1
|
Terry LM, Foreman MM, Weber JM. Effects of Anion Size, Shape, and Solvation in Binding of Nitrate to Octamethyl Calix[4]pyrrole. J Phys Chem Lett 2024; 15:9481-9486. [PMID: 39254991 DOI: 10.1021/acs.jpclett.4c02347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
We present cryogenic ion vibrational spectroscopy of complexes of the anion receptor octamethyl calix[4]pyrrole (omC4P) with nitrate in vacuo. We compare the resulting vibrational spectrum with that in deuterated acetonitrile solution, and we interpret the results using density functional theory. Nitrate binds to omC4P through hydrogen bonds between the four NH groups of the receptor and a single NO group of the nitrate ion. The shape of the ion breaks the C4v symmetry of the receptor, and this symmetry lowering is encoded in the pattern of the NH stretching modes of omC4P. We compare the spectrum of nitrate-omC4P with that of chloride-omC4P to discuss effects of ion size, shape, and solvent interaction on the ion binding behavior.
Collapse
Affiliation(s)
- Lane M Terry
- JILA and Department of Chemistry, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| | - Madison M Foreman
- JILA and Department of Chemistry, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| | - J Mathias Weber
- JILA and Department of Chemistry, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
2
|
Foley CD, Lee C, Abou Taka A, Au K, Chollet E, Kubasik MA, McCaslin LM, Zwier TS. Site-Specific Photochemistry along a Protonated Peptide Scaffold. J Am Chem Soc 2024; 146:13282-13295. [PMID: 38687970 DOI: 10.1021/jacs.4c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
We present a detailed study of the time-dependent photophysics and photochemistry of a known conformation of the two protonated pentapeptides Leu-enkephalin (Tyrosine-Glycine-Glycine-Phenylalanine-Leucine, YGGFL) and its chromophore-swapped analogue FGGYL, carried out under cryo-cooled conditions in the gas phase. Using ultraviolet-infrared (UV-IR) double resonance, we record excited state IR spectra as a function of time delay between UV and IR pulses. We identify unique Tyr OH stretch transitions due to the S1 state and the vibrationally excited triplet state(s) formed by intersystem crossing, Tn(v). Photofragment mass spectra are recorded out of the S1 origin and following UV-IR double resonance. Several competing site-specific fragmentation pathways are discovered involving peptide backbone cleavage, Tyr side chain loss, and N-terminal NH3 loss mediated by electron transfer. In YGGFL, IR excitation in the S1 state promotes electron transfer (ET) from the aromatic ring to the N-terminal R-NH3+ group leading to loss of neutral NH3. This product channel is missing in FGGYL due to the larger distance for ET from Y(4) to NH3+. Selective loss of the Tyr side chain occurs out of an excited state process following UV excitation and is further enhanced by IR excitation in S1 and Tn(v) states of both YGGFL and FGGYL. Finally, IR excitation in the S1 or Tn(v) states fragments the peptide backbone exclusively at amide(4), producing the b4 cation. We postulate that this selective fragmentation results from intersystem crossing to produce vibrationally excited triplets with enough energy to launch the proton along a proton conduit present in the known starting structure.
Collapse
Affiliation(s)
- Casey D Foley
- Gas Phase Chemical Physics, Sandia National Laboratories, Livermore, California 94550, United States
| | - Chin Lee
- Gas Phase Chemical Physics, Sandia National Laboratories, Livermore, California 94550, United States
| | - Ali Abou Taka
- Gas Phase Chemical Physics, Sandia National Laboratories, Livermore, California 94550, United States
| | - Kendrew Au
- Gas Phase Chemical Physics, Sandia National Laboratories, Livermore, California 94550, United States
| | - Etienne Chollet
- Department of Chemistry and Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| | - Matthew A Kubasik
- Department of Chemistry and Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| | - Laura M McCaslin
- Gas Phase Chemical Physics, Sandia National Laboratories, Livermore, California 94550, United States
| | - Timothy S Zwier
- Gas Phase Chemical Physics, Sandia National Laboratories, Livermore, California 94550, United States
| |
Collapse
|
3
|
Fries DV, Klein MP, Straßner A, Huber ME, Luczak M, Wiehn C, Niedner-Schatteburg G. Cryo IR spectroscopy and cryo kinetics of dinitrogen activation and cleavage by small tantalum cluster cations. J Chem Phys 2023; 159:164303. [PMID: 37873960 DOI: 10.1063/5.0157217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023] Open
Abstract
We investigate small tantalum clusters Tan+, n = 2-4, for their capability to cleave N2 adsorption spontaneously. We utilize infrared photon dissociation (IR-PD) spectroscopy of isolated and size selected clusters under cryogenic conditions within a buffer gas filled ion trap, and we augment our experiments by quantum chemical simulations (at DFT level). All Tan+ clusters, n = 2-4, seem to cleave N2 efficiently. We confirm and extend a previous study under ambient conditions on Ta2+ cluster [Geng et al., Proc. Natl. Acad. Sci. U. S. A. 115, 11680-11687 (2018)]. Our cryo studies and the concomitant DFT simulations of the tantalum trimer Ta3+ suggest cleavage of the first and activation of the second and third N2 molecule across surmountable barriers and along much-involved multidimensional reaction paths. We unravel the underlying reaction processes and the intermediates involved. The study of the N2 adsorbate complexes of Ta4+ presented here extends our earlier study and previously published spectra from (4,m), m = 1-5 [Fries et al., Phys. Chem. Chem. Phys. 23(19), 11345-11354 (2021)], up to m = 12. We confirm the priory published double activation and nitride formation, succeeded by single side-on N2 coordination. Significant red shifts of IR-PD bands from these side-on coordinated μ2-κN:κN,N N2 ligands correlate with the degree of tilting towards the second coordinating Ta center. All subsequently attaching N2 adsorbates onto Ta4+ coordinate in an end-on fashion, and we find clear evidence for co-existence of end-on coordination isomers. The study of stepwise N2 adsorption revealed adsorption limits m(max) of [Tan(N2)m]+ which increase with n, and kinetic fits revealed significant N2 desorption rates upon higher N2 loads. The enhanced absolute rate constants of the very first adsorbate steps kabs(n,0) of the small Ta3+ and Ta4+ clusters independently suggest dissociative N2 adsorption and likely N2 cleavage into Ta nitrides.
Collapse
Affiliation(s)
- Daniela V Fries
- Department of Chemistry and State Research Center OPTIMAS, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Matthias P Klein
- Department of Chemistry and State Research Center OPTIMAS, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Annika Straßner
- Department of Chemistry and State Research Center OPTIMAS, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Maximilian E Huber
- Department of Chemistry and State Research Center OPTIMAS, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Maximilian Luczak
- Department of Chemistry and State Research Center OPTIMAS, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Christopher Wiehn
- Department of Chemistry and State Research Center OPTIMAS, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Gereon Niedner-Schatteburg
- Department of Chemistry and State Research Center OPTIMAS, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| |
Collapse
|
4
|
Vo KX, Hirata K, Lisy JM, Ishiuchi SI, Fujii M. Infrared Spectra of Beauvericin-Alkaline Earth Metal Ion Complexes─Ion Preference to Physiological Ions. J Phys Chem A 2023; 127:7115-7120. [PMID: 37589551 DOI: 10.1021/acs.jpca.3c02783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Beauvericin (Bv) is a naturally occurring ionophore that selectively transports ions through cell membranes. However, the intrinsic ion selectivity of Bv for alkaline earth metal ions (M2+) is yet to be established due to inconsistent results from condensed phase experiments. Based on fluorescence quenching rates, Ca2+ appears to be preferred while extraction experiments favor Mg2+. In this study, we apply cold ion trap─infrared spectroscopy to Bv-M2+ coupled with electrospray ionization mass spectrometry. The mass spectrum shows that Bv favors binding to physiologically active ions Mg2+ and Ca2+ although it can form complexes with all four alkaline earth metal ions. Infrared spectroscopy, as measured by the H2 tag technique, reveals that Bv binds Mg2+ and Ca2+ ions by six carbonyl oxygens in the center of its cavity. This observation is supported by theoretical calculations. Other alkaline earth metal ions are bound by three carbonyl groups at the amide face. This difference in configuration is consistent with the binding preferences for the alkaline earth metal ions.
Collapse
Affiliation(s)
- Kien X Vo
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keisuke Hirata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - James M Lisy
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
5
|
Foley CD, Allen CD, Au K, Lee C, Rempe SB, Ren P, Sibert EL, Zwier TS. Molecular Cage Reports on Its Contents: Spectroscopic Signatures of Cryo-Cooled K +- and Ba 2+-Benzocryptand Complexes. J Phys Chem A 2023. [PMID: 37478410 DOI: 10.1021/acs.jpca.3c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
UV photofragment spectroscopy and IR-UV double resonance methods are used to determine the structure and spectroscopic responses of a three-dimensional [2.2.2]-benzocryptand cage to the incorporation of a single K+ or Ba2+ imbedded inside it (labeled as K+-BzCrypt, Ba2+-BzCrypt). We studied the isolated ion-cryptand complex under cryo-cooled conditions, brought into the gas phase by nano-electrospray ionization. Incorporation of a phenyl ring in place of the central ethyl group in one of the three N-CH2-CH2-O-CH2-CH2-O-CH2-CH2-N chains provides a UV chromophore whose S0-S1 transition we probe. K+-BzCrypt and Ba2+-BzCrypt have their S0-S1 origin transitions at 35,925 and 36,446 cm-1, respectively, blue-shifted by 174 and 695 cm-1 from that of 1,2-dimethoxybenzene. These origins are used to excite a single conformation of each complex selectively and record their IR spectra using IR-UV dip spectroscopy. The alkyl CH stretch region (2800-3000 cm-1) is surprisingly sensitive to the presence and nature of the encapsulated ion. We carried out an exhaustive conformational search of cage conformations for K+-BzCrypt and Ba2+-BzCrypt, identifying two conformations (A and B) that lie below all others in energy. We extend our local mode anharmonic model of the CH stretch region to these strongly bound ion-cage complexes to predict conformation-specific alkyl CH stretch spectra, obtaining quantitative agreement with experiment for conformer A, the gas-phase global minimum. The large electrostatic effect of the charge on the O- and N-lone pairs affects the local mode frequencies of the CH2 groups adjacent to these atoms. The localized CH2 scissors modes are pushed up in frequency by the adjacent O/N-atoms so that their overtones have little effect on the alkyl CH stretch region. However, the localized CH2 wags are nearly degenerate and strongly coupled to one another, producing an array of delocalized wag normal modes, whose highest frequency members reach up above 1400 cm-1. As such, their overtones mix significantly with the CH stretch modes, most notably involving the CH2 symmetric stretch fundamentals of the central ethyl groups in the all-alkyl chains and the CH stretches adjacent to the N-atoms and antiperiplanar to the nitrogen lone pair.
Collapse
Affiliation(s)
- Casey D Foley
- Gas Phase Chemical Physics, Sandia National Laboratories, Livermore, California 94550, United States
| | - Cole D Allen
- Department of Biomedical Engineering, University of Texas-Austin, Austin, Texas 78712, United States
| | - Kendrew Au
- Gas Phase Chemical Physics, Sandia National Laboratories, Livermore, California 94550, United States
| | - Chin Lee
- Gas Phase Chemical Physics, Sandia National Laboratories, Livermore, California 94550, United States
| | - Susan B Rempe
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, University of Texas-Austin, Austin, Texas 78712, United States
| | - Edwin L Sibert
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Timothy S Zwier
- Gas Phase Chemical Physics, Sandia National Laboratories, Livermore, California 94550, United States
| |
Collapse
|
6
|
Andersen LH, Rasmussen AP, Pedersen HB, Beletsan OB, Bochenkova AV. High-Resolution Spectroscopy and Selective Photoresponse of Cryogenically Cooled Green Fluorescent Protein Chromophore Anions. J Phys Chem Lett 2023:6395-6401. [PMID: 37428615 DOI: 10.1021/acs.jpclett.3c01452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
By time-resolved action spectroscopy of cryogenically cooled molecular ions, we have achieved a remarkable vibrational resolution in the photoresponse of the deprotonated green fluorescent protein (GFP) chromophore, a key molecular unit in the bioimaging of living cells. We define four characteristic spectral regions of the S0-S1 band with competing electronic and nuclear decay channels. We determine the energy barrier toward internal conversion to be ∼250 cm-1. This inhibits internal conversion and hence statistical fragmentation near the S0-S1 band origin, which is identified at 481.51 ± 0.15 nm (20768 ± 6 cm-1). The origin is red-shifted by only 221 cm-1 compared to that of wild-type GFP at 77 K. This, together with a striking agreement between the vibronic profiles of the protein and its chromophore, suggests their similar photophysics. In combination with theory, the data reveal the coexistence of mutually energy-borrowing mechanisms between nuclei and electrons mediated by specific vibrational modes.
Collapse
Affiliation(s)
- Lars H Andersen
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Anne P Rasmussen
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Henrik B Pedersen
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Oleg B Beletsan
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | |
Collapse
|
7
|
Vo KX, Hirata K, Lisy JM, Ishiuchi SI, Fujii M. Na + Selective Binding by Beauvericin and Its Mechanism Studied by Mass-Coupled Cold Ion Trap Infrared Spectroscopy. J Phys Chem Lett 2022; 13:11330-11334. [PMID: 36454047 DOI: 10.1021/acs.jpclett.2c02814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Beauvericin (Bv) is a cyclic hexadepsipeptide mycotoxin that selectively transports ions across cell membranes. Characterization of its intrinsic ion affinity has been complicated by different previous results in condensed phases and biological membranes. We report the marked specificity between alkali metal ions by Bv using experimental and computational methods. Mass spectrometry shows Bv readily binds all five alkali ions; however, the complex with Na+ is the most abundant species, indicating a strong binding preference. Gas phase infrared spectroscopy and theoretical calculations show that Li+, K+, Rb+, and Cs+ are coordinated by three amide carbonyl oxygens on the N-methylamino-l-phenylalanyl face. Selectivity for Na+ is achieved as Bv sequesters Na+ in the center of its cavity formed by three amide carbonyl and three ester carbonyl groups, a configuration unique among alkali metal ions. This finding provides insight into the correlation between selectivity and conformation of Bv, essential for development of this mycotoxin.
Collapse
Affiliation(s)
- Kien X Vo
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keisuke Hirata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - James M Lisy
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
8
|
Papanastasiou D, Kounadis D, Lekkas A, Orfanopoulos I, Mpozatzidis A, Smyrnakis A, Panagiotopoulos E, Kosmopoulou M, Reinhardt-Szyba M, Fort K, Makarov A, Zubarev RA. The Omnitrap Platform: A Versatile Segmented Linear Ion Trap for Multidimensional Multiple-Stage Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1990-2007. [PMID: 36113052 PMCID: PMC9850925 DOI: 10.1021/jasms.2c00214] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Multidimensional multiple-stage tandem processing of ions is demonstrated successfully in a novel segmented linear ion trap. The enhanced performance is enabled by incorporating the entire range of ion activation methods into a single platform in a highly dynamic fashion. The ion activation network comprises external injection of reagent ions, radical neutral species, photons, electrons, and collisions with neutrals. Axial segmentation of the two-dimensional trapping field provides access to a unique functionality landscape through a system of purpose-designed regions for processing ions with maximum flexibility. Design aspects of the segmented linear ion trap, termed the Omnitrap platform, are highlighted, and motion of ions trapped by rectangular waveforms is investigated experimentally by mapping the stability diagram, tracing secular frequencies, and exploring different isolation techniques. All fragmentation methods incorporated in the Omnitrap platform involving radical chemistry are shown to provide complete sequence coverage for partially unfolded ubiquitin. Three-stage (MS3) tandem mass spectrometry experiments combining collision-induced dissociation of radical ions produced by electron meta-ionization and further involving two intermediate steps of ion isolation and accumulation are performed with high efficiency, producing information rich spectra with signal-to-noise levels comparable to those obtained in a two-stage (MS2) experiment. The advanced capabilities of the Omnitrap platform to provide in-depth top-down MSn characterization of proteins are portrayed. Performance is further enhanced by connecting the Omnitrap platform to an Orbitrap mass analyzer, while successful integration with time-of-flight analyzers has already been demonstrated.
Collapse
Affiliation(s)
- Dimitris Papanastasiou
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Diamantis Kounadis
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Alexandros Lekkas
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Ioannis Orfanopoulos
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Andreas Mpozatzidis
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Athanasios Smyrnakis
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Elias Panagiotopoulos
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Mariangela Kosmopoulou
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | | | - Kyle Fort
- Thermo
Fisher Scientific, Hanna-Kunath-Straße
11, 28199 Bremen, Germany
| | - Alexander Makarov
- Thermo
Fisher Scientific, Hanna-Kunath-Straße
11, 28199 Bremen, Germany
| | - Roman A. Zubarev
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 17165 Solna, Sweden
| |
Collapse
|
9
|
Foreman MM, Weber JM. Ion Binding Site Structure and the Role of Water in Alkaline Earth EDTA Complexes. J Phys Chem Lett 2022; 13:8558-8563. [PMID: 36067512 DOI: 10.1021/acs.jpclett.2c02391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interactions between molecular hosts and ionic guests and their dependence on the chemical environment are challenging to disentangle from solution data alone. The vibrational spectra of cold complexes of ethylenediaminetetraacetic acid (EDTA) chelating alkaline earth dications in vacuo encode structural characteristics of these complexes and their dependence on the size of the bound ion. The correlation between metal binding geometry and the relative intensities of vibrational bands of the carboxylate groups forming the binding pocket allows us to characterize water-induced changes in molecular geometry. The evolution of these structural markers from bare ions to water adducts to aqueous solution illustrates the role of water for the structure of ion binding sites in chelators. The binding pocket of EDTA opens up in aqueous solution, bringing the bound ion closer to the mouth of the binding site and leading to an increased exposure of the ion to the chemical environment.
Collapse
Affiliation(s)
- Madison M Foreman
- JILA and Department of Chemistry, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| | - J Mathias Weber
- JILA and Department of Chemistry, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
10
|
Bochenkova AV, Andersen LH. Action-Absorption Spectroscopy at the Band Origin of the Deprotonated Green Fluorescent Protein Chromophore In Vacuo. J Phys Chem Lett 2022; 13:6683-6685. [PMID: 35848550 DOI: 10.1021/acs.jpclett.2c01791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The application of action spectroscopy in connection with determination of the S0 to S1 band origin in the GFP anion model chromophore (deprotonated HBDI) is discussed. We specifically address the consequences of the lowest vibrational levels in S1 being located behind a potential-energy barrier that inhibits internal conversion to the S0 electronic ground state. Action spectroscopy based on consecutive absorption of two photons together with internal conversion will as a consequence reveal an apparent band origin that is significantly blue-shifted.
Collapse
Affiliation(s)
| | - Lars H Andersen
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
11
|
Pellegrinelli R, Yue L, Carrascosa E, Ben Faleh A, Warnke S, Bansal P, Rizzo TR. A New Strategy Coupling Ion-Mobility-Selective CID and Cryogenic IR Spectroscopy to Identify Glycan Anomers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:859-864. [PMID: 35437995 PMCID: PMC9074103 DOI: 10.1021/jasms.2c00043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 05/26/2023]
Abstract
Determining the primary structure of glycans remains challenging due to their isomeric complexity. While high-resolution ion mobility spectrometry (IMS) has recently allowed distinguishing between many glycan isomers, the arrival-time distributions (ATDs) frequently exhibit multiple peaks, which can arise from positional isomers, reducing-end anomers, or different conformations. Here, we present the combination of ultrahigh-resolution ion mobility, collision-induced dissociation (CID), and cryogenic infrared (IR) spectroscopy as a systematic method to identify reducing-end anomers of glycans. Previous studies have suggested that high-resolution ion mobility of sodiated glycans is able to separate the two reducing-end anomers. In this case, Y-fragments generated from mobility-separated precursor species should also contain a single anomer at their reducing end. We confirm that this is the case by comparing the IR spectra of selected Y-fragments to those of anomerically pure mono- and disaccharides, allowing the assignment of the mobility-separated precursor and its IR spectrum to a single reducing-end anomer. The anomerically pure precursor glycans can henceforth be rapidly identified on the basis of their IR spectrum alone, allowing them to be distinguished from other isomeric forms.
Collapse
Affiliation(s)
- Robert
P. Pellegrinelli
- Laboratoire de Chimie Physique
Moléculaire, EPFL SB ISIC LCPM, École
Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Lei Yue
- Laboratoire de Chimie Physique
Moléculaire, EPFL SB ISIC LCPM, École
Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Eduardo Carrascosa
- Laboratoire de Chimie Physique
Moléculaire, EPFL SB ISIC LCPM, École
Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Ahmed Ben Faleh
- Laboratoire de Chimie Physique
Moléculaire, EPFL SB ISIC LCPM, École
Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Stephan Warnke
- Laboratoire de Chimie Physique
Moléculaire, EPFL SB ISIC LCPM, École
Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Priyanka Bansal
- Laboratoire de Chimie Physique
Moléculaire, EPFL SB ISIC LCPM, École
Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Thomas R. Rizzo
- Laboratoire de Chimie Physique
Moléculaire, EPFL SB ISIC LCPM, École
Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Davies JA, Yang S, Ellis AM. Infrared spectra of carbocations and CH 4+ in helium. Phys Chem Chem Phys 2021; 23:27449-27459. [PMID: 34870649 DOI: 10.1039/d1cp03138d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infrared (IR) spectra of several hydrocarbon cations are reported, namely CH3+, CH4+, CH5+, CH5+(CH4) and C2H5+. The spectra were generated from weakly-bound helium-cation complexes formed by electron ionization of helium nanodroplets doped with a neutral hydrocarbon precursor. Spectroscopic transitions were registered by photoexcitation of the complexes coupled with mass spectrometric detection of the bare ions. For CH3+, we provide evidence showing that the helium-bound complexes contain 10-20 helium atoms (on average) and have a rotational temperature of ∼5 K. We show that this technique is well-suited to the study of highly symmetric or fluxional ionic species, as these intrinsic properties are preserved in the helium environment. This is in contrast to conventional tagging methods that use a single atom or molecule, which can change the point group or rigidity of the core ion and therefore the spectral profile. We demonstrate this for the highly fluxional molecular ion CH5+, whose spectrum in the current study matches that of the gas phase ion, whereas the fluxionality is lost when a methane tag is added. Finally, we present the first IR spectrum of methane cation, CH4+. The spectrum of this fundamental organic ion shows CH stretching bands consistent with a non-tetrahedral structure, a consequence of Jahn-Teller distortion.
Collapse
Affiliation(s)
- Julia A Davies
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Shengfu Yang
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Andrew M Ellis
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
13
|
Carrascosa E, Bull JN, Martínez-Núñez E, Scholz MS, Buntine JT, Bieske EJ. Photoisomerization of Linear and Stacked Isomers of a Charged Styryl Dye: A Tandem Ion Mobility Study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2842-2851. [PMID: 34787413 PMCID: PMC8640989 DOI: 10.1021/jasms.1c00264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The photoisomerization behavior of styryl 9M, a common dye used in material sciences, is investigated using tandem ion mobility spectrometry (IMS) coupled with laser spectroscopy. Styryl 9M has two alkene linkages, potentially allowing for four geometric isomers. IMS measurements demonstrate that at least three geometric isomers are generated using electrospray ionization with the most abundant forms assigned to a combination of EE (major) and ZE (minor) geometric isomers, which are difficult to distinguish using IMS as they have similar collision cross sections. Two additional but minor isomers are generated by collisional excitation of the electrosprayed styryl 9M ions and are assigned to the EZ and ZZ geometric isomers, with the latter predicted to have a π-stacked configuration. The isomer assignments are supported through calculations of equilibrium structures, collision cross sections, and statistical isomerization rates. Photoexcitation of selected isomers using an IMS-photo-IMS strategy shows that each geometric isomer photoisomerizes following absorption of near-infrared and visible light, with the EE isomer possessing a S1 ← S0 electronic transition with a band maximum near 680 nm and shorter wavelength S2 ← S0 electronic transition with a band maximum near 430 nm. The study demonstrates the utility of the IMS-photo-IMS strategy for providing fundamental gas-phase photochemical information on molecular systems with multiple isomerizable bonds.
Collapse
Affiliation(s)
- Eduardo Carrascosa
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - James N. Bull
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Emilio Martínez-Núñez
- Departamento
de Química Física, Universidade
de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Michael S. Scholz
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jack T. Buntine
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Evan J. Bieske
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
14
|
Andersson Å, Poline M, Houthuijs KJ, van Outersterp RE, Berden G, Oomens J, Zhaunerchyk V. IRMPD Spectroscopy of Homo- and Heterochiral Asparagine Proton-Bound Dimers in the Gas Phase. J Phys Chem A 2021; 125:7449-7456. [PMID: 34428065 PMCID: PMC8419839 DOI: 10.1021/acs.jpca.1c05667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/11/2021] [Indexed: 12/16/2022]
Abstract
We investigate gas-phase structures of homo- and heterochiral asparagine proton-bound dimers with infrared multiphoton dissociation (IRMPD) spectroscopy and quantum-chemical calculations. Their IRMPD spectra are recorded at room temperature in the range of 500-1875 and 3000-3600 cm-1. Both varieties of asparagine dimers are found to be charge-solvated based on their IRMPD spectra. The location of the principal intramolecular H-bond is discussed in light of harmonic frequency analyses using the B3LYP functional with GD3BJ empirical dispersion. Contrary to theoretical analyses, the two spectra are very similar.
Collapse
Affiliation(s)
- Åke Andersson
- Department
of Physics, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Mathias Poline
- Department
of Physics, Stockholm University, 10691 Stockholm, Sweden
| | - Kas J. Houthuijs
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Rianne E. van Outersterp
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Giel Berden
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- FELIX
Laboratory, Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Vitali Zhaunerchyk
- Department
of Physics, University of Gothenburg, 41296 Gothenburg, Sweden
| |
Collapse
|
15
|
Donon J, Habka S, Mons M, Brenner V, Gloaguen E. Conformational analysis by UV spectroscopy: the decisive contribution of environment-induced electronic Stark effects. Chem Sci 2021; 12:2803-2815. [PMID: 34164044 PMCID: PMC8179363 DOI: 10.1039/d0sc06074g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
UV chromophores are frequently used as probes of the molecular structure. In particular, they are sensitive to the electric field generated by the molecular environment, resulting in the observation of Stark effects on UV spectra. While these environment-induced electronic Stark effects (EI-ESE) are already used for conformational analysis in the condensed phase, this work explores the potential of such an approach when performed at much higher conformational resolution in the gas phase. By investigating model alkali benzylacetate and 4-phenylbutyrate ion pairs, where the electric field applied to the phenyl ring is chemically tuned by changing the nature of the alkali cation, this work demonstrates that precise conformational assignments can be proposed based on the correlation between the conformation-dependent calculated electric fields and the frequency of the electronic transitions observed in the experimental UV spectra. Remarkably, the sole analysis of Stark effects and fragmentation patterns in mass-selected UV spectra provided an accurate and complete conformational analysis, where spectral differences as small as a few cm-1 between electronic transitions were rationalized. This case study illustrates that the identification of EI-ESE together with their interpretation at the modest cost of a ground state electric field calculation qualify UV spectroscopy as a powerful tool for conformational analysis.
Collapse
Affiliation(s)
- Jeremy Donon
- LIDYL, CEA, CNRS, Université Paris Saclay, CEA Saclay Bât 522 91191 Gif-sur-Yvette France
| | - Sana Habka
- LIDYL, CEA, CNRS, Université Paris Saclay, CEA Saclay Bât 522 91191 Gif-sur-Yvette France
| | - Michel Mons
- LIDYL, CEA, CNRS, Université Paris Saclay, CEA Saclay Bât 522 91191 Gif-sur-Yvette France
| | - Valérie Brenner
- LIDYL, CEA, CNRS, Université Paris Saclay, CEA Saclay Bât 522 91191 Gif-sur-Yvette France
| | - Eric Gloaguen
- LIDYL, CEA, CNRS, Université Paris Saclay, CEA Saclay Bât 522 91191 Gif-sur-Yvette France
| |
Collapse
|
16
|
Aieta C, Bertaina G, Micciarelli M, Ceotto M. Representing molecular ground and excited vibrational eigenstates with nuclear densities obtained from semiclassical initial value representation molecular dynamics. J Chem Phys 2020; 153:214117. [PMID: 33291909 DOI: 10.1063/5.0031391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present in detail and validate an effective Monte Carlo approach for the calculation of the nuclear vibrational densities via integration of molecular eigenfunctions that we have preliminary employed to calculate the densities of the ground and the excited OH stretch vibrational states in the protonated glycine molecule [Aieta et al., Nat Commun 11, 4348 (2020)]. Here, we first validate and discuss in detail the features of the method on a benchmark water molecule. Then, we apply it to calculate on-the-fly the ab initio anharmonic nuclear densities in the correspondence of the fundamental transitions of NH and CH stretches in protonated glycine. We show how we can gain both qualitative and quantitative physical insight by inspection of different one-nucleus densities and assign a character to spectroscopic absorption peaks using the expansion of vibrational states in terms of harmonic basis functions. The visualization of the nuclear vibrations in a purely quantum picture allows us to observe and quantify the effects of anharmonicity on the molecular structure, also to exploit the effect of IR excitations on specific bonds or functional groups, beyond the harmonic approximation. We also calculate the quantum probability distribution of bond lengths, angles, and dihedrals of the molecule. Notably, we observe how in the case of one type of fundamental NH stretching, the typical harmonic nodal pattern is absent in the anharmonic distribution.
Collapse
Affiliation(s)
- Chiara Aieta
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Gianluca Bertaina
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Marco Micciarelli
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
17
|
Carrascosa E, Pellegrinelli RP, Rizzo TR, Muyskens MA. Cryogenic Infrared Action Spectroscopy Fingerprints the Hydrogen Bonding Network in Gas-Phase Coumarin Cations. J Phys Chem A 2020; 124:9942-9950. [DOI: 10.1021/acs.jpca.0c06430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Eduardo Carrascosa
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCPM Station 6, CH-1015 Lausanne, Switzerland
| | - Robert P. Pellegrinelli
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCPM Station 6, CH-1015 Lausanne, Switzerland
| | - Thomas R. Rizzo
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCPM Station 6, CH-1015 Lausanne, Switzerland
| | - Mark A. Muyskens
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, Michigan 49546, United States
| |
Collapse
|
18
|
Thomas DA, Chang R, Mucha E, Lettow M, Greis K, Gewinner S, Schöllkopf W, Meijer G, von Helden G. Probing the conformational landscape and thermochemistry of DNA dinucleotide anions via helium nanodroplet infrared action spectroscopy. Phys Chem Chem Phys 2020; 22:18400-18413. [PMID: 32797142 DOI: 10.1039/d0cp02482a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Isolation of biomolecules in vacuum facilitates characterization of the intramolecular interactions that determine three-dimensional structure, but experimental quantification of conformer thermochemistry remains challenging. Infrared spectroscopy of molecules trapped in helium nanodroplets is a promising methodology for the measurement of thermochemical parameters. When molecules are captured in a helium nanodroplet, the rate of cooling to an equilibrium temperature of ca. 0.4 K is generally faster than the rate of isomerization, resulting in "shock-freezing" that kinetically traps molecules in local conformational minima. This unique property enables the study of temperature-dependent conformational equilibria via infrared spectroscopy at 0.4 K, thereby avoiding the deleterious effects of spectral broadening at higher temperatures. Herein, we demonstrate the first application of this approach to ionic species by coupling electrospray ionization mass spectrometry (ESI-MS) with helium nanodroplet infrared action spectroscopy to probe the structure and thermochemistry of deprotonated DNA dinucleotides. Dinucleotide anions were generated by ESI, confined in an ion trap at temperatures between 90 and 350 K, and entrained in traversing helium nanodroplets. The infrared action spectra of the entrained ions show a strong dependence on pre-pickup ion temperature, consistent with the preservation of conformer population upon cooling to 0.4 K. Non-negative matrix factorization was utilized to identify component conformer infrared spectra and determine temperature-dependent conformer populations. Relative enthalpies and entropies of conformers were subsequently obtained from a van't Hoff analysis. IR spectra and conformer thermochemistry are compared to results from ion mobility spectrometry (IMS) and electronic structure methods. The implementation of ESI-MS as a source of dopant molecules expands the diversity of molecules accessible for thermochemical measurements, enabling the study of larger, non-volatile species.
Collapse
Affiliation(s)
- Daniel A Thomas
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- E. K. Campbell
- School of Chemistry, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
20
|
Bansal P, Yatsyna V, AbiKhodr AH, Warnke S, Ben Faleh A, Yalovenko N, Wysocki VH, Rizzo TR. Using SLIM-Based IMS-IMS Together with Cryogenic Infrared Spectroscopy for Glycan Analysis. Anal Chem 2020; 92:9079-9085. [PMID: 32456419 PMCID: PMC7349563 DOI: 10.1021/acs.analchem.0c01265] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
The isomeric heterogeneity of glycans poses a great challenge for their analysis. While combining ion mobility spectrometry (IMS) with tandem mass spectrometry is a powerful means for identifying and characterizing glycans, it has difficulty distinguishing the subtlest differences between isomers. Cryogenic infrared spectroscopy provides an additional dimension for glycan identification that is extremely sensitive to their structure. Our approach to glycan analysis combines ultrahigh-resolution IMS-IMS using structures for lossless ion manipulation (SLIM) with cryogenic infrared spectroscopy. We present here the design of a SLIM board containing a series of on-board traps in which we perform collision-induced dissociation (CID) at pressures in the millibar range. We characterize the on-board CID process by comparing the fragments generated from a pentapeptide to those obtained on a commercial tandem mass spectrometer. We then apply our new technique to study the mobility and vibrational spectra of CID fragments from two human milk oligosaccharides. Comparison of both the fragment drift times and IR spectra with those of suitable reference compounds allows us to identify their specific isomeric form, including the anomericity of the glycosidic linkage, demonstrating the power of this tool for glycan analysis.
Collapse
Affiliation(s)
- Priyanka Bansal
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Vasyl Yatsyna
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
- Department
of Physics, University of Gothenburg, 412 96 Gotheburg, Sweden
| | - Ali H. AbiKhodr
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Stephan Warnke
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Ahmed Ben Faleh
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Natalia Yalovenko
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Vicki H. Wysocki
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Thomas R. Rizzo
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Maitre P, Scuderi D, Corinti D, Chiavarino B, Crestoni ME, Fornarini S. Applications of Infrared Multiple Photon Dissociation (IRMPD) to the Detection of Posttranslational Modifications. Chem Rev 2019; 120:3261-3295. [PMID: 31809038 DOI: 10.1021/acs.chemrev.9b00395] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Infrared multiple photon dissociation (IRMPD) spectroscopy allows for the derivation of the vibrational fingerprint of molecular ions under tandem mass spectrometry (MS/MS) conditions. It provides insight into the nature and localization of posttranslational modifications (PTMs) affecting single amino acids and peptides. IRMPD spectroscopy, which takes advantage of the high sensitivity and resolution of MS/MS, relies on a wavelength specific fragmentation process occurring on resonance with an IR active vibrational mode of the sampled species and is well suited to reveal the presence of a PTM and its impact in the molecular environment. IRMPD spectroscopy is clearly not a proteomics tool. It is rather a valuable source of information for fixed wavelength IRMPD exploited in dissociation protocols of peptides and proteins. Indeed, from the large variety of model PTM containing amino acids and peptides which have been characterized by IRMPD spectroscopy, specific signatures of PTMs such as phosphorylation or sulfonation can be derived. High throughput workflows relying on the selective fragmentation of modified peptides within a complex mixture have thus been proposed. Sequential fragmentations can be observed upon IR activation, which do not only give rise to rich fragmentation patterns but also overcome low mass cutoff limitations in ion trap mass analyzers. Laser-based vibrational spectroscopy of mass-selected ions holding various PTMs is an increasingly expanding field both in the variety of chemical issues coped with and in the technological advancements and implementations.
Collapse
Affiliation(s)
- Philippe Maitre
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS, Université Paris Saclay, 91405, Orsay, France
| | - Debora Scuderi
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS, Université Paris Saclay, 91405, Orsay, France
| | - Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| |
Collapse
|
22
|
Martens J, van Outersterp RE, Vreeken RJ, Cuyckens F, Coene KLM, Engelke UF, Kluijtmans LAJ, Wevers RA, Buydens LMC, Redlich B, Berden G, Oomens J. Infrared ion spectroscopy: New opportunities for small-molecule identification in mass spectrometry - A tutorial perspective. Anal Chim Acta 2019; 1093:1-15. [PMID: 31735202 DOI: 10.1016/j.aca.2019.10.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 01/21/2023]
Abstract
Combining the individual analytical strengths of mass spectrometry and infrared spectroscopy, infrared ion spectroscopy is increasingly recognized as a powerful tool for small-molecule identification in a wide range of analytical applications. Mass spectrometry is itself a leading analytical technique for small-molecule identification on the merit of its outstanding sensitivity, selectivity and versatility. The foremost shortcoming of the technique, however, is its limited ability to directly probe molecular structure, especially when contrasted against spectroscopic techniques. In infrared ion spectroscopy, infrared vibrational spectra are recorded for mass-isolated ions and provide a signature that can be matched to reference spectra, either measured from standards or predicted using quantum-chemical calculations. Here we present an overview of the potential for this technique to develop into a versatile analytical method for identifying molecular structures in mass spectrometry-based analytical workflows. In this tutorial perspective, we introduce the reader to the technique of infrared ion spectroscopy and highlight a selection of recent experimental advances and applications in current analytical challenges, in particular in the field of untargeted metabolomics. We report on the coupling of infrared ion spectroscopy with liquid chromatography and present experiments that serve as proof-of-principle examples of strategies to address outstanding challenges.
Collapse
Affiliation(s)
- Jonathan Martens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands.
| | - Rianne E van Outersterp
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands
| | - Rob J Vreeken
- Drug Metabolism & Pharmacokinetics, Janssen R&D, Beerse, Belgium
| | - Filip Cuyckens
- Drug Metabolism & Pharmacokinetics, Janssen R&D, Beerse, Belgium
| | - Karlien L M Coene
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Udo F Engelke
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A J Kluijtmans
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ron A Wevers
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lutgarde M C Buydens
- Radboud University, Institute for Molecules and Materials, Chemometrics, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Britta Redlich
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands; van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098XH, Amsterdam, Science Park 908, the Netherlands.
| |
Collapse
|
23
|
Menges FS, Perez EH, Edington SC, Duong CH, Yang N, Johnson MA. Integration of High-Resolution Mass Spectrometry with Cryogenic Ion Vibrational Spectroscopy. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1551-1557. [PMID: 31183838 PMCID: PMC6813835 DOI: 10.1007/s13361-019-02238-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 05/07/2023]
Abstract
We describe an instrumental configuration for the structural characterization of fragment ions generated by collisional dissociation of peptide ions in the typical MS2 scheme widely used for peptide sequencing. Structures are determined by comparing the vibrational band patterns displayed by cryogenically cooled ions with calculated spectra for candidate structural isomers. These spectra were obtained in a linear action mode by photodissociation of weakly bound D2 molecules. This is accomplished by interfacing a Thermo Fisher Scientific Orbitrap Velos Pro to a cryogenic, triple focusing time-of-flight photofragmentation mass spectrometer (the Yale TOF spectrometer). The interface involves replacement of the Orbitrap's higher-energy collisional dissociation cell with a voltage-gated aperture that maintains the commercial instrument's standard capabilities while enabling bidirectional transfer of ions between the high-resolution FT analyzer and external ion sources. The performance of this hybrid instrument is demonstrated by its application to the a1, y1 and z1 fragment ions generated by CID of a prototypical dipeptide precursor, protonated L-phenylalanyl-L-tyrosine (H+-Phe-Tyr-OH or FY-H+). The structure of the unusual z1 ion, nominally formed after NH3 is ejected from the protonated tyrosine (y1) product, is identified as the cyclopropane-based product is tentatively identified as a cyclopropane-based product.
Collapse
Affiliation(s)
- Fabian S Menges
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Evan H Perez
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Sean C Edington
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Chinh H Duong
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Nan Yang
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Mark A Johnson
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
24
|
Roithová J, Jašík J, Del Pozo Mellado JJ, Gerlich D. Electronic spectra of ions of astrochemical interest: from fast overview spectra to high resolution. Faraday Discuss 2019; 217:98-113. [PMID: 31016298 PMCID: PMC8639220 DOI: 10.1039/c8fd00196k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/12/2018] [Indexed: 11/21/2022]
Abstract
The combination of cryogenic ion traps with suitable light sources and standard tools of mass spectrometry has led to many innovative applications in previous years. This paper presents the combination of our versatile instrument with a supercontinuum laser for the rapid identification of ions that might be of special interest, e.g. as candidates for diffuse interstellar bands carriers. Using a linear wire quadrupole ion trap at 3 K, routine He-tagging, long irradiation times, and the brilliance and wide spectral range of a crystal fiber laser, mass selected ions have been exposed to spectral fluencies larger than 10 mJ (nm cm2)-1. These conditions result in an unsurpassed sensitivity, allowing us to find out within a few minutes and with nm accuracy, where photo absorption occurs with cross sections above 10-18 cm2. In this contribution, we present a variety of ions, probed between 420 and 720 nm. They have been generated by electron- or electrospray ionization of (polycyclic) aromatic hydrocarbons. For selected candidates, we recorded spectra with higher resolution and in the IR range. The anthracene dication has been selected to present a detailed analysis of our new results.
Collapse
Affiliation(s)
- Jana Roithová
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands.
| | - Juraj Jašík
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Jesus J Del Pozo Mellado
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands.
| | - Dieter Gerlich
- Department of Physics, University of Technology, 09107 Chemnitz, Germany
| |
Collapse
|
25
|
Vušurović J, Breuker K. Relative Strength of Noncovalent Interactions and Covalent Backbone Bonds in Gaseous RNA-Peptide Complexes. Anal Chem 2019; 91:1659-1664. [PMID: 30614682 PMCID: PMC6335609 DOI: 10.1021/acs.analchem.8b05387] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interactions of ribonucleic acids (RNA) with basic ligands such as proteins or aminoglycosides play a key role in fundamental biological processes. Native top-down mass spectrometry (MS) has recently been extended to binding site mapping of RNA-ligand interactions by collisionally activated dissociation, without the need for laborious sample preparation procedures. The technique relies on the preservation of noncovalent interactions at energies that are sufficiently high to cause RNA backbone cleavage. In this study, we address the question of how many and what types of noncovalent interactions allow for binding site mapping by top-down MS. We show that proton transfer from protonated ligand to deprotonated RNA within salt bridges initiates loss of the ligand, but that proton transfer becomes energetically unfavorable in the presence of additional hydrogen bonds such that the noncovalent interactions remain stronger than the covalent RNA backbone bonds.
Collapse
Affiliation(s)
- Jovana Vušurović
- Institut für Organische Chemie and Center for Molecular Biosciences Innsbruck (CMBI) , Universität Innsbruck , Innrain 80-82 , 6020 Innsbruck , Austria
| | - Kathrin Breuker
- Institut für Organische Chemie and Center for Molecular Biosciences Innsbruck (CMBI) , Universität Innsbruck , Innrain 80-82 , 6020 Innsbruck , Austria
| |
Collapse
|
26
|
Affiliation(s)
- Oleg V. Boyarkin
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Roy TK, Kopysov V, Pereverzev A, Šebek J, Gerber RB, Boyarkin OV. Intrinsic structure of pentapeptide Leu-enkephalin: geometry optimization and validation by comparison of VSCF-PT2 calculations with cold ion spectroscopy. Phys Chem Chem Phys 2018; 20:24894-24901. [PMID: 30234204 DOI: 10.1039/c8cp03989e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The intrinsic structure of an opioid peptide [Ala2, Leu5]-leucine enkephalin (ALE) has been investigated using first-principles based vibrational self-consistent field (VSCF) theory and cold ion spectroscopy. IR-UV double resonance spectroscopy revealed the presence of only one highly abundant conformer of the singly protonated ALE, isolated and cryogenically cooled in the gas phase. High-level quantum mechanical calculations of electronic structures in conjunction with a systematic conformational search allowed for finding a few low-energy candidate structures. In order to identify the observed structure, we computed vibrational spectra of the candidate structures and employed the theory at the semi-empirically scaled harmonic level and at the first-principles based anharmonic VSCF levels. The best match between the calculated "anharmonic" and the measured spectra appeared, indeed, for the most stable candidate. An average of two spectra calculated with different quantum mechanical potentials is proposed for the best match with experiment. The match thus validates the calculated intrinsic structure of ALE and demonstrates the predictive power of first-principles theory for solving structures of such large molecules.
Collapse
Affiliation(s)
- Tapta Kanchan Roy
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), Jammu 181143, India
| | | | | | | | | | | |
Collapse
|
28
|
Yang N, Duong CH, Kelleher PJ, Johnson MA. Unmasking Rare, Large-Amplitude Motions in D 2-Tagged I -·(H 2O) 2 Isotopomers with Two-Color, Infrared-Infrared Vibrational Predissociation Spectroscopy. J Phys Chem Lett 2018; 9:3744-3750. [PMID: 29924622 DOI: 10.1021/acs.jpclett.8b01485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We describe a two-color, isotopomer-selective infrared-infrared population-labeling method that can monitor very slow spectral diffusion of OH oscillators in H-bonded networks and apply it to the I-·(HDO)·(D2O) and I-·(H2O)·(D2O) systems, which are cryogenically cooled and D2-tagged at an ion trap temperature of 15 K. These measurements reveal very large (>400 cm-1), spontaneous spectral shifts despite the fact that the predissociation spectra in the OH stretching region of both isotopologues are sharp and readily assigned to four fundamentals of largely decoupled OH oscillators held in a cyclic H-bonded network. This spectral diffusion is not observed in the untagged isotopologues of the dihydrate clusters that are generated under the same source conditions but does become apparent at about 75 K. These results are discussed in the context of the large-amplitude "jump" mechanism for H-bond relaxation dynamics advanced by Laage and Hynes in an experimental scenario where rare events can be captured by following the migration of OH groups among the four available positions in the quasi-rigid equilibrium structure.
Collapse
Affiliation(s)
- Nan Yang
- Sterling Chemistry Laboratory , Yale University , New Haven , Connecticut 06520 , United States
| | - Chinh H Duong
- Sterling Chemistry Laboratory , Yale University , New Haven , Connecticut 06520 , United States
| | - Patrick J Kelleher
- Sterling Chemistry Laboratory , Yale University , New Haven , Connecticut 06520 , United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory , Yale University , New Haven , Connecticut 06520 , United States
| |
Collapse
|
29
|
Gerlich D. Infrared spectroscopy of cold trapped molecular ions using He-tagging. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800122] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Dieter Gerlich
- Department of Physics; University of Technology; Chemnitz Germany
| |
Collapse
|
30
|
van Wüllen C, Schwing K, Riehn C, Gerhards M. Editorial of the PCCP themed issue on "Physical Chemistry for Life Sciences". Phys Chem Chem Phys 2018; 19:10714-10717. [PMID: 28422232 DOI: 10.1039/c7cp90069d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This themed issue features high quality and original research on the theme of Physical Chemistry for Life Sciences.
Collapse
Affiliation(s)
- Christoph van Wüllen
- TU Kaiserslautern, Fachbereich Chemie and Research Center Optimas, Erwin-Schrödinger-Strasse 52, D-67663 Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
31
|
Roy TK, Nagornova NS, Boyarkin OV, Gerber RB. A Decapeptide Hydrated by Two Waters: Conformers Determined by Theory and Validated by Cold Ion Spectroscopy. J Phys Chem A 2017; 121:9401-9408. [PMID: 29091429 DOI: 10.1021/acs.jpca.7b10357] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intrinsic structures of biomolecules in the gas phase may not reflect their native solution geometries. Microsolvation of the molecules bridges the two environments, enabling a tracking of molecular structural changes upon hydration at the atomistic level. We employ density functional calculations to compute a large pool of structures and vibrational spectra for a gas-phase complex, in which a doubly protonated decapeptide, gramicidin S, is solvated by two water molecules. Though most vibrations of this large complex are treated in a harmonic approximation, the water molecules and the vibrations of the host ion coupled to them are locally described by a quantum mechanical vibrational self-consistent field theory with second-order perturbation correction (VSCF-PT2). Guided and validated by the available cold ion spectroscopy data, the computational analysis identifies structures of the three experimentally observed conformers of the complex. They, mainly, differ by the hydration sites, of which the one at the Orn side chain is the most important for reshaping the peptide toward its native structure. The study demonstrates the ability of a quantum chemistry approach that intelligently combines the semiempirical and ab initio computations to disentangle a complex interplay of intra- and intermolecular hydrogen bonds in large molecular systems.
Collapse
Affiliation(s)
- Tapta Kanchan Roy
- Department of Chemistry & Chemical Sciences, Central University of Jammu , Jammu, 180011 India
| | - Natalia S Nagornova
- Laboratoire de Chimie Physique Molèculaire, École Polytechnique Fèdèrale de Lausanne , 1015 Lausanne, Switzerland
| | - Oleg V Boyarkin
- Laboratoire de Chimie Physique Molèculaire, École Polytechnique Fèdèrale de Lausanne , 1015 Lausanne, Switzerland
| | - R Benny Gerber
- Institute of Chemistry, The Hebrew University , Jerusalem 91904, Israel.,Department of Chemistry, University of California , Irvine, California 92697, United States.,Department of Chemistry, University of Helsinki , P.O. Box 55, 00014 Helsinki, Finland
| |
Collapse
|
32
|
Dillinger S, Lang J, Niedner-Schatteburg G. Cryo IR Spectroscopy of [Hemin] + Complexes in Isolation. J Phys Chem A 2017; 121:7191-7196. [PMID: 28876926 DOI: 10.1021/acs.jpca.7b08604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We present cryo IR spectra of isolated [Hemin]+ adducts with CO, N2, and O2 ([Hemin(CO)1]+, [Hemin(CO)2]+, [Hemin(14N2)]+, [Hemin(15N2)]+, and [Hemin(O2)]+). Well resolved bands allow for the elucidation of structure and spin multiplicity in conjunction with density functional (DFT) calculations. There is a quartet spin state for the N2 and CO adducts and a sextet spin state for the O2 adduct, where the O2 retains its triplet state. The double CO adsorption induces significant changes in the vibrational patterns of the IR spectra, which we take as strong evidence for a spin quenching into a doublet. Our study characterizes [Hemin]+, which is the Fe3+ oxidation product of heme that is of ubiquitous presence in hemeproteins.
Collapse
Affiliation(s)
- Sebastian Dillinger
- Fachbereich Chemie and Forschungszentrum OPTIMAS, TU Kaiserslautern , 67663 Kaiserslautern, Germany
| | - Johannes Lang
- Fachbereich Chemie and Forschungszentrum OPTIMAS, TU Kaiserslautern , 67663 Kaiserslautern, Germany
| | | |
Collapse
|
33
|
Andris E, Navrátil R, Jašík J, Terencio T, Srnec M, Costas M, Roithová J. Chasing the Evasive Fe═O Stretch and the Spin State of the Iron(IV)-Oxo Complexes by Photodissociation Spectroscopy. J Am Chem Soc 2017; 139:2757-2765. [PMID: 28125220 DOI: 10.1021/jacs.6b12291] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We demonstrate the application of infrared photodissocation spectroscopy for determination of the Fe═O stretching frequencies of high-valent iron(IV)-oxo complexes [(L)Fe(O)(X)]2+/+ (L = TMC, N4Py, PyTACN, and X = CH3CN, CF3SO3, ClO4, CF3COO, NO3, N3). We show that the values determined by resonance Raman spectroscopy in acetonitrile solutions are on average 9 cm-1 red-shifted with respect to unbiased gas-phase values. Furthermore, we show the assignment of the spin state of the complexes based on the vibrational modes of a coordinated anion and compare reactivities of various iron(IV)-oxo complexes generated as dications or monocations (bearing an anionic ligand). The coordinated anions can drastically affect the reactivity of the complex and should be taken into account when comparing reactivities of complexes bearing different ligands. Comparison of reactivities of [(PyTACN)Fe(O)(X)]+ generated in different spin states and bearing different anionic ligands X revealed that the nature of anion influences the reactivity more than the spin state. The triflate and perchlorate ligands tend to stabilize the quintet state of [(PyTACN)Fe(O)(X)]+, whereas trifluoroacetate and nitrate stabilize the triplet state of the complex.
Collapse
Affiliation(s)
- Erik Andris
- Department of Organic Chemistry, Faculty of Science, Charles University , Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Rafael Navrátil
- Department of Organic Chemistry, Faculty of Science, Charles University , Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Juraj Jašík
- Department of Organic Chemistry, Faculty of Science, Charles University , Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Thibault Terencio
- Department of Organic Chemistry, Faculty of Science, Charles University , Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Martin Srnec
- J. Heyrovsky Institute of Physical Chemistry of the CAS , v.v i., Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Miquel Costas
- Departament de Quimica and Institute of Computational Chemistry and Catalysis (IQCC), University of Girona , Campus Montilivi, Girona 17071, Spain
| | - Jana Roithová
- Department of Organic Chemistry, Faculty of Science, Charles University , Hlavova 2030/8, 12843 Prague 2, Czech Republic
| |
Collapse
|
34
|
Inokuchi Y, Kaneko M, Honda T, Nakashima S, Ebata T, Rizzo TR. UV and IR Spectroscopy of Cryogenically Cooled, Lanthanide-Containing Ions in the Gas Phase. Inorg Chem 2017; 56:277-281. [PMID: 27997155 DOI: 10.1021/acs.inorgchem.6b02134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We measure UV and IR spectra in the gas phase for EuOH+, EuCl+, and TbO+ ions, which are produced by an electrospray ionization source and cooled to ∼10 K in a cold, 22-pole ion trap. The UV photodissociation (UVPD) spectra of these ions show a number of sharp, well-resolved bands in the 30000-38000 cm-1 region, although a definite assignment of the spectra is difficult because of a high degree of congestion. We also measure an IR spectrum of the EuOH+ ion in the 3500-3800 cm-1 region by IR-UV double-resonance spectroscopy, which reveals an OH stretching band at 3732 cm-1. We perform density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations of these ions in order to examine the nature of the transitions. The DFT results indicate that the states of highest-spin multiplicity (octet for EuOH+ and EuCl+ and septet for TbO+) are substantially more stable than other states of lower-spin multiplicity. The TD-DFT calculations suggest that UV absorption of the EuOH+ and EuCl+ ions arises from Eu(4f) → Eu(5d,6p) transitions, whereas electronic transitions of the TbO+ ion are mainly due to the electron promotion of O(2p) → Tb(4f,6s). The UVPD results of the lanthanide-containing ions in this study suggest the possibility of using lanthanide ions as "conformation reporters" for gas-phase spectroscopy for large molecules.
Collapse
Affiliation(s)
- Yoshiya Inokuchi
- Department of Chemistry, Graduate School of Science, Hiroshima University , Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Masashi Kaneko
- Department of Chemistry, Graduate School of Science, Hiroshima University , Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takumi Honda
- Department of Chemistry, Graduate School of Science, Hiroshima University , Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Satoru Nakashima
- Department of Chemistry, Graduate School of Science, Hiroshima University , Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takayuki Ebata
- Department of Chemistry, Graduate School of Science, Hiroshima University , Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Thomas R Rizzo
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne , Lausanne CH-1015, Switzerland
| |
Collapse
|
35
|
Sohn WY, Habka S, Gloaguen E, Mons M. Unifying the microscopic picture of His-containing turns: from gas phase model peptides to crystallized proteins. Phys Chem Chem Phys 2017. [DOI: 10.1039/c7cp03058d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence in crystallized proteins of a local anchoring between the side chain of a His residue, located in the central position of a γ- or β-turn, and its local main chain environment, is assessed by the comparison of protein structures with relevant isolated model peptides.
Collapse
Affiliation(s)
- Woon Yong Sohn
- LIDYL
- CEA
- CNRS
- Université Paris-Saclay
- 91191 Gif-sur-Yvette Cedex
| | - Sana Habka
- LIDYL
- CEA
- CNRS
- Université Paris-Saclay
- 91191 Gif-sur-Yvette Cedex
| | - Eric Gloaguen
- LIDYL
- CEA
- CNRS
- Université Paris-Saclay
- 91191 Gif-sur-Yvette Cedex
| | - Michel Mons
- LIDYL
- CEA
- CNRS
- Université Paris-Saclay
- 91191 Gif-sur-Yvette Cedex
| |
Collapse
|
36
|
Mahé J, Bakker DJ, Jaeqx S, Rijs AM, Gaigeot MP. Mapping gas phase dipeptide motions in the far-infrared and terahertz domain. Phys Chem Chem Phys 2017; 19:13778-13787. [DOI: 10.1039/c7cp00369b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Vibrational signatures of Ac-Phe-AA-NH2 dipeptides are recorded and analysed in the far IR/THz spectral domain (100–800 cm−1, 3–24 THz), with the ‘AA’ amino acid chosen within the series ‘AA’ = Gly, Ala, Pro, Cys, Ser, Val. Phe stands for phenylalanine.
Collapse
Affiliation(s)
- Jérôme Mahé
- LAMBE CNRS UMR8587
- Université d'Evry val d'Essonne
- 91025 Evry
- France
- Université Paris-Saclay
| | - Daniël J. Bakker
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Sander Jaeqx
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Anouk M. Rijs
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Marie-Pierre Gaigeot
- LAMBE CNRS UMR8587
- Université d'Evry val d'Essonne
- 91025 Evry
- France
- Université Paris-Saclay
| |
Collapse
|
37
|
Gerlich D, Jašík J, Andris E, Navrátil R, Roithová J. Collisions of FeO
+
with H
2
and He in a Cryogenic Ion Trap. Chemphyschem 2016; 17:3723-3739. [DOI: 10.1002/cphc.201600753] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/01/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Dieter Gerlich
- Department of Organic Chemistry Faculty of Science Charles University in Prague 12843 Prague 2 Czech Republic
- Department of Physics University of Technology 09107 Chemnitz Germany
| | - Juraj Jašík
- Department of Organic Chemistry Faculty of Science Charles University in Prague 12843 Prague 2 Czech Republic
| | - Erik Andris
- Department of Organic Chemistry Faculty of Science Charles University in Prague 12843 Prague 2 Czech Republic
| | - Rafael Navrátil
- Department of Organic Chemistry Faculty of Science Charles University in Prague 12843 Prague 2 Czech Republic
| | - Jana Roithová
- Department of Organic Chemistry Faculty of Science Charles University in Prague 12843 Prague 2 Czech Republic
| |
Collapse
|
38
|
Pereverzev AY, Cheng X, Nagornova NS, Reese DL, Steele RP, Boyarkin OV. Vibrational Signatures of Conformer-Specific Intramolecular Interactions in Protonated Tryptophan. J Phys Chem A 2016; 120:5598-608. [DOI: 10.1021/acs.jpca.6b05605] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aleksandr Y. Pereverzev
- Laboratoire
de Chimie Physique Moléculaire, Ecole Polytechnique Federale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Xiaolu Cheng
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Natalia S. Nagornova
- Laboratoire
de Chimie Physique Moléculaire, Ecole Polytechnique Federale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Diana L. Reese
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ryan P. Steele
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Oleg V. Boyarkin
- Laboratoire
de Chimie Physique Moléculaire, Ecole Polytechnique Federale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
39
|
Jacovella U, Agner JA, Schmutz H, Deiglmayr J, Merkt F. Infrared spectroscopy of molecular ions in selected rotational and spin-orbit states. J Chem Phys 2016; 145:014301. [DOI: 10.1063/1.4954701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- U. Jacovella
- Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zurich, Switzerland
| | - J. A. Agner
- Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zurich, Switzerland
| | - H. Schmutz
- Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zurich, Switzerland
| | - J. Deiglmayr
- Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zurich, Switzerland
| | - F. Merkt
- Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zurich, Switzerland
| |
Collapse
|
40
|
Roithová J, Gray A, Andris E, Jašík J, Gerlich D. Helium Tagging Infrared Photodissociation Spectroscopy of Reactive Ions. Acc Chem Res 2016; 49:223-30. [PMID: 26821086 DOI: 10.1021/acs.accounts.5b00489] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interrogation of reaction intermediates is key for understanding chemical reactions; however their direct observation and study remains a considerable challenge. Mass spectrometry is one of the most sensitive analytical techniques, and its use to study reaction mixtures is now an established practice. However, the information that can be obtained is limited to elemental analysis and possibly to fragmentation behavior, which is often challenging to analyze. In order to extend the available experimental information, different types of spectroscopy in the infrared and visible region have been combined with mass spectrometry. Spectroscopy of mass selected ions usually utilizes the powerful sensitivity of mass spectrometers, and the absorption of photons is not detected as such but rather translated to mass changes. One approach to accomplish such spectroscopy involves loosely binding a tag to an ion that will be removed by absorption of one photon. We have constructed an ion trapping instrument capable of reaching temperatures that are sufficiently low to enable tagging by helium atoms in situ, thus permitting infrared photodissociation spectroscopy (IRPD) to be carried out. While tagging by larger rare gas atoms, such as neon or argon is also possible, these may cause significant structural changes to small and reactive species, making the use of helium highly beneficial. We discuss the "innocence" of helium as a tag in ion spectroscopy using several case studies. It is shown that helium tagging is effectively innocent when used with benzene dications, not interfering with their structure or IRPD spectrum. We have also provided a case study where we can see that despite its minimal size there are systems where He has a huge effect. A strong influence of the He tagging was shown in the IRPD spectra of HCCl(2+) where large spectral shifts were observed. While the presented systems are rather small, they involve the formation of mixtures of isomers. We have therefore implemented two-color experiments where one laser is employed to selectively deplete a mixture by one (or more) isomer allowing helium tagging IRPD spectra of the remaining isomer(s) to be recorded via the second laser. Our experimental setup, based on a linear wire quadrupole ion trap, allows us to deplete almost 100% of all helium tagged ions in the trap. Using this special feature, we have developed attenuation experiments for determination of absolute photofragmentation cross sections. At the same time, this approach can be used to estimate the representation of isomers in a mixture. The ultimate aim is the routine use of this instrument and technique to study a wide range of reaction intermediates in catalysis. To this end, we present a study of hypervalent iron(IV)-oxo complexes ([(L)Fe(O)(NO3)](+)). We show that we can spectroscopically differentiate iron complexes with S = 1 and S = 2 according to the stretching vibrations of a nitrate counterion.
Collapse
Affiliation(s)
- Jana Roithová
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Andrew Gray
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Erik Andris
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Juraj Jašík
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Dieter Gerlich
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, Prague 2, 128 43, Czech Republic
| |
Collapse
|
41
|
Czar MF, Jockusch RA. Sensitive probes of protein structure and dynamics in well-controlled environments: combining mass spectrometry with fluorescence spectroscopy. Curr Opin Struct Biol 2015; 34:123-34. [DOI: 10.1016/j.sbi.2015.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 10/25/2022]
|
42
|
Rijs AM, Oomens J. IR Spectroscopic Techniques to Study Isolated Biomolecules. Top Curr Chem (Cham) 2014; 364:1-42. [DOI: 10.1007/128_2014_621] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Dunbar RC. Spectroscopy of Metal-Ion Complexes with Peptide-Related Ligands. Top Curr Chem (Cham) 2014; 364:183-223. [DOI: 10.1007/128_2014_578] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|