway. In contrast, the last Haloarchaea common ancestor gained a large number of genes and expanded its aerobic respiration and salt/UV resistance gene repertoire. Our results suggest that complex and gradual patterns of gain and loss shaped the methanogen-to-halophile transition.
Collapse
Affiliation(s)
- Joran Martijn
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Max E Schön
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Anders E Lind
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Julian Vosseberg
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Anja Spang
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, The Netherlands
| | - Thijs J G Ettema
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Wang L, Zhao H, He D, Wu Y, Jin L, Li G, Su N, Li H, Xing XH. Insights into the molecular-level effects of atmospheric and room-temperature plasma on mononucleotides and single-stranded homo- and hetero-oligonucleotides. Sci Rep 2020; 10:14298. [PMID: 32868795 PMCID: PMC7459345 DOI: 10.1038/s41598-020-71152-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/09/2020] [Indexed: 01/18/2023] Open
Abstract
Atmospheric and room-temperature plasma (ARTP) has been successfully developed as a useful mutation tool for mutation breeding of various microbes and plants as well animals by genetic alterations. However, understanding of the molecular mechanisms underlying the biological responses to ARTP irradiation is still limited. Therefore, to gain a molecular understanding of how irradiation with ARTP damages DNA, we irradiated the artificially synthesized mononucleotides of dATP, dTTP, dGTP, and dCTP, and the oligonucleotides of dA8, dT8, dG8, dC8, and dA2dT2dG2dC2 as chemical building blocks of DNA with ARTP for 1-4 min, identified the mononucleotide products using 31P- and 1H-nuclear magnetic resonance spectroscopy (NMR), and identified the oligonucleotide products using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) during ARTP treatment. The observed 31P-and 1H-NMR spectrum signals for the plasma-treated and untreated mononucleotides indicated that dATP was less stable to plasma irradiation than the other mononucleotides. The oligonucleotides after treatment with ARTP were found to have been broken into small fragments as shown by mass spectrometry, with the cleaved bonds and produced fragments identified according to their expected spectral m/z values or molecular weights derived from their m/z values. The stabilities of the oligonucleotides differed to ARTP irradiation, with dT8 being the most stable and was more beneficial to stabilizing single-stranded oligonucleotide structures compared to the other base groups (A, G, and C). This was consistent with the average potential energy level obtained by the molecular dynamic simulation of the oligonucleotides, i.e., dT8 > dC8 > dA8 > dG8 > dA2dT2dG2dC2. In summary, we found that ARTP treatment caused various structural changes to the oligonucleotides that may account for the wide and successful applications reported for ARTP-induced mutation breeding of various organisms.
Collapse
Affiliation(s)
- Liyan Wang
- MOE Key Laboratory for Industrial Biocatalysis, Department of Chemical Engineering, Center for Synthetic and Systems Biology, Tsinghua University, Haidian District, Beijing, 100084, People's Republic of China
- Biobreeding Center, Wuxi Research Institute of Applied Technologies, Tsinghua University, Wuxi, 214072, People's Republic of China
- TmaxTree Biotechnology Co. Ltd., Luoyang, 471023, People's Republic of China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Dong He
- MOE Key Laboratory for Industrial Biocatalysis, Department of Chemical Engineering, Center for Synthetic and Systems Biology, Tsinghua University, Haidian District, Beijing, 100084, People's Republic of China
| | - Yinan Wu
- MOE Key Laboratory for Industrial Biocatalysis, Department of Chemical Engineering, Center for Synthetic and Systems Biology, Tsinghua University, Haidian District, Beijing, 100084, People's Republic of China
| | - Lihua Jin
- College of Bioengineering, Beijing Polytechnic, Beijing, 100176, People's Republic of China
| | - Guo Li
- Department of Engineering Physics, Tsinghua University, Haidian District, Beijing, 100084, People's Republic of China
| | - Nan Su
- MOE Key Laboratory for Industrial Biocatalysis, Department of Chemical Engineering, Center for Synthetic and Systems Biology, Tsinghua University, Haidian District, Beijing, 100084, People's Republic of China
| | - Heping Li
- Department of Engineering Physics, Tsinghua University, Haidian District, Beijing, 100084, People's Republic of China.
| | - Xin-Hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Department of Chemical Engineering, Center for Synthetic and Systems Biology, Tsinghua University, Haidian District, Beijing, 100084, People's Republic of China.
- Center for Synthetic and System Biology, Tsinghua University, Beijing, People's Republic of China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
12
|
Wang Z, Xiao W. Distinct requirements for budding yeast Rev1 and Polη in translesion DNA synthesis across different types of DNA damage. Curr Genet 2020; 66:1019-1028. [PMID: 32623695 DOI: 10.1007/s00294-020-01092-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 02/04/2023]
Abstract
Certain replication-blocking lesions can escape DNA repair and must be bypassed to prevent fork collapse and cell death. Budding yeast DNA-damage tolerance consists of translesion DNA synthesis (TLS) and template switch. TLS utilizes specialized DNA polymerases to insert nucleotides opposite the damage site, followed by extension, allowing continual replication in the presence of lesions on the template DNA. Meanwhile, Rev1 is additionally required for the subsequent extension step of TLS regardless of the initial insertion polymerase utilized. Here we assess relative contributions of two Y-family TLS polymerases, Rev1 and Polη, in bypassing lesions induced by various types of DNA-damaging agents. Our experimental results collectively indicate that yeast cells preferentially utilize relatively error-free TLS polymerase(s) to bypass given lesions, and that the mutagenic TLS polymerase may serve as a backup. Interestingly, if Polη is unable to serve as a TLS polymerase under certain circumstances, it may be counter-active. The cooperation among TLS polymerases may strike a balance between survival and stress-induced mutagenesis. These observations indicate that specialized Y-family DNA polymerases have evolved to deal with different types of environmental genotoxic stresses.
Collapse
Affiliation(s)
- Zihao Wang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China. .,Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
13
|
Zielińska A, Ferreira NR, Feliczak-Guzik A, Nowak I, Souto EB. Loading, release profile and accelerated stability assessment of monoterpenes-loaded solid lipid nanoparticles (SLN). Pharm Dev Technol 2020; 25:832-844. [PMID: 32204628 DOI: 10.1080/10837450.2020.1744008] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glycerol monostearate solid lipid nanoparticles (SLN) were produced by hot high-pressure homogenization technique to load alpha-pinene, citral, geraniol or limonene. SLN were composed of 1 wt.% monoterpene, 4 wt.% of Imwitor® 900K as a solid lipid and 2.5 wt.% of Poloxamer188 as a surfactant. Empty SLN consisted of 5 wt.% of Imwitor® 900K and 2.5 wt.% of Poloxamer188. The mean particles size (Z-Ave) and polydispersity index (PDI) of SLN were analyzed by dynamic light scattering (DLS), while the zeta potential (ZP) of each formulation were measured by electrophoretic light scattering. LUMiSizer® was applied to calculate the velocity distribution in the centrifugal field and instability index. Drug release profile from SLN was analyzed using Franz cell diffusion cells assayed by UV-Vis spectrophotometry, whereas the gas chromatography technique was applied to determine the encapsulation parameters of volatile monoterpenes. The matrix state, polymorphism and phase behavior of SLN were studied by X-ray diffraction (XRD, low and wide angles) and differential scanning calorimetry (DSC). Selected monoterpenes were successfully loaded in glycerol monostearate SLN. A burst release profile within the first 15 min was observed for all formulations, being the modified release profile dependent on the type of monoterpene and on the encapsulation efficiency.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznan, Poland
| | - Nuno R Ferreira
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | | | - Izabela Nowak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznan, Poland
| | - Eliana B Souto
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
14
|
Korhonen E, Piippo N, Hytti M, Hyttinen JMT, Kaarniranta K, Kauppinen A. Only IL‐1β release is inflammasome‐dependent upon ultraviolet B irradiation although IL‐18 is also secreted. FASEB J 2020; 34:6437-6448. [DOI: 10.1096/fj.201902355rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Eveliina Korhonen
- School of Pharmacy Faculty of Health Sciences University of Eastern Finland Kuopio Finland
- HUSLAB University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Niina Piippo
- School of Pharmacy Faculty of Health Sciences University of Eastern Finland Kuopio Finland
| | - Maria Hytti
- School of Pharmacy Faculty of Health Sciences University of Eastern Finland Kuopio Finland
| | - Juha M. T. Hyttinen
- Department of Ophthalmology Institute of Clinical Medicine University of Eastern Finland Kuopio Finland
| | - Kai Kaarniranta
- Department of Ophthalmology Institute of Clinical Medicine University of Eastern Finland Kuopio Finland
- Department of Ophthalmology Kuopio University Hospital Kuopio Finland
| | - Anu Kauppinen
- School of Pharmacy Faculty of Health Sciences University of Eastern Finland Kuopio Finland
| |
Collapse
|
15
|
Sheng DH, Wang YX, Qiu M, Zhao JY, Yue XJ, Li YZ. Functional Division Between the RecA1 and RecA2 Proteins in Myxococcus xanthus. Front Microbiol 2020; 11:140. [PMID: 32117159 PMCID: PMC7029660 DOI: 10.3389/fmicb.2020.00140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Myxococcus xanthus DK1622 has two RecA genes, recA1 (MXAN_1441) and recA2 (MXAN_1388), with unknown functional differentiation. Herein, we showed that both recA genes were induced by ultraviolet (UV) irradiation but that the induction of recA1 was more delayed than that of recA2. Deletion of recA1 did not affect the growth but significantly decreased the UV-radiation survival, homologous recombination (HR) ability, and induction of LexA-dependent SOS genes. In contrast, the deletion of recA2 markedly prolonged the lag phase of bacterial growth and increased the sensitivity to DNA damage caused by hydrogen peroxide but did not change the UV-radiation resistance or SOS gene inducibility. Protein activity analysis demonstrated that RecA1, but not RecA2, catalyzed DNA strand exchange (DSE) and LexA autocleavage in vitro. Transcriptomic analysis indicated that RecA2 has evolved mainly to regulate gene expression for cellular transportation and antioxidation. This is the first report of functional divergence of duplicated bacterial recA genes. The results highlight the evolutionary strategy of M. xanthus cells for DNA HR and genome sophistication.
Collapse
Affiliation(s)
- Duo-Hong Sheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yi-Xue Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Miao Qiu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jin-Yi Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
16
|
Linalool bioactive properties and potential applicability in drug delivery systems. Colloids Surf B Biointerfaces 2018; 171:566-578. [DOI: 10.1016/j.colsurfb.2018.08.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 01/07/2023]
|
17
|
DNA Damage and Deficiencies in the Mechanisms of Its Repair: Implications in the Pathogenesis of Systemic Lupus Erythematosus. J Immunol Res 2018; 2018:8214379. [PMID: 30116756 PMCID: PMC6079408 DOI: 10.1155/2018/8214379] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/30/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a perplexing and potentially severe disease, the pathogenesis of which is yet to be understood. SLE is considered to be a multifactorial disease, in which genetic factors, immune dysregulation, and environmental factors, such as ultraviolet radiation, are involved. Recently, the description of novel genes conferring susceptibility to develop SLE even in their own (monogenic lupus) has raised the interest in DNA dynamics since many of these genes are linked to DNA repair. Damage to DNA induces an inflammatory response and eventually triggers an immune response, including those targeting self-antigens. We review the evidence that indicates that patients with SLE present higher levels of DNA damage than normal subjects do and that several proteins involved in the preservation of the genomic stability show polymorphisms, some of which increase the risk for SLE development. Also, the experience from animal models reinforces the connection between DNA damage and defective repair in the development of SLE-like disease including characteristic features such as anti-DNA antibodies and nephritis. Defining the role of DNA damage response in SLE pathogenesis might be strategic in the quest for novel therapies.
Collapse
|
18
|
Liu Y, Zheng Z, Gong H, Liu M, Guo S, Li G, Wang X, Kaplan DL. DNA preservation in silk. Biomater Sci 2018; 5:1279-1292. [PMID: 28561097 DOI: 10.1039/c6bm00741d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The structure of DNA is susceptible to alterations at high temperature and on changing pH, irradiation and exposure to DNase. Options to protect and preserve DNA during storage are important for applications in genetic diagnosis, identity authentication, drug development and bioresearch. In the present study, the stability of total DNA purified from human dermal fibroblast cells, as well as that of plasmid DNA, was studied in silk protein materials. The DNA/silk mixtures were stabilized on filter paper (silk/DNA + filter) or filter paper pre-coated with silk and treated with methanol (silk/DNA + PT-filter) as a route to practical utility. After air-drying and water extraction, 50-70% of the DNA and silk could be retrieved and showed a single band on electrophoretic gels. 6% silk/DNA + PT-filter samples provided improved stability in comparison with 3% silk/DNA + filter samples and DNA + filter samples for DNA preservation, with ∼40% of the band intensity remaining at 37 °C after 40 days and ∼10% after exposure to UV light for 10 hours. Quantitative analysis using the PicoGreen assay confirmed the results. The use of Tris/borate/EDTA (TBE) buffer enhanced the preservation and/or extraction of the DNA. The DNA extracted after storage maintained integrity and function based on serving as a functional template for PCR amplification of the gene for zinc finger protein 750 (ZNF750) and for transgene expression of red fluorescence protein (dsRed) in HEK293 cells. The high molecular weight and high content of a crystalline beta-sheet structure formed on the coated surfaces likely accounted for the preservation effects observed for the silk/DNA + PT-filter samples. Although similar preservation effects were also obtained for lyophilized silk/DNA samples, the rapid and simple processing available with the silk-DNA-filter membrane system makes it appealing for future applications.
Collapse
Affiliation(s)
- Yawen Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu Y, Liu J, Wang Y, Abozeid A, Tian DM, Zhang XN, Tang ZH. The Different Resistance of Two Astragalus Plants to UV-B Stress is Tightly Associated with the Organ-specific Isoflavone Metabolism. Photochem Photobiol 2017; 94:115-125. [PMID: 28881500 DOI: 10.1111/php.12841] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 08/27/2017] [Indexed: 12/24/2022]
Abstract
In this work, the changes in isoflavone levels and the expression of genes involved in their biosynthesis were studied in two Astragalus by UPLC-MS and real-time PCR after 10 days of UV-B treatment (λmax = 313 nm, 804 J m-2 ). Isoflavones were significantly induced by UV-B irradiation. The influence might be activated by the regulation of these target genes. Our results indicate that (1) the resistance of Astragalus membranaceus might not be as good as Astragalus mongholicus in the enhanced UV-B radiation environment; (2) the enhanced accumulation of calycosin and calycosin-7-glucoside with UV-B treatment in roots of A. mongholicus might be derived from formononetin which is synthesized in the leaves; (3) the glycosylation process could be stimulated and activated by the enhanced UV-B radiation in both A. mongholicus and A. membranaceus. In other words, glycosylation of isoflavones might play a crucial role for two Astragalus plants in response to UV-B stress. Overall, this study offered a feasible elicitation strategy to understand the accumulation pattern of isoflavone in A. mongholicus and A. membranaceus, and also provided a reference for the changes in isoflavone levels of Astragalus in UV-B enhanced environment in the future.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, China
| | - Jia Liu
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, China
| | - Yu Wang
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, China
| | - Ann Abozeid
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, China.,Botany Department, Faculty of Science, Menoufia University, Shebin El-koom, Egypt
| | - Dong-Mei Tian
- Heilongjiang Province Institute for Food and Drug Control, Harbin, China
| | - Xiao-Ning Zhang
- Heilongjiang Province Institute for Food and Drug Control, Harbin, China
| | - Zhong-Hua Tang
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, China
| |
Collapse
|
20
|
Zamarrón A, García M, Río MD, Larcher F, Juarranz Á. Effects of photodynamic therapy on dermal fibroblasts from xeroderma pigmentosum and Gorlin-Goltz syndrome patients. Oncotarget 2017; 8:77385-77399. [PMID: 29100394 PMCID: PMC5652786 DOI: 10.18632/oncotarget.20485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022] Open
Abstract
PDT is widely applied for the treatment of non-melanoma skin cancer pre-malignant and malignant lesions (actinic keratosis, basal cell carcinoma and in situ squamous cell carcinoma). In photodynamic therapy (PDT) the interaction of a photosensitizer (PS), light and oxygen leads to the formation of reactive oxygen species (ROS) and thus the selective tumor cells eradication. Xeroderma pigmentosum (XP) and Gorlin-Goltz Syndrome (GS) patients are at high risk of developing skin cancer in sun-exposed areas. Therefore, the use of PDT as a preventive treatment may constitute a very promising therapeutic modality for these syndromes. Given the demonstrated role of cancer associated fibroblasts (CAFs) in tumor progression and the putative CAFs features of some cancer-prone genodermatoses fibroblasts, in this study, we have further characterized the phenotype of XP and GS dermal fibroblasts and evaluated their response to methyl-δ-aminolevulinic acid (MAL)-PDT compared to that of dermal fibroblasts obtained from healthy donors. We show here that XP/GS fibroblasts display clear features of CAFs and present a significantly higher response to PDT, even after being stimulated with UV light, underscoring the value of this therapeutic approach for these rare skin conditions and likely to other forms of skin cancer were CAFs play a major role.
Collapse
Affiliation(s)
- Alicia Zamarrón
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid, IRYCIS, Madrid, Spain
| | - Marta García
- Department of Bioengineering, Carlos III University (UC3M), Madrid, Spain
- CIEMAT-Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Marcela Del Río
- Department of Bioengineering, Carlos III University (UC3M), Madrid, Spain
- CIEMAT-Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Fernando Larcher
- Department of Bioengineering, Carlos III University (UC3M), Madrid, Spain
- CIEMAT-Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Ángeles Juarranz
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid, IRYCIS, Madrid, Spain
| |
Collapse
|
21
|
Spampinato CP. Protecting DNA from errors and damage: an overview of DNA repair mechanisms in plants compared to mammals. Cell Mol Life Sci 2017; 74:1693-1709. [PMID: 27999897 PMCID: PMC11107726 DOI: 10.1007/s00018-016-2436-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 01/10/2023]
Abstract
The genome integrity of all organisms is constantly threatened by replication errors and DNA damage arising from endogenous and exogenous sources. Such base pair anomalies must be accurately repaired to prevent mutagenesis and/or lethality. Thus, it is not surprising that cells have evolved multiple and partially overlapping DNA repair pathways to correct specific types of DNA errors and lesions. Great progress in unraveling these repair mechanisms at the molecular level has been made by several talented researchers, among them Tomas Lindahl, Aziz Sancar, and Paul Modrich, all three Nobel laureates in Chemistry for 2015. Much of this knowledge comes from studies performed in bacteria, yeast, and mammals and has impacted research in plant systems. Two plant features should be mentioned. Plants differ from higher eukaryotes in that they lack a reserve germline and cannot avoid environmental stresses. Therefore, plants have evolved different strategies to sustain genome fidelity through generations and continuous exposure to genotoxic stresses. These strategies include the presence of unique or multiple paralogous genes with partially overlapping DNA repair activities. Yet, in spite (or because) of these differences, plants, especially Arabidopsis thaliana, can be used as a model organism for functional studies. Some advantages of this model system are worth mentioning: short life cycle, availability of both homozygous and heterozygous lines for many genes, plant transformation techniques, tissue culture methods and reporter systems for gene expression and function studies. Here, I provide a current understanding of DNA repair genes in plants, with a special focus on A. thaliana. It is expected that this review will be a valuable resource for future functional studies in the DNA repair field, both in plants and animals.
Collapse
Affiliation(s)
- Claudia P Spampinato
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
22
|
Banyasz A, Martinez-Fernandez L, Ketola TM, Muñoz-Losa A, Esposito L, Markovitsi D, Improta R. Excited State Pathways Leading to Formation of Adenine Dimers. J Phys Chem Lett 2016; 7:2020-2023. [PMID: 27163876 DOI: 10.1021/acs.jpclett.6b00660] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The reaction intermediate in the path leading to UV-induced formation of adenine dimers A═A and AA* is identified for the first time quantum mechanically, using PCM/TD-DFT calculations on (dA)2 (dA: 2'deoxyadenosine). In parallel, its fingerprint is detected in the absorption spectra recorded on the millisecond time-scale for the single strand (dA)20 (dA: 2'deoxyadenosine).
Collapse
Affiliation(s)
- Akos Banyasz
- LIDYL, CEA, CNRS, Université Paris-Saclay , F-91191 Gif-sur-Yvette, France
| | - Lara Martinez-Fernandez
- Istituto Biostrutture e Bioimmagini-Consiglio Nazionale delle Ricerche , Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Tiia-Maaria Ketola
- LIDYL, CEA, CNRS, Université Paris-Saclay , F-91191 Gif-sur-Yvette, France
| | - Aurora Muñoz-Losa
- LIDYL, CEA, CNRS, Université Paris-Saclay , F-91191 Gif-sur-Yvette, France
| | - Luciana Esposito
- Istituto Biostrutture e Bioimmagini-Consiglio Nazionale delle Ricerche , Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Dimitra Markovitsi
- LIDYL, CEA, CNRS, Université Paris-Saclay , F-91191 Gif-sur-Yvette, France
| | - Roberto Improta
- Istituto Biostrutture e Bioimmagini-Consiglio Nazionale delle Ricerche , Via Mezzocannone 16, I-80134 Napoli, Italy
| |
Collapse
|
23
|
Abstract
Photoinduced processes in nucleic acids are phenomena of fundamental interest in diverse fields, from prebiotic studies, through medical research on carcinogenesis, to the development of bioorganic photodevices. In this contribution we survey many aspects of the research across the boundaries. Starting from a historical background, where the main milestones are identified, we review the main findings of the physical-chemical research of photoinduced processes on several types of nucleic-acid fragments, from monomers to duplexes. We also discuss a number of different issues which are still under debate.
Collapse
Affiliation(s)
- Mario Barbatti
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany,
| | | | | |
Collapse
|